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Abstract
Researches dedicated to reactive oxygen species (ROS) had been performed for decades, yet the outcomes remain contro-
versial. With the relentless effort of studies, researchers have explored the role of ROS in biosystem and various diseases. 
ROS are beneficial for biosystem presenting as signalling molecules and enhancing immunologic defence. However, they 
also have harmful effects such as causing tissue and organ damages. The results are controversial in studies focusing on ROS 
and ROS-related diseases by regulating ROS with inhibitors or promotors. These competing results hindered the process for 
further investigation of the specific mechanisms lying behind. The opinions presented in this review interpret the researches 
of ROS from a different dimension that might explain the competing results of ROS introduced so far from a broader per-
spective. This review brings a different thinking to researchers, with the neglected features and potentials of ROS, to relate 
their works with ROS and to explore the mechanisms between their subject and ROS.
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Introduction

ROS are a set of unstable molecules including hydrogen per-
oxide (H2O2), hydroxyl radical (OH−), singlet oxygen (1O2) 
and superoxide (O2

−) that are produced by all kinds of cells 
[1]. The comprehensive distribution of ROS may grant them 
with a fundamental role in biosystem. Although ROS play an 
important role in pathogen resistance and cellular signalling, 
they are also broadly recognized as harmful reactive parti-
cles to cell as they damage intracellular proteins, lipids and 
nucleic acids. It usually appears in pathological processes 
when they are not scavenged on time [2]. The essence that 
ROS are produced in energy demanding conditions where 
vigorous metabolism is in demand shall not be neglected. 
The pathogenic role of ROS in self-damage and the benefi-
cial role in the immune system may be due to the require-
ment of energy supply. In these conditions, excessively 
produced ROS bring about oxidative damage to body and 
pathogens. ROS are widely involved in basic mechanisms 

and pathways. They not only impair cells and tissues with 
oxidative damage, but also play an important role in many 
homeostasis processes involving metabolism, immunity, 
growth and differentiation [3]. Researchers have been 
regarding ROS as byproducts and exploring their effects on 
organisms, but the fundamental features of ROS might illu-
minate their role in pathologies and biomechanisms.

Generation of ROS

Mitochondrial respiratory chain is one of the major sources 
of cellular ROS. ATP synthesis produces ROS during nor-
mal oxygen metabolism. Thus, ROS are regarded as byprod-
ucts during energy perfusion to cell activities in most cases. 
The primary function of NADPH oxidase (NOX) enzymes 
is the generation of ROS [1]. Belonging to the NOX fam-
ily, activated NOX2 could promote ROS production through 
ryanodine receptors and thus trigger Ca2 + sparks [4]. The 
involvement of NADPH and NADH in repiratory chain and 
cellular metabolisms makes ROS produce in all kinds of 
cells. Toll-like receptors (TLR) TLR1, TLR2 and TLR4 can 
enhance ROS production by recruiting mitochondria to mac-
rophage phagosomes and translocating tumour necrosis fac-
tor receptor-associated factor 6 (TRAF6) to mitochondria to 
engage in evolutionarily conserved signalling intermediate 
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in Toll pathways (ECSIT) [5]. Although ROS are mostly 
produced in mitochondria, the detailed mechanisms of the 
production are still not fully understood. However, the major 
factors responsible for ROS production are respiratory chain 
complexes (Fig. 1).

Complex I

NADH-ubiquinone oxidoreductase (Complex I) is the major 
source of mitochondrial ROS production in varying diseases. 
The components responsible for ROS production of Com-
plex I include ubisemiquinone, flavin mononucleotide, Fe-S 
cluster and NAD [6]. However, ROS production by complex 
I in healthy state is humble presenting little oxidative dam-
age. The major production of ROS in this state comes mainly 
from complex II through TCA cycle. NADH gene mutation 
which causes deficiency in respiratory complex I could end 
up in the overproduction of ROS and enhance metastasis of 
tumour cells [7].

Complex II

Succinate dehydrogenase (SDH) or succinate-coenzyme Q 
reductase (SQR) is composed of SDHA, SDHB, SDHC and 
SDHD. SDHA and SDHB are hydrophilic proteins. SDHC 
and SDHD are hydrophobic proteins that bind to ubiqui-
none. This oxidoreductase is also known as complex II that 
plays an important role in TCA cycle and respiratory chain. 
Succinate is the intermediate of TCA cycle and also a meta-
bolic signature of ischaemia–reperfusion. It is responsible 

for ROS generation when accumulated from fumarate over-
production and malate/aspartate shuttle during reperfusion. 
Ischaemia injury can be ameliorated by the inhibition of 
succinate or ROS. Complex II turns succinate into fumarate 
through oxidation in mitochondria with reduced ubiquinone 
in the membrane [8], and succinate could be re-oxidized 
by SDH, thus increasing ROS generation through reverse 
electron transport in mitochondria. [9].

Complex III

Ubiquinol–cytochrome c oxidoreductase (Complex III) is 
encoded by UQCRC1 (ubiquinol–cytochrome c reductase 
core protein 1) gene and could receive reducing equiva-
lents from Complex I and Complex II. The received reduc-
ing equivalents are proceeded with ubiquinol and pro-
duces semiquinone for further proton transfer. p66SHC (Src 
homologous–collagen homologue adaptor protein) generates 
mitochondrial ROS as apoptosis signal through oxidation of 
cytochrome c in mitochondrial electron transfer chain. p66 
mutants could lose the ability to generate ROS and induce 
mitochondrial apoptosis [10], but genetic mutation may also 
contribute to increased generation of ROS. Isp-1 and nuo-6 
encode complex III subunit Rieske and complex I subunit 
NDUFB4 (NADH dehydrogenase [ubiquinone] 1 beta sub-
complex subunit 4), respectively. Mutants in isp-1 and nuo-6 
are all related with enhanced ROS level that leads to length-
ened lifespan. ROS promotor treatments can lengthen the 
wild-type lifespan while having no effect on those longevity 
mutants. And the enhanced ROS induces apoptosis pathway 

Fig. 1   Generation of ROS in mitochondria
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triggered by CED-13 that changed the gene expression to 
protect mitochondrial dysfunction [11]. Tumour necrosis 
factor alpha (TNFα ) could regulate cell proliferation and 
death, and the inhibition of nuclear factor kappa-B (NF-κB) 
makes TNFα bias to cell death. TNFα-induced ROS could 
support c-Jun N-terminal kinase (JNK) activation during 
NF-κB inhibition. The sustained JNK activation enables 
cytochrome c release and leads to necrotic cell death [12].

Regulation of ROS

The homeostasis of ROS plays an important role in reducing 
oxidative damage and fulfil energy demand. ROS present as 
signalling molecules in multiple pathways and mechanisms. 
Thus, they are inevitably influenced by proteins and genes 
involved within. Apart from that, other environmental com-
plexes and antioxidants could contribute to ROS production 
according to their redox potential. It is also noted that differ-
ent mtDNA haplotypes may have distinct respiration capac-
ity triggered by varying production of ROS [13] (Table 1).

Downregulation of ROS

Relatively high levels of ROS may cause oxidative dam-
age or induce apoptosis during immunological defences or 
pathological conditions. The mechanisms to survive under 
such environment are essential for body cells or tumour 
cells and bacteria. Hypoxia inducible factor-2 alpha 
(HIF-2α ) encoded by endothelial PAS domain protein 
1 (Epas1) gene could control ROS level in mitochondria 
through antioxidant enzymes and maintain ROS homeo-
stasis [14]. PPARγ coactivator 1α (PGC-1α) is required for 
antioxidative enzymes including glutathione peroxidase 

1 (GPx1) and superoxide dismutase 2 (SOD2) [15]. ROS 
level also could be controlled through degradation of 
NOX2 on endoplasmic reticulum by protein negative regu-
lator of ROS (NRROS). This reduces tissue damage and 
maintains its function upon immunological defence [16, 
17]. However, ROS themselves could activate extracellular 
signal-regulated kinase (ERK) by targeting proteins Gαi 
and Gα0 and protect cardiac cell from oxidative damage 
[18]. These proteins present protective effect on body cells 
and redox balance. It is also noted that the opened potas-
sium channels may reduce ROS level [19].

ROS tolerance may be partly involved in the mecha-
nisms behind the tumour cells avoiding immunological 
defence. Cancer cells could produce enough NADPH to 
support vigorous proliferation while maintaining ROS 
homeostasis through GSH (glutathione). Enhanced ROS 
in lung cancer cells could inhibit glycolytic enzyme pyru-
vate kinase M2 (PKM2). This also allows them to survive 
under acute oxidative stress and still supports their pro-
liferation [20]. Nuclear factor erythroid-2-related factor 2 
(Nrf2) transcription is increased in tumour cells to sup-
press ROS generation by Nrf2–Keap1 (kelch-like ECH-
associated protein 1) interaction. Oncogenic alleles of 
K-Ras, B-Raf and Myc could increase Nrf2 antioxidant 
activity and reduce ROS level [21]. Researches also indi-
cate that gene Ucp2 (uncoupling protein 2) could limit 
ROS production and inflammation in macrophage [22]. 
Apart from that, antioxidants also include organics like 
Vitamin E, Vitamin C and complexes like FHC (ferritin 
heavy chain). They reduce apoptosis induced by TNFα and 
JNK activity through suppression of ROS accumulation 
and iron sequestration as a downstream product of NF-κB 
pathway [23, 24].

Table 1   Agents involved in 
ROS metabolism

Regulator type Agents Effects

ROS inhibitors ERK Reduce oxidative damage on cardiac cells
NRROS Reduce tissue damage
HIF-2α ROS homeostasis
PGC-1α Active antioxidative enzymes
Nrf2 Limit ROS production in tumour
PKM2 Reduce oxidative damage on lung cancer cells
Ucp2 Limit inflammation ROS production in macrophage
Vitamin C/E, FHC Suppress ROS accumulation

ROS promoters TLR1, 2, 4 Increase ROS generation in macrophage
NOX2 Increase mitochondrial ROS production
p66SHC Increase mitochondrial ROS as apoptosis signal
TNF Enhance macrophage killing and necroptosis
MMP-3 DNA damage and genomic instability
EST-1 Increase ROS generation
UPBEAT1 Change cells from proliferation into differentiation
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Upregulation of ROS

ROS are important particles involved in immunological 
defence. Overexpressed TNF induces ROS in mitochon-
dria through RIP1–RIP3-dependent (receptor-interacting 
protein kinase) pathways. The increased ROS leads to 
both enhanced macrophages killing and necroptosis. This 
necroptosis relies on mitochondrial cyclophilin D and 
ceramide [25]. TLR1/2/4 could enhance ROS by recruit-
ing mitochondria to macrophage phagosomes and trans-
locating TRAF6 to mitochondria to engage ECSIT. This 
further increases the bacterial killing [5]. ROS induces 
oxidative damage and apoptosis which may contribute to 
the control of lifespan. p66SHC generates mitochondrial 
ROS as apoptosis signal through oxidation of cytochrome 
c in mitochondrial electron transfer chain [10].

Other factors such as matrix metalloproteinase-3 
(MMP-3 ) could increase cellular ROS and stimulate tran-
scription factor Snail and epithelial–mesenchymal transi-
tion (EMT). This process causes DNA oxidative damage 
and genomic instability in breast cancer and turns normal 
cells into cancer cells [26]. Heart cell stretch could acti-
vate NOX2 to produce ROS through ryanodine receptors 
and trigger Ca2+ sparks [4]. The deficiency of NOX2 
inhibitor NRROS could lead to elevated oxidative damage. 
[17] erythroblastosis virus transcription factor-1 (ETS-1) 
requires ROS to regulate p47phox expression. However, 
this also could contribute to NADPH oxidase and ROS 
generation and become an ETS–ROS positive feedback 
[27]. The ROS-induced ROS-release circle could lead 
to elevated ROS generation as well [28]. Transcription 
factor UPBEAT1 could regulate the balance between cel-
lular proliferation and differentiation through ROS. Vig-
orous changes in metabolism may occur during the shift 
from cell elongation to differentiation to fulfil metabolic 
demands. UPBEAT1 enhances ROS level through the 
repression of peroxidases which could change the pattern 
of cell from proliferation into differentiation. [29].

ROS and diseases

Researchers have been trying to elucidate the mechanisms 
and the role that ROS plays in diseases since they were 
identified. ROS influences diseases basically with its func-
tion as signalling molecules and oxidants that influence 
cell survival and oxidative damage. ROS could also drive 
immunity through immunological defence and maintain 
metabolic balance or heat dissolving. The multiple func-
tions of ROS in biosystem may influence each pathema 
from different aspects (Table 2).

Cancer

Abnormal cell proliferation and metastasis are common fea-
tures of cancer. Vigorous proliferation demands substantial 
NADPH to produce energy. This process also abundantly 
increases ROS. High levels of ROS could induce apopto-
sis of tumour cells. However, they also protect cells from 
oxidative damage by suppressing glycolytic enzyme PKM2 
through GSH in cancer [20]. Tumour cells exhibit enhanced 
Nrf2 transcription. Nrf2 present as antioxidants that control 
ROS level in cancer. The inhibition of Nrf2 could impair 
tumourigenesis with increased ROS level [21]. Onco-
genic alleles K-Ras, B-Raf and Myc could contribute to 
Nrf2–Keap1 interaction. ROS also regulate tumour suppres-
sor protein p53 and mediate apoptosis in cancer [30]. Stem 
cells tend to contain lower ROS than regularly differentiated 
cells. Cancer stem cells also maintain low levels of ROS to 
avoid apoptosis induced by ROS. It also makes them suffer 
less DNA damage from radiation with enhanced ROS scav-
enging systems [31]. Cancer cells resistant to BRAF and 
MEK inhibitors develop vulnerability to high levels of ROS 
[32]. Thus, the strategy to enhance ROS level may seem to 
present as an important way for cancer chemotherapy.

However, researchers also indicated that tumour cells with 
high metastasis contain NADH gene mutation. The mutation 
causes deficiency in respiratory complex I and ended up in 
overproduction of ROS, and the metastatic activity could be 
suppressed with ROS scavenger [7]. Increased ROS genera-
tion could trigger enhanced epidermal growth factor receptor 
(EGFR) signalling and promote tumour progression [33]. 
Snail and EMT stimulated by MMP-3 could increase ROS 
generation. The elevated ROS level could turn normal cells 
into cancer cells with DNA damage and genomic variation. 
[26]. ROS could also mediate the tumour microenvironment 
through epithelial–mesenchymal transition that contributes 
to radioresistance and therapeutic failure [34]. Although 
suppressing ROS signalling to inhibit tumour growth with 
ROS scavenger is not ideal, the process of inhibition impairs 
ROS-mediated oxidative damage and apoptosis [35]. The 
uninhibited ROS generation and uncontrolled ROS level 
could also promote cancer cell metastasis and the process 
of canceration.

These controversial results bring about hindered explo-
ration of ROS-mediated treatments against cancer. Rather 
than focusing on symptoms, the fundamental role of ROS 
and its comprehensive distribution among biosystem may 
explain these competing results from a broader perspective. 
ROS are highly related with energy production rather than 
just byproducts. Cancer development and tumour metastasis 
demand larger amounts of energy than normal cells. This 
energy-acquiring process also produces high levels of ROS. 
The enhancement of ROS may also increase energy produc-
tion to facilitate tumourigenesis. Rather than a regulator of 
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the cancer pathology, ROS are more likely the representa-
tive of energy consumption. It is easy to induce cancer cells 
death in vitro with oxidative damage. However, the failure 
to apply oxidative damage to cancer cells clinically seems to 
be the result of ROS homeostasis system in vivo.

Inflammatory diseases and infection

Being part of the mechanisms involved in innate immunity, 
inflammation eliminates pathogenic factors while causing 
tissue damage. ROS play a similar role in immunity by 
enhancing immunological defence and causing oxidative 
damage. NLR family, pyrin domain-containing 3 (NLRP3) 
inflammasome could enhance inflammation by activating 
caspase 1 and promoting secretion of IL-1β and IL-18. ROS 
are crucial for NLRP3 activation [36]. Drosophila multipo-
tent haematopoietic progenitors present relatively high levels 
of ROS in in vivo physiological conditions and become low 
during differentiation. The enhanced ROS could promote the 
differentiation through JNK and the forkhead box O (FoxO) 
pathway, but ROS inhibition disabled its differentiation [37]. 
Although the differentiation prefers low levels of ROS, they 

are still essential for the process. Different T-cell subsets also 
have distinct sensitivity to ROS level that may influence their 
development and function. TH17 cells are involved in auto-
immune diseases and inflammatory diseases. Experimental 
autoimmune encephalomyelitis (EAE) is a TH17-mediated 
autoimmune disease. Regulating TH17 cell differentiation 
by interfering ROS level through glutathione metabolism 
could prevent EAE development [38]. Influencing chromatin 
structure with GLS inhibition also enhances ROS level and 
prevents TH17 differentiation [39]. Discovery of brand new 
T-cell subsets also endows deeper understanding on immune 
system and provides aspects for the exploration of T-cell-
regulated autoimmune diseases [40].

ROS could support immune system, but they become 
cytotoxic while overload [2]. ROS play a role in both acti-
vation-induced T-cell death and activated T-cell autonomous 
death [41]. Oxidative damage leads to cellular damage on 
DNA, protein and lipids. The damage-induced apoptosis 
plays an important role in inflammatory bowel diseases 
[42]. ROS also stimulate parasite growth and cause tissue 
damage to host’s organs [43]. The expression of NADPH 
oxidase is elevated in phagocytic leukocytes upon stimuli. 

Table 2   The role of ROS in 
various diseases

Positive Negative

Cancer Impair tumourigenesis
Apoptosis

High metastasis
Canceration
Radioresistance
Carcinogenesis

Inflammatory diseases Prevent experimental autoimmune 
encephalomyelitis

Supports immune system
Macrophage killing

Inflammatory bowel diseases
Parasite caused organic damage
Periodontitis
Tendinopathy
Bronchitis
Emphysema
Rheumatoid arthritis

Neurologic diseases Synaptic plasticity
Neuronal development

Movement disorder
Neuron apoptosis
Neurotoxicity
Retardation

Vascular diseases Relaxation of cerebral arteries
Blood flow homeostasis

Hypertension
Vascular injury

Wound repair Ischaemia–reperfusion damage
Retinal dysfunction
Pneumoconiosis
Atherosclerosis
Acute respiratory distress syndrome

Organ failure Respiratory plasticity
Sensory plasticity

Liver failure
Renal failure
Heart failure

Diabetes Insulin resistance
Ageing Muscle cell development

Muscle remodelling
Sarcopenia
Muscular dystrophy
DNA damage

Infertility Damage spermatogenesis
Ovarian toxicity
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[44] The ROS-mediated autophagy could promote peri-
odontitis and tendinopathy as well [45]. Apart from oxida-
tive damage, ROS also serve as signalling molecules and 
play an important role in homeostasis, metabolism, growth 
and differentiation [3]. Ucp2 could limit ROS production 
and inflammation in macrophage and reduce parasitic cysts 
[22]. However, Ucp1 relies on ROS level required for heat 
dissipation through thermogenic respiration in brown adi-
pose tissues. The depletion of ROS inhibits Ucp1 and heat 
generation [46]. Cigarette smoking induces oxidative stress 
in bronchitis and emphysema. Inflammation also occurs in 
these chronic obstructive pulmonary diseases [47].

The role of ROS in bacterial killing appears to be incon-
sistent among different studies. Some research state that 
increased ROS level in bacteria can enhance the killing 
ability of antibiotics and oxidants [48]. Enhanced ROS by 
excess TNF through RIP1–RIP3-dependent pathways in 
mitochondria lead to both enhanced macrophages killing 
and necroptosis that relies on mitochondrial cyclophilin D 
and ceramide [25]. TNF-α is indicated to contribute to ROS 
production in rheumatoid arthritis [49]. However, other stud-
ies indicate that ROS response during bacterial antibiotic 
killing is dispensable [50]. ROS scavenger and hydroxyl 
radical inhibitor could suppress antibiotic bacterial killing. 
Antibiotic bacterial killing does not strictly depend on ROS 
[51]. It is also noted that the level of ROS does not influence 
antibiotics’ activity on killing bacteria at all [52]. Antibiotic 
killing of Escherichia coli does not rely on ROS [53]. The 
enhanced bacterial killing with increased ROS level may 
due to increased metabolism and energy supply that support 
oxidation and immunity system. However, it applies little 
effect when they reaches saturation. But moderated metabo-
lism with lower levels of ROS surely decreases the ability 
of bacterial killing.

Neurodegeneration

Neurons are important cells that control sensory organs and 
muscle system. The injury of these cells may lead to neu-
ropathy and movement disorder. The relatively low antioxi-
dant activity makes them vulnerable to oxidative damage. 
The defects in mitochondria may enhance ROS generation 
and thus promote JNK and sterol-regulatory element binding 
proteins (SREBP) activation in neurons that results in neu-
rodegeneration through the accumulation of lipid droplets 
[54]. The adipogenesis could also be influenced by ROS via 
signal transducers and activators of transcription 3 (STAT3) 
[55]. However, antioxidants could rescue the apoptosis [56]. 
FHC could suppress ROS accumulation and JNK activity 
through iron sequestration that inhibits TNF-α-dependent 
apoptosis [24]. PGC-1α could protect neural cells from 
oxidative damage by reducing ROS level via antioxida-
tive enzymes GPx1 and SOD2 [15]. Methylmercury and 

manganese could induce neurotoxicity with enhanced ROS 
level [57, 58]. And the increased level of ROS in the sub-
stantia nigra pars compacta leads to neuronal apoptosis of 
dopaminergic neurons in Down syndrome and Parkinson’s 
disease. This process may ultimately lead to retardation [59]. 
NRROS could protect central nervous system from EAE by 
reducing oxidative damage through NOX2 degradation on 
endoplasmic reticulum [17]. Nevertheless, ROS still play 
an important role in neuronal development and are essential 
for synaptic plasticity and memory formation with its fun-
damental role in energy perfusion. The essence that neurons 
are differentiated cells that lack the potential to proliferate 
explained these competing results of antioxidative strate-
gies. They maintain a relatively low demand in energy and 
metabolism.

Cardiac diseases

In the heart, angiotensin II, norepinephrine and TNF-α 
mediated ROS are related with cardiac hypertrophy, myo-
cardial infarction and heart failure. Myocardial ischaemia is 
the most common cause of heart failure. The ischaemia–rep-
erfusion injury leads to apoptosis of cardiomyocytes that is 
associated with high levels of ROS [60]. The shortage of 
ATP during ischaemia impairs ion pump and causes cal-
cium accumulation. Calcium overload and increased ROS 
could rupture plasma membrane and lead to cell death [61]. 
Cardiac hypertrophy is a compensating process that ena-
bles heart to maintain sufficient function. The increased ROS 
during the process is responsive to energy demand caused by 
insufficient heart function. Thioredoxin 1 could reduce car-
diac hypertrophy through heat shock protein 40 and class II 
histone deacetylases, the latter being a master negative regu-
lator of cardiac hypertrophy [62]. And it is also noted that 
ROS increased via d-amino acid oxidase in the hearts of rats 
could directly lead to systolic heart failure without cardiac 
hypertrophy [63]. The oxidative damage-mediated apoptosis 
is the major cause of heart failure as well. The method to 
fulfil energy demand by using NOX4 to protect heart from 
failure with improved myocardial energetics via fatty acid 
oxidation is also proved to be successful [64]. To reduce oxi-
dative damage, ubiA prenyltransferase domain-containing 
protein 1 presents cardiovascular protective function via 
antioxidant Coenzyme Q10 [65]. However, the inability to 
recover from cardiac damage and pathology is also critical 
for heart failure. Postnatal cardiomyocyte cell-cycle arrest 
is mediated by ROS through DNA damage response [66]. 
Heart cell stretch could cause arrhythmogenic Ca2+ sparks 
based on microtubules [7]. Although the oxidative damage 
caused by ROS is the major reason for heart failure, the role 
of ROS in energy supply is rather important that protect 
heart from an even sudden failure of insufficient function.
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Vascular diseases

ROS regulate vascular cell proliferation and apoptosis with 
their fundamental role in metabolism. Oxidative stress could 
lead to hypertension and promote its pathological process. 
However, ROS are also needed for the relaxation of cer-
ebral arteries [67]. ETS-1 and angiotensin II-generated ROS 
play an important role in vascular changes and injury, and 
NO could regulate blood flow homeostasis in blood vessels 
[68]. These outcomes seem to be confusing to tell whether 
ROS are beneficial or harmful. The role of ROS in biosys-
tem is rather neutral that they mainly respond to energy 
demand. NOX family could influence the neovascularity of 
tumour and physiological vascular processes [69]. Similar 
results also presented in ROS-mediated wound repair [70]. 
Ischaemia–reperfusion (IR) causes oxidative damage with 
increased generation of ROS in mitochondria. Succinate is 
the metabolic signature of ischaemia and responsible for 
ROS generation during reperfusion. The reperfusion injury 
also leads to retinal dysfunction-associated ROS produc-
tion when the blood pressure is low [71]. Succinate accu-
mulates during reperfusion from fumarate overproduction 
and malate/aspartate shuttle and then re-oxidized by suc-
cinate dehydrogenase. This process increases ROS genera-
tion through reverse electron transport in mitochondria. The 
inhibition of succinate or ROS could ameliorate IR injury 
[9]. Pre-conditioning protocols could reduce ischaemia–rep-
erfusion injury by regulating ROS level [72].

Atherosclerosis could be regulated by ROS interacting 
with transcription factors related with lipid peroxidation 
and macrophage [73]. ROS induces DNA damage and lipid 
peroxidation in pneumoconiosis and carcinogenesis as well 
[74]. Increased ROS promote thrombus formation in artery 
and influence other cardiovascular diseases as well [75, 
76]. The pulmonary vascular lesions and inflammation are 
broadly recognized pathological changes in acute respiratory 
distress syndrome (ARDS) caused by oxidative damage [77]. 
Taken together, researchers revealed the position of ROS in 
metabolism and energy supply. ROS are needed for basic 
energy demand and vigorous metabolism rather than simply 
affecting cellular signalling and organism damages.

Organ failure

The continuous oxidative damage applied on cell and tis-
sue may lead to severe organic injuries and eventually cause 
organ failure. The ROS level leading to organ failures far 
exceeds the extent to maintain basic metabolism and thus 
the balance between energy supply and oxidative damage is 
tilted. Increasing ROS grants little beneficial effect in this 
situation. Inhibition of ROS could reduce TNF-α-mediated 
fulminant liver failure. TNFα regulates cell proliferation 
and death and the inhibition of NF-κB makes TNFα bias 

to cell death. TNFα-induced ROS supports JNK activation 
during NF-κB inhibition. Sustained JNK activation enables 
cytochrome c release and leads to necrotic cell death [12]. 
FHC is a downstream product of NF-κB. They could reduce 
apoptosis induced by TNFα through suppression of ROS 
accumulation and JNK activity. The suppression of ROS 
is achieved by iron sequestration [24]. ROS are produced 
by glomerular cells as autacoids [78]. ROS-mediated glo-
merular basement membrane degradation and altered cell 
function may contribute to ischaemic renal failure as well 
[79]. And the inhibition of ROS could decrease CaOx stone 
in kidney [80]. Hypoxia-induced requirement of energy sup-
ply and metabolism could lead to increased ROS response 
through Ca2+ influx pathway. This mechanism results in 
physiological, biochemical and molecular changes. The 
hypoxia-induced ROS production is important for respira-
tory plasticity and sensory plasticity. ROS-mediated apopto-
sis and cellular dysfunction are associated with heart failure 
[60]. The arrhythmias caused by elevated ROS and altered 
mitochondrial function may lead to sudden cardiac death 
[81].

Other diseases

The comprehensive distribution of ROS intrigues research-
ers to explore the relationship between their subject and 
ROS. The reduced ROS level could lower insulin resistance 
and improve insulin sensitivity in diabetes II [82], and the 
glucose-stimulated insulin relies on ROS signalling [83]. 
However, the cellular death owing to ROS-mediated oxida-
tive damage also brings about diabetic complications [84]. 
MMP activity and transcription factor-β1 (TGF-β1)-induced 
excessive deposition of extracellular matrix mediated by 
ROS could lead to renal fibrosis [85].

The process of ageing caused by oxidative damage and 
muscle dysfunction could lead to sarcopenia. However, ROS 
are also essential for muscle cell development as signalling 
molecules [86]. Generation of ROS in skeletal muscle is 
enhanced during contractile activity [87]. ROS are increased 
in the early stage of muscular dystrophy development [88]. 
The elevated ROS may reduce muscle mass and bring about 
frailty [89]. However, ROS also plays an important role in 
muscle remodelling as signalling molecules [90]. Overpro-
duced ROS released through mitochondrial permeability 
transition pore will damage DNA and accelerate ageing by 
reducing cellular NAD [91]. Apart from suppressing tumour, 
p53 also plays a role in premature ageing by causing reac-
tive damage to DNA [92]. Mushroom-contained antioxidants 
may protect against oxidative damage and ageing [93].

ROS overproduction may contribute to reproductivity 
issue and infertility through oxidative damage and disturbed 
hormone balance. The excessive ROS may damage spermat-
ogenesis, sperm lipid/protein layer and DNA structure. The 
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ROS scavenging system to reduce ovarian toxicity is impor-
tant for follicular development [94]. The role of ROS seems 
to be similar in different diseases that they are essential for 
cellular metabolism and become pathogenic while overload.

Conclusions and perspectives

Researches of ROS have been carried out since last century, 
the cognition of which varies along elapse of time. ROS 
promote macrophage bacterial killing through oxidative 
damage and apoptosis. They also engage in multiple cellular 
pathways as signalling molecules. However, they also have 
negative effects like inflammation and cytotoxicity. ROS can 
function as intermediates in varying pathways, but they are 
also widely regarded as etiologic factors for diseases includ-
ing cancer, inflammation and organ injuries. Evidence sug-
gests that the scavenging ROS in pathological condition may 
reduce cell damage and control the pathological process. 
However, other researches also indicate the positive side of 
enhancing ROS in diseases. Thus, the mechanisms of how 
ROS influences diseases remain obscure. Europeans have 
dedicated to the study of ROS and made a comprehensive 
exploration [95]. Yet, it remains controversial in results of 
ROS-targeted strategies applied to clinical research. With 
the advancement in technique, ROS can be measured in 
living cells of its transient generation with Y0.6Eu0.4VO4 
nanoparticles by illuminating under oxidative conditions 
[96]. Specific chemical probes and low-temperature elec-
tron paramagnetic resonance (EPR) technique could monitor 
ROS level of tumour cells in vitro and in vivo [97]. Other 
environmental factors like pH and ion concentration are also 
suggested in ROS regulation and generation [98]. Also mag-
netic fields could influence cellular ROS level according to 
its intensity, frequency and exposure time [99].

The fundamental understandings of ROS remain basically 
the same in the past 20 years. ROS are generally regarded 
as signalling molecules and harmful particles. Researchers 
always focus on ROS levels and their results and analyses 
them from a single perspective. They should be illuminated 
from different perspectives and with extensive sight. Based 
upon the characteristics of ROS discovered by previous 
researches, I provide a hypothesis here that may explain 
the competing results so far. ROS thrives in conditions 
that abundant energy is in demand for vigorous metabo-
lism, either in cancer cells’ proliferation and inflammatory 
necrosis, or immunological defence required immune system 
functioning. Thus, ROS do not just act as signalling mol-
ecules. They may present as basic energy particles like other 
acknowledged basic nutrient particles including proteins and 
carbohydrates. And they provide a much more fundamental 
impact on cellular metabolism. It is more likely that ROS 
respond to elevated metabolism to fulfil energy demand, 

rather than directly bending itself to oxidative stress, which 
interprets why different researches demonstrate controversial 
outcome in regulating ROS. The treatment of both inhibi-
tion and enhancement of ROS in cancer in vitro may due 
to exhausted energy supply for metabolism and overload of 
energy supply-induced oxidative damage, rather than just the 
regulation of a byproduct. Of course, it is easier to suppress 
ROS generation with antioxidants or genetic depletion in 
experimental animal models. But the inability of clinically 
gene modulation in vivo and the multiple functions of ROS 
in metabolism may lead to limited potrential of direct ROS 
modulation in diseases with ROS and metabolic imbalance. 
The fundamental role of ROS grants them with the potential 
in metabolic regulation. From another aspect, the essence 
that ROS are common particles with comprehensive distri-
bution endows them with more fundamental mechanisms 
to be explored.
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