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SUMMARY

We present a basic mathematical model of Staphylococcus aureus transmission in the USA
based on natural history of infection and nationally representative data. We employed a
Susceptible-Colonized-Infected-Recovered-Susceptible compartmental modelling framework with
two different phenotypes of S. aureus: methicillin-susceptible (MSSA) and methicillin-resistant
(MRSA). The model is dynamic and accounts for the US population growth. For model
calibration/validation, we used published 1999–2005 S. aureus infection data in conjunction with
the 2001–2004 National Health and Nutrition Examination Survey colonization data. Baseline
model projections illustrated how MRSA might continue to expand and gradually replace MSSA
over time, in the absence of intervention, if there is strong competition for colonization. The
model-based estimate of the basic reproduction number (R0) highlights the need for infection
control. We illustrate the potential population-level impact of intervention with a hypothetical
S. aureus vaccination component.
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INTRODUCTION

Staphylococcus aureus is a Gram-positive bacterium, a
ubiquitous pathogen that constitutes one of the major
causes of infections in humans [1]. The most consist-
ently identified ecological niche for S. aureus in
humans is in the anterior nares and up to one third
of healthy people carry this organism in the nose at
any time [2]. Asymptomatic carriage of S. aureus
often precedes disease, and carriage isolates are fre-
quently identical to strains recovered from subsequent
clinical infection [2]. Colonization offers a reservoir

from where the pathogen can access the bloodstream
when breaches appear in host defence systems but
infections can occur without nasal colonization [2],
particularly in the case of community-associated in-
fections. The main mode of transmission of S. aureus
is through direct contact (person–person/fomite–
person) [1, 2].

Methicillin-resistant S. aureus (MRSA) clones have
been recognized as a leading cause of nosocomial
infections in the USA and around the world for sev-
eral decades [3, 4]. However, MRSA is no longer
only a nosocomial pathogen and in recent years has
emerged as a significant health threat in community
settings in people without known risk factors or
prior healthcare exposure [5].

Historically, penicillin resistance in S. aureus was
initially reported in hospital settings 1–2 years after
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penicillin was introduced in 1941 [6]. A rise in the com-
munity rates of penicillin-resistant strains was docu-
mented shortly after and in the 1970s the two rates
converged and accounted for 70–85% of strains [6].
Methicillin was introduced in 1961 and reports of resist-
ant strains in hospitals emerged less than 1 year later
[6]. The prevalence of MRSA has since progressively
increased in hospitals in the USA and subsequently
in the community during the past 20 years [6].

National hospitalization and resistance data were
used to estimate the annual number of hospital-
izations and deaths associated with S. aureus and
MRSA from 1999 to 2005 [7]. During this period,
the estimated number of S. aureus-related hospital-
izations increased by 62%, and the estimated number
of MRSA-related hospitalizations more than doubled
[7]. With the prevalence of MRSA infection in the
USA increasing over the past decade due to the emerg-
ence of community-acquired MRSA (CA-MRSA),
there is a need to evaluate better the transmission of
S. aureus at the population level.

Dynamic transmission models are powerful math-
ematical tools for simulating disease transmission in
a population. Such tools can help test various hypoth-
eses/scenarios, project potential future trends under
various assumptions and assess the impact of inter-
ventions at the population level. In this context, we
developed a mathematical model of S. aureus trans-
mission in the US population based on the natural
history of infection and nationally representative
data. This type of model was used to test working
hypotheses to understand and explain observed
trends, investigate the potential spread of MRSA and
methicillin-susceptible S. aureus (MSSA) in the popu-
lation, and project potential future trends and related
estimates for the burden of infection. A secondary
objective was to explore the potential impact of sys-
tematic population-level interventions, illustrated here
with a hypothetical S. aureus vaccination component.

METHODS

We employed a Susceptible-Colonized-Infected-
Recovered-Susceptible (SCIRS) dynamic, population-
based, mechanistic, compartmental modelling frame-
work, with two competing phenotypes of S. aureus
[8]. The model structure is shown in Figure 1. Cor-
responding equations for the baseline model are
shown in the Supplementary online material.

This basic model version includes both MRSA and
MSSA, with the assumption of strong competition

for colonization of susceptible hosts, i.e. the average
individual can be colonized either with MRSA or
with MSSA, but not simultaneously with both for sus-
tained periods of time [9, 10]. This assumption can be
relaxed to allow for an explicit niche of co-existence
for both MRSA and MSSA [8], but additional data
would be needed to disambiguate (remove uncer-
tainty) at the time of model calibration. For simplicity
and in the absence of strong supporting evidence,
we did not explicitly account for potential MRSA/
MSSA co-colonization.

Symptomatic MSSA or MRSA infection can occur
via two alternative routes: either through primary
nasal colonization (with other body sites potentially
colonized) followed by infection, or by direct (no
apparent/persistent nasal or other body site colon-
ization) infection of susceptible hosts through contact
with, for example, colonized or infected persons or
contaminated fomites. Susceptible hosts are not yet
colonized or infected withMRSA orMSSA, but colon-
ization might occur via adequate contact with other
colonized or infected individuals. The concept of a ‘Re-
covered’ compartment was introduced here to allow
and explore the possibility of a time delay for indi-
vidualswhohad recently recovered froma symptomatic
infection before again becoming fully susceptible to
colonization or infection, potentially due to short-
term impact of some form of antibiotic treatment.

The proposed model is fully dynamic, accounting
for an estimated projected US population growth
rate of 1·26% per year (based on Census data [11]).
The simplified model, without age stratification, was
calibrated and validated based on published US
national infection data (1999–2005) [7] and colon-
ization data (2001–2004) [12], respectively. In Klein
et al. [7], the annual number of hospitalized S. aureus/
MRSA infections in the USA between 1999 and
2005 was estimated based on national hospitaliz-
ation and resistance data. A nationally representative
survey of colonization with S. aureus/MRSA was
also conducted from 2001 to 2004 as part of the
National Health and Nutrition Examination Survey
(NHANES) [12], which is the Centers for Disease
Control and Prevention’s biennial biomonitoring sur-
vey of a large sample of US residents. S. aureus/
MRSA nasal colonization was reported for the
periods 2001–2002 and 2003–2004. Data from these
two surveys were used to calibrate the model.

A primary aim of the study was to construct a basic
mechanistic framework which properly reflects and
uses the US national trends reported over time to
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make further potential projections at the national level
under various assumptions or working hypotheses. In
this framework, all model parameters were regarded
as averaged across the entire US population and the
model outputs represented total (hospitalized and
non-hospitalized combined) prevalence/incidence of
MRSA and MSSA infections in the USA at the
national level.

Best-fit estimates were obtained by simultaneously
minimizing the difference, in the least-square sense,
between all data points and the corresponding model
outcomes. However, since MRSA infection data
were available for hospitalized infections only [7],
scaling factors representing the proportion of hos-
pitalizations out of the total infections for MRSA
and MSSA, respectively, were introduced to project

model-based hospitalizations and compare them
against the actual data. These factors were assumed
to be constant for simplicity, within ranges of
50–70% for MRSA and 40–60% for MSSA (combin-
ing S. aureus/MRSA infection data reported in [13]
for both inpatient and outpatient settings), and further
included in the overall parameter estimation to yield
corresponding optimal values.

The estimation of model parameters can be for-
mulated as a sophisticated constrained optimization
problem. To enforce biological and epidemiological
plausibility, whenever available, additional infor-
mation was incorporated in the constraints (e.g. feas-
ible/plausible parameter ranges) [14, 15]. Additional
details are provided in the Supplementary material.
The national datasets for infection and colonization

Fig. 1 [colour online]. Schematic of the model structure: baseline and an added vaccination component, respectively. In the
baseline model, individuals are born into the susceptible state and can die in any of the model states. Susceptible people
can become colonized or directly infected (no persistent colonization) either with MRSA or with MSSA, based on the
corresponding component of the force of infection (FOI, i.e. per susceptible risk of infection). A percentage of the
individuals colonized with MRSA or MSSA can subsequently develop invasive infection with the same strain. Colonized
people naturally clear after a period of time. We allow for the possibility (short-lived) that people recovered from invasive
infection might be temporarily protected (e.g. as a consequence of antibiotic treatment) – after which they return to a fully
susceptible state. The arrows represent the corresponding flows of individuals between different states. Corresponding
mathematical equations (set of nonlinear ordinary differential equations) are given in Supplementary Figure S1. This type
of modelling framework can consider a variety of potential vaccine modes of action – illustrated in the schematic here for
completeness.
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[7, 12] were simultaneously fitted over time to yield the
best agreement between model outcomes and corre-
sponding data (Table 1).

For exploratory purposes, we included a hypotheti-
cal vaccination component on top of the baseline
model, as illustrated in Figure 1. An annual vaccine
uptake was assumed as follows: 3·5% of the suscep-
tible population, 5% of the MRSA-colonized popu-
lation and 5% of the MSSA-colonized population.
This amounted to a cumulated coverage of about 5%
of the total US population, vaccinated once per
year. Regarding potential effects of the vaccine (see
Fig. 1), the hypothetical case scenario shown assumed
a 40% reduction in the risk of colonization, 50%
reduction in the risk of direct infection [16] and 40%
reduction in the risk of infection in individuals colon-
ized by MRSA or MSSA.

The purpose here is essentially to illustrate the
potential and versatility of this type of modelling
framework to capture a broad host of potential vac-
cine effects, which can play important roles in sub-
sequent analyses attempting to estimate the impact
of vaccination. This was already reported for vaccines
against other pathogens such as Neisseria meningitidis

[17] or Streptococcus (Str.) pneumoniae [18] that
demonstrated efficacy against infection and coloniza-
tion. In this context, vaccine-related model parameters
such as vaccine coverage and different efficacies/risk
reductions were assumed to have values between 0%
and 100%. Here we are only attempting to illustrate
with a pertinent example. Another important par-
ameter in practice is the mean duration of vaccine pro-
tection in vaccinated individuals. For comparative
purposes, we assumed a mean duration of vaccine pro-
tection of 1 year vs. 5 years.

All numerical simulations were carried out in
MATLAB R2010b (MathWorks, USA).

RESULTS

The model proved able to capture both the colon-
ization and infection data, with estimated P values
for model/data correlation of <0·0001 for MRSA
infection and <0·05 for MSSA infection. In order to
test the predictive capabilities of the model, the
2004–2005 MRSA infection data points were omit-
ted at calibration; they were reasonably rendered by
the best-fit model. Corresponding best-fit plots are

Table 1. Best-fit estimates for the baseline model parameters

Parameter
number Parameter nomenclature

Symbol (see
Supplementary material)

Value (unit) (best-fit
model estimate)

Transmission rates
1 Colonized by colonized MRSA λ1

C 1·46×10−2 (day−1)
2 Colonized by infected MRSA λ1

I 1·76×10−2 (day−1)
3 Infected by colonized MRSA β1

C 7·30×10−6 (day−1)
4 Infected by infected MRSA β1

I 1·49×10−2 (day−1)
5 Colonized by colonized MSSA λ2

C 1·46×10−2 (day−1)
6 Colonized by infected MSSA λ2

I 4·01×10−2 (day−1)
7 Infected by colonized MSSA β2

C 6·87×10−6 (day−1)
8 Infected by infected MSSA β2

I 3·61×10−3 (day−1)

Clearance rates
9 Colonized MRSA clearance α1 9·80×10−3 (day−1)
10 Colonized MSSA clearance α2 1·02×10−2 (day−1)

Infection rates
11 Colonized MRSA progressing to infection γ1 1·20×10−4 (day−1)
12 Colonized MSSA progressing to infection γ2 8·22×10−6 (day−1)

Other
13 Mean recovery period for MRSA infections η1 14·60 (days)
14 Mean recovery period for MSSA infections η2 8·30 (days)
15 Mean temporary protection period μ 7·70 (days)
16 Scaling factor MRSA (proportion MRSA infections

hospitalized/total MRSA infections)
– 0·58

17 Scaling factor MSSA (proportion MSSA infections
hospitalized/total MSSA infections)

– 0·45
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shown in Figure 2 for best-fit model parameter values
given in Table 1. With model parameters calibrated
based on the national datasets described above, base-
line model projections illustrate how MRSA might
expand and gradually replace MSSA over time at
the US population level, under the assumption of
strong MSSA/MRSA competition for colonization.

The model-based estimates of the basic reproduc-
tion number (R0), which quantifies the potential of
spread, were >1 for both MRSA and MSSA, with an
estimated R0 for MRSA slightly higher than for
MSSA (1·5 vs. 1·4). Using a next-generation matrix
method [19], the estimates of R0 from the best-fit
model are indicative of tight MRSA/MSSA compe-
tition. Ultimately, expansion of the strain phenotype
with the highestR0 (hereMRSA) is favoured.However,
the model projects a potential gradual replacement
of MSSA over a timeframe of several decades (Figs 3
and 4). The model also projects a sustained increase

over time in the annual number of S. aureus infections
in the US population, increasingly due to MRSA.

Regarding the possibility of a time delay for individ-
uals who had recently recovered from a symptomatic
infection before again becoming fully susceptible
to colonization or infection, the best-fit model cali-
bration against data estimated a very short period
(7.7 days) of potential temporary protection (Table 1).

In order to assess model output variations to small
perturbations in the model parameters, we conducted
a parametric sensitivity analysis for the model govern-
ing system of ordinary differential equations (ODEs,
shown in the Supplementary material) and computed
numerically derivatives (sensitivities) for all the model
state variables (n=6) with respect to the 17 parameters
listed in Table 1, over the timeframe used for the simu-
lations in Figures 3 and 4. Based on this analysis, sum-
marized and illustrated in Supplementary Figure S2,
the model outputs are most sensitive to the following
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parameters in this order: colonized MSSA clearance
rate (α2, model parameter no. 10 in Table 1), followed
closely by the colonized MRSA clearance rate
(α1, model parameter no. 9 in Table 1). This appears
the most influential parameter pair, followed by the
rate of colonized MSSA progressing to infection (γ2,
model parameter no. 12 in Table 1). The fourth and
fifth equally influential parameters closely following
are then the rate of colonization by colonized MSSA
(λ2
C, model parameter no. 5 in Table 1) and the rate

of colonized MRSA progressing to infection (γ1,
model parameter no. 11 in Table 1), respectively.
Coming relatively closely after is the rate of colon-
ization by colonized MRSA (λ1

C, model parameter
number 1 in Table 1). Finally, coming last is the
pair represented by the rate of infection by colonized
MSSA (β2

C, model parameter no. 7 in Table 1) and
the rate of infection by colonized MRSA (β1

C, model

parameter no. 3 in Table 1), respectively; however,
these last two parameters appear notably less influen-
tial compared to the previous other six model par-
ameters listed above. The model is significantly less
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sensitive to the remaining nine model parameters
listed in Table 1.

Projected effects of vaccination on S. aureus inci-
dence and prevalence over the first 5 years are

depicted in Figure 5(a,b), respectively. Under the
assumption of a mean duration of vaccine protection
of 5 years in vaccinated individuals, the estimated
mean annual reduction of S. aureus incidence over
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Annual incidence of S. aureus infections in the USA (relative to the growing US population)

Prevalence of S. aureus infection over time in the US population (absolute numbers)
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the first 5 years was about 12%. In this case, a re-
duction of about 16% was projected for the 5th (and
last) year of this vaccination scenario. However,
assuming a mean duration of vaccine protection of
only 1 year, the benefits were less marked, with a
mean annual reduction of incidence close to 6% over
the first 5 years. The corresponding reductions in
prevalence are illustrated in Figure 5b, which also
highlights the impact of potentially stopping annual
vaccination after each subsequent year considered in
this simulation (1, 2, 3, 4 years, respectively).

DISCUSSION

This basic dynamic transmission model for S. aureus
in the US population explicitly accounts for both
MRSA and MSSA. The model was simultaneously
calibrated and validated against published US nat-
ional colonization and infection data, and demon-
strated good overall correlation with these data. To
our knowledge, this is the first attempt to develop a
dynamic transmission model with competition be-
tween MRSA and MSSA and calibration/validation
against nationally representative colonization/infec-
tion data in the US population.

Based on the natural history of infection and
nationally representative 1999–2005 data, projections
from a simple dynamic transmission model at the
US population level suggest how MRSA might con-
tinue to expand and gradually replace MSSA over
time, assuming competition for colonization. This
has already been observed with penicillin, where
more than 80% of the S. aureus strains were reported
penicillin-resistant by the 1970s and the community
rates increased soon after nosocomial rates exceeded
40–50% [6]. The model-based estimate of R0 empha-
sizes the need for efficient means of control to limit
the spread of infection. Projections for the MSSA
growth rate in the near future appear comparable to
the estimated US population growth rate, suggesting
that the slow growth still seen in projected MSSA
infection numbers could potentially be a direct conse-
quence of population growth.

As a secondary objective, we built an exploratory
vaccination component on top of our baseline model
and illustrated its application here with a hypothetical
case scenario, highlighting the potential impact of vac-
cination on S. aureus infection at the US population
level. Our results are in line with those published
by Lucero et al. [20] who used a population-based
surveillance programme to explore the effect of a

hypothetical vaccine in preventing invasive MRSA
infections. They estimated that vaccination of all
adults aged >65 years would reduce the incidence of
MRSA infections by 12·1% over 1 year. A dynamic
transmission modelling framework is versatile and
allows for testing and simulation of multiple potential
mechanisms of action of a vaccine and the subsequent
impact on reducing transmission and spread in a popu-
lation, as previously demonstrated for N. meningitidis
[17] or Str. pneumoniae [18].

One of the primary usages of mathematical
models of this type is to test and generate/re-generate
hypotheses and what-if case scenarios. Here, we set
out to investigate the hypothesis of strong MRSA-
MSSA competition for colonization, which has been
proposed by others, and assess corresponding out-
comes.

Dall’Antonia et al. [9] concluded that MSSA and
MRSA do compete for colonization of the anterior
nares (of 680 patients only 0·6% carried both MRSA
and MSSA) and estimated a protective efficacy of
78% for MSSA against colonization with MRSA.
This was supported by Lasseter et al. [21] who en-
rolled 748 subjects across 51 different care homes
and failed to find co-colonization of both MRSA
and MSSA. Further, Margolis et al. [10], concluded
from a rat model of colonization that unlike Haemo-
philus influenzae or Str. pneumoniae, where multiple
strains can co-exist, S. aureus strains failed to colonize
a host animal with other S. aureus present. Other
supportive data [22] showed that only 3% of subjects
colonized at least once with S. aureus, harboured
mixed phenotypes of MSSA and MRSA. The reader
is directed to a comprehensive literature review [23]
exploring the issue of potential MRSA/MSSA replace-
ment and related competition which concluded that
colonization with CA-MRSA may at least partially
replace colonization with MSSA.

Potential MSSA/MRSA co-colonization was there-
fore not explicitly included in this basic model, which
could constitute a limitation of the current study. This
might have led to an overestimation of the strength of
the competition between MRSA and MSSA, with
subsequent overestimation of the magnitude of re-
placement. If further robust nationally representative
data become available over longer time-spans that
indicate that replacement has not occurred or has
been less extensive, then one possible conclusion
based on this basic modelling exercise is that
MRSA/MSSA competition for colonization is not as
strong as speculated in some studies, and that there
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may be more opportunity for co-colonization. In that
event, further studies/data would be necessary, par-
ticularly to disambiguate S. aureus colonization
data; the assumption of strong MRSA/MSSA com-
petition for colonization could be further relaxed
and included in the model to allow for an explicit
niche of co-existence for both MRSA and MSSA
[8]. Other limitations of the current study are that
no explicit distinction is made in the model between
persistent and intermittent colonization or between
hospital and community strains, and no age stratifi-
cation or other heterogeneities of the US population
are explicitly considered.

More complex models with increased level of detail
would be very interesting and desirable. However, re-
alistically, for practical purposes, model complexity
needs to be backed by available data, with corre-
sponding stratification. In the absence of nationally
representative data at the US population level with
appropriate USA100 vs. USA300 explicit strain
stratification, for instance, both in terms of coloniza-
tion and symptomatic infection, we treated MRSA
as a single entity. All resulting parameters, including
the corresponding R0 value are implicitly understood
as averages across all the potential MRSA strains
that might be pooled in the data. The model is able
to reproduce the data and is focused here on the big pic-
ture, in this case interplay between MRSA and MSSA.
Strain heterogeneity and genetic diversity over time are
beyond the scope of the model. However, models of
this type have been developed for several infectious
agents with high strain diversity, polyclonality, etc. –
e.g. Str. pneumoniae, N. meningitidis – and level of
complexity depends on the driving questions and
available data.

Another useful level of granularity would be to
explicitly introduce high-risk vs. low-risk populations
in the model, but again, in order for such an exercise
to be realistic, corresponding data need first to be gen-
erated. Technically, from the stand-point of the model
structure/complexity, further risk stratification of the
population would mean, at a minimum, doubling
the number of existing compartments (each of the
boxes currently in the model schematic would be
split into high-risk and low-risk compartments,
respectively), and the introduction of corresponding
transmission paths, various transmission parameters
and progression rates. This level of complexity is
unfortunately not sustainable currently by the data
available for calibration. It is not the computational
complexity, but the large number of a priori unknown

parameters that need to be calibrated based on avail-
able data that creates issues.

The same comment stands true for age stratifi-
cation. For that, all calibration data would need to
be age-stratified and the number of model parameters
increased. For this reason one must first assess the pri-
mary working hypotheses (e.g. strong MRSA/MSSA
competition for colonization) and subsequent impact
on the outcomes in simpler more basic models such
as that presented here.

The data employed here for this basic model cali-
bration, although nationally representative, has its
own limitations. NHANES biennial colonization
data were publicly available only for the periods
2001–2002 and 2003–2004; the infection data were
based on related hospital discharges only; and coloni-
zation and infection datasets were for the 1999–2005
time-window only, which is a particular timeframe
for S. aureus evolution and dynamics in the USA,
characterized by the emergence and spread in the
community. This may consequently impact the esti-
mated model parameter values and model-based pro-
jections. Further additional data points over longer
time-spans may help confirm an actual sustained
trend vs. a transient early phenomenon, and model
re-calibration/re-assessment can and should be done
in the presence of new evidence and/or data.

Recent publications have suggested that the inci-
dence of invasive healthcare-associated MRSA infec-
tions may be decreasing. This is most likely due to
the implementation of prevention measures: hand
hygiene, physical isolation of patients with infection,
environmental decontamination and decolonization
of colonized individuals [24]. While the impact of
these measures on S. aureus at the overall US popu-
lation level is not known, our dynamic transmission
model can be recalibrated when new data become
available.

In conclusion, dynamic transmission models are
powerful mathematical tools that can help project
potential future trends as well as evaluate the potential
impact of future population-level interventions. With
the proliferation of several antibiotic-resistant bac-
teria, these models are likely to continue to play an
increasingly important role in understanding the trans-
mission of emerging infectious diseases.
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