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Abstract
Fimbria-fornix transection induces both exogenous and endogenous neural stem cells to differentiate into neurons in the hippocampus. 
This indicates that the denervated hippocampus provides an environment for neuronal differentiation of neural stem cells. However, the 
pathways and mechanisms in this process are still unclear. Seven days after fimbria fornix transection, our reverse transcription polymerase 
chain reaction, western blot assay, and enzyme linked immunosorbent assay results show a significant increase in ciliary neurotrophic 
factor mRNA and protein expression in the denervated hippocampus. Moreover, neural stem cells derived from hippocampi of fetal (em-
bryonic day 17) Sprague-Dawley rats were treated with ciliary neurotrophic factor for 7 days, with an increased number of microtubule 
associated protein-2-positive cells and decreased number of glial fibrillary acidic protein-positive cells detected. Our results show that cili-
ary neurotrophic factor expression is up-regulated in the denervated hippocampus, which may promote neuronal differentiation of neural 
stem cells in the denervated hippocampus.

Key Words: nerve regeneration; ciliary neurotrophic factor; hippocampus; neural stem cells; neurons; neuronal differentiation; fimbria-fornix 
transection; neural regeneration
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Introduction
Neural circuit damage or neurotransmitter loss induced by 
neuronal cell degeneration or necrosis in local brain areas is 
the pathological basis for neurological diseases (Zhang et al., 
2014a; Masoudian et al., 2015; McHugh and Buckley, 2015). 
Currently, the main method for treatment of these diseases 
is supplementation of neurotransmitters that are reduced 
because of neuronal loss (Dineley et al., 2015; Levin et al., 
2015; Li et al., 2015). However, this approach does not fun-
damentally solve the problem of neuronal degeneration and 
necrosis. 

Currently, stem cell transplantation for the treatment of 
nervous system diseases is attracting many researchers’ at-
tention (Buzhor et al., 2014; Nicaise et al., 2015; Tong et al., 
2015), as stem cells exhibit the potential of multi-lineage 
differentiation (Komaki et al., 2014; Ren et al., 2015). Neural 
stem cells (NSCs) are a type of stem cells that are present 
not only in embryonic tissue (Tsai et al., 2014; Gao et al., 
2015) but in adult mammals in the subventricular zone of 
the lateral ventricles (Boccazzi et al., 2014; Li et al., 2014; 
Tong et al., 2014), subgranular zone of the dentate gyrus 
(Clarke and van der Kooy, 2011; Guo et al., 2012; Schul-
theiß et al., 2013), and even the spinal cord (Xu et al., 2012), 
striatum (Conway and Schaffer, 2014), and hypothalamus 
(Rojczyk-Gołębiewska et al., 2014). As these cells exhibit 
the potential of multi-lineage differentiation, they can dif-
ferentiate into neurons (Cai et al., 2014; Ramos et al., 2015; 
Wang et al., 2015), oligodendrocytes (Azim et al., 2014; Shi 
et al., 2014; Shirazi et al., 2015), and astrocytes (Falcone et 
al., 2015; Han et al., 2015). Therefore, NSCs are considered 
to be an ideal cell source to treat neurodegenerative diseases. 
Research shows that under endogenous conditions, the vast 
majority of NSCs differentiate into glial cells in vivo and in 
vitro, and only a few differentiate into neurons. External fac-
tors such as glial cell-derived neurotrophic factor (Deng et 
al., 2013), retinoic acid (Gu et al., 2015), nerve growth factor, 
and brain-derived neurotrophic factor (Liu et al., 2014a) 
more readily promote differentiation of NSCs into neurons, 
however the number of neurons is too small to meet the 
requirements of clinical treatment. Thus, investigation of 
the molecular mechanisms and additional factors involved 
during NSC differentiation into neurons is urgently needed. 

In our previous studies, we established a rat model of 
hippocampal denervation by fimbria-fornix (FiFx) transec-
tion, and transplanted subventricular zone-derived NSCs 
into the hippocampus of this model. We found that within a 
certain time period, the implanted NSCs were more likely to 
survive and differentiate into neurons (Zhang et al., 2007). 
Next, we cultured hippocampal NSCs obtained from fetal 
rats with denervated hippocampal extracts, and found that 
this significantly promoted in vitro differentiation of NSCs 
into neurons (Zhang et al., 2009). These results suggest that 
during a certain time period after denervation, the hippo-
campal microenvironment provides favorable conditions for 
NSCs to survive, regenerate, and differentiate into neurons. 
Nevertheless, the process remains poorly understood, in-
cluding the number of factors involved.

Our previous study also found that during a certain time 
period after denervation, expression of insulin like growth 
factor-1 and ciliary neurotrophic factor (CNTF) are both 
up-regulated in the denervated hippocampus. Furthermore, 
we confirmed that insulin like growth factor-1 induces hip-
pocampal NSCs derived from fetal rats to differentiate in 
vitro into neurons via the PI3K/Akt pathway (Zhang et al., 
2014b). In this study, cultured rat embryonic hippocampal 
NSCs were cultured with CNTF in vitro to determine if 
CNTF plays a similar role to insulin like growth factor-1. 

Materials and Methods
Ethics statement and animals
Animal studies were approved by the committee for Institu-
tional Animal Care and Use Committee of Nantong Univer-
sity, China, and performed in accordance with the National 
Institutes of Health Guide for the Care and Use of Labora-
tory Animals. Precautions were taken to minimize suffering 
and the number of animals used in each experiment. Twelve 
healthy adult female specific pathogen-free Sprague-Dawley 
rats weighing 200–250 g, and three pregnant Sprague-Daw-
ley rats at embryonic day 17 (E17) were purchased from the 
Animal Research Center of Nantong University of China 
(license No. SYXK (Su) 2012-0031).

Establishment of a hippocampal denervation model by 
FiFx transection
Right FiFx transection was performed as described previ-
ously (Zou et al., 2010). In brief, rats were intraperitoneally 
anesthetized with chloral hydrate (2 mL/kg) and fixed in a 
stereotaxic instrument (Zhenghua, Anhui Province, China). 
The skull periosteum was separated, and anterior fontanelle 
coordinates recorded. According to the atlas of Paxinos and 
Watson (1986), two points were located on the right side of 
the skull: anterior (sagittal axis) = 1.4 mm, lateral (coronal 
axis) = 1.0 mm; and anterior = 1.4 mm, lateral = 4.0 mm 
(Zou et al., 2010). An aperture was drilled between these two 
points and a wire-knife lowered to a depth of 5.4 mm ven-
tral to the dura. The knife was shifted back and forth three 
times before slowly being withdrawn from the brain. The left 
side of the hippocampus was not operated on, and therefore 
representative of the normal condition (i.e., control). After 
surgery, rats were caged with free access to food and water. 

Nissl staining
Seven days after surgery, three rats were intraperitoneally 
anesthetized with chloral hydrate (2 mL/kg) and successively 
perfused with 0.9% (w/v) NaCl and 4% (w/v) paraformal-
dehyde. To determine if the right denervated hippocampal 
model had been successfully established, coronal sections 
(20 mm) surrounding FiFx were prepared and subjected to 
Nissl staining. Sections were soaked in dimethylbenzene (two 
times), 100% alcohol (two times), 95% alcohol, 70% alcohol, 
and water for 5 minutes each step. Subsequently, sections 
were stained with 0.1% cresyl violet for 20 minutes, washed 
with water, and viewed using a phase contrast microscope 
(Leica, Heidelberg, Germany).
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Western blot assay 
Whole hippocampi were rapidly removed from three FiFx 
transected rats. Total protein was extracted from normal 
and denervated hippocampi using mammalian Protein Ex-
traction Reagent (Pierce, Waltham, MA, USA). Equivalent 
amounts of protein (30 μg) were loaded and separated on 
10% sodium dodecyl sulfate-polyacrylamide gels before 
transfer to polyvinylidene difluoride membranes (Bio-Rad, 
Hercules, CA, USA). Membranes were blocked with 5% non-
fat milk in Tris-buffered saline (Sangon, Shanghai, China), 
incubated overnight at 4°C with primary antibodies (rabbit 
polyclonal anti-CNTF: 1:1,000, Abcam, Cambridge, UK; 
mouse monoclonal anti-β-actin: 1:10,000, Sigma, St. Lou-
is, MO, USA), and then secondary antibodies (horseradish 
peroxidase-conjugated goat anti-mouse IgG, 1:1,000, Pierce; 
horseradish peroxidase-conjugated goat anti-rabbit IgG, 
1:1,000, Pierce) for 2 hours at room temperature. Finally, 
complexes were visualized by enhanced chemiluminescence 
(Santa Cruz Biotechnology, Santa Cruz, CA, USA) after X-ray 
exposure (Kodak, Rochester, NY, USA). The gray scale of 
each band was scanned and quantified using the Shine-tech 
Image System (Shanghai, China).   

Reverse transcription-polymerase chain reaction (RT-PCR) 
Hippocampi were dissected from three FiFx transected rats 
and total RNA extracted using a Trizol reagent kit (BBI, 
Markham, Canada). Two μg of total RNA was reverse tran-

Figure 2 Expression of endogenous CNTF mRNA and protein in normal and the denervated hippocampi 7 days after right FiFx transection. 
(A) mRNA levels of CNTF (161 bp) and GAPDH (452 bp, as a reference) detected by RT-PCR. (B) Quantification of CNTF mRNA. Relative ex-
pression was expressed as the optical density ratio of CNTF to GAPDH. (C) Western blot assay of protein levels of CNTF and β-actin (as a refer-
ence). The molecular weight of CNTF and β-actin are 24 kDa and 42 kDa, respectively. (D) Quantification of CNTF protein. Relative expression 
was expressed as the optical density ratio of CNTF to β-actin. (E) ELISA identified CNTF protein levels in normal and denervated hippocampi. 
Data are expressed as the mean ± SEM. *P < 0.05, **P < 0.01, vs. normal hippocampus (two-tailed Student’s t-test, n = 3). CNTF: Ciliary neuro-
trophic factor; RT-PCR: reverse transcription-polymerase chain reaction; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; ELISA: enzyme 
linked immunosorbent assay; FiFx: fimbria-fornix.

Figure 1 Nissl staining of a coronal brain section showing dissection 
of the right transected FiFx.
Circles show complete loss of the right FiFx, while the left FiFx remains 
intact. Scale bar: 300 μm. FiFx: Fimbria-fornix. 
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Enzyme-linked immunosorbent assay (ELISA)
Normal (left) and denervated (right) hippocampi were 
removed from FiFx transected rats, placed into an aseptic 
glass-homogenizer with cold Dulbecco’s modified Eagle’s 
medium (DMEM, 1 mL/100 mg; Gibco, Grand Island, NY, 
USA), and homogenized for 10 minutes. Homogenates were 
centrifuged at 4°C 250 × g for 5 minutes. Supernatants were 
harvested and the amount of CNTF was determined using a 
rat CNTF ELISA kit (R&D, Minneapolis, MN, USA), accord-
ing to the manufacturer’s instruction.

NSC culture and neuronal differentiation
NSCs were derived from hippocampi of fetal (E17) rats, as 
described previously (Zhang et al., 2009). In brief, hippo-
campi were rapidly dissected into 1.5 mL eppendorf tubes 
containing 0.125% trypsin and mechanically dissociated to 
single-cell suspensions. These suspensions were centrifuged 
at 250 × g for 5 minutes and the supernatants discarded. 
Single cells were cultured in 50 cm2 flasks at a density of 1 × 
104 cells/mL, with 5 mL NSC culture medium (DMEM/F12 
medium (1:1; Gibco), 2% B27 (Gibco), 10 ng/mL epidermal 
growth factor (Gibco), 10 ng/mL basic fibroblast growth 
factor (Sigma), and 100 U/mL penicillin/streptomycin) in 
a humidified 95% air 5% (v/v) CO2 incubator at 37°C. Five 
days later, neurospheres were dissociated into single-cell 
suspensions and seeded into 96-well plates at 1–2 cells per 
well. Subclonal neurospheres were digested and passaged 
as before. Cells were passaged three times to obtain neu-
rospheres that originated from single primary cells. On 
the third passage, neurospheres were rinsed in DMEM 
and digested into single cells using 0.125% trypsin. Single 
NSCs were seeded at a density of 5 × 105 cells/mL into po-
ly-L-lysine-coated 24-well plates containing differentiation 
medium (DMEM/F12, 2% fetal bovine serum, and 100 U/
mL penicillin/streptomycin). NSCs were cultured without 
CNTF (control group) or with conditional medium con-
taining 10 ng/mL CNTF (Sigma; CNTF group). After 7 
days, differentiation was terminated and cells were detected 
by immunofluorescence assay. 

Immunofluorescence assay
Microtubule associated protein-2 (MAP2) is a marker of 
mature neurons (Nakano et al., 2015; Razavi et al., 2015) and 
glial fibrillary acidic protein (GFAP) a marker of glial cells 
(Babaee et al., 2015; Pacey et al., 2015). Cells were washed 
twice with ice-cold phosphate buffered saline (PBS), fixed 
with 100% methanol for 7 minutes at −20°C, and permeat-
ed with fresh 4% paraformaldehyde for 20 minutes at room 
temperature. Cells were blocked with blocking buffer (10% 
goat serum in PBS containing 0.3% Triton X-100 and 0.03% 
NaN3) overnight at 4°C. Next, cells were incubated at 4°C for 
24 hours with primary antibody diluted in blocking buffer, 
followed by incubation overnight at 4°C with secondary 
antibody diluted in blocking buffer. After washing with PBS, 
cells were stained with Hoechst 33342 (1:1,000; Pierce) for 
30 minutes at room temperature and then viewed using a 
fluorescence microscope (Leica). The primary antibodies 

used were: mouse monoclonal anti-MAP2 (1:1,000; Milli-
pore, Boston, MA, USA) and rabbit polyclonal anti-GFAP 
(1:500; Sigma). The secondary antibodies used were: Alexa 
Fluor 568-conjugated (red) goat anti-rabbit IgG (1:500; Invi-
trogen, Carlsbad, CA, USA) and Alexa Fluor 488-conjugated 
(green) goat anti-mouse IgG (1:200; Invitrogen). 

Statistical analysis
Data are expressed as the mean ± SEM. All statistical evalua-
tions were performed using a two-tailed Student’s t-test, and 
data were analyzed using SPSS 11.0 software (SPSS, Chicago, 
IL, USA). A probability level of P < 0.05 was considered to be 
significant. 

Results
FiFx transection in the adult rat hippocampus
Nissl staining confirmed complete dissection of the right FiFx, 
while the left side remained intact (Figure 1). This indicates suc-
cessful establishment of our denervated hippocampal model.

CNTF expression in denervated hippocampus
Seven days after right FiFx transection, CNTF mRNA and 
protein levels in normal and denervated hippocampi were 
examined by RT-PCR analysis (Figure 2A, B), western blot 
assay (Figure 2C, D), and ELISA (Figure 2E). Compared 
with normal hippocampus, both CNTF mRNA and pro-
tein levels in denervated hippocampus were significantly 
up-regulated. 

Neuronal differentiation of hippocampal NSCs treated in 
vitro with CNTF 
After 7 days of differentiation, immunofluorescence showed 
increased MAP2-positive cell number and decreased 
GFAP-positive cell number in the CNTF group compared 
with the control group (Figure 3).

Discussion
Recently, an increasing number of studies reported that 
because of their potential for neuronal differentiation, 
NSCs are a good cell source for cell therapy of neurode-
generative diseases (Diamandis et al., 2007; Marutle et al., 
2007). However, to date, the number of neurons obtained 
from NSCs using various in vitro methods is too small to 
meet the demands of therapy (Donato et al., 2007; Yi et al., 
2008). Thus, to induce differentiation of a sufficient num-
ber of neurons from NSCs, and subsequently meet the de-
mands of clinical treatment, further study of the molecular 
mechanisms underlying neuronal differentiation of NSCs is 
urgently needed. 

Our previous studies have shown that denervating the 
hippocampus by FiFx transection enables both grafted and 
endogenous newborn NSCs to proliferate, migrate, and dif-
ferentiate into neurons in the hippocampus (Zhang et al., 
2007; Zou et al., 2010). These indicates that the denervated 
hippocampus may provide a favorable environment for neu-
ronal differentiation of NSCs. However, the pathways and 
mechanisms in this process are still unclear. 



601

Zhang L, et al. / Neural Regeneration Research. 2016;11(4):597-603.

Here, we show that compared with the normal hippo-
campus, expression of both CNTF mRNA and protein in 
the denervated hippocampus is significantly up-regulated 
7 days after right FiFx transection. CNTF was first reported 
as a survival factor in ciliary ganglion neurons of chick em-
bryos. It has since been shown that CNTF activates a receptor 
complex composed of a ligand-binding α-subunit (CNTF Rα) 
and two signal transducing β-subunits (LIFRβ and gp130) 
(Inoue et al., 1996). Further studies have shown that CNTF 
plays a similar role in many other nervous system cells, for 
example motor neurons (Lamas et al., 2014), sensory neurons 
(Bailey and Green, 2014), and sympathetic ganglion neurons 
(Saygili et al., 2011). DeWitt et al. (2014) reported that CNTF 
promotes neuronal differentiation and cell cycle withdrawal 
in neuroblastoma cells. Nilbratt et al. (2010) found that CNTF 
promotes differentiation of human embryonic stem cells into 
cholinergic neurons. Thus, we hypothesized that increased 
CNTF in the denervated hippocampus microenvironment 
might lead to neuronal differentiation of endogenous hip-
pocampal NSCs. To examine this, we cultured hippocampal 

NSCs derived from E17 fetal rats with exogenous human 
CNTF for 7 days in vitro, and found that approximately 8.19 ± 
0.79% cells were MAP2-positive. In contrast, cells cultured in 
medium without CNTF, resulted in almost no MAP2-positive 
cells. Instead, the vast majority of cells showed GFAP-posi-
tive expression. These results indicate that CNTF promotes a 
portion of NSCs to differentiate into neurons, while in the ab-
sence of CNTF (and any other neurotrophic factors), the vast 
majority of NSCs spontaneously differentiate into glial cells in 
vitro. Thus, we speculate that CNTF may be one of the factors 
that promotes neuronal differentiation of endogenous NSCs 
in the denervated hippocampus. It is still unclear how up-reg-
ulated hippocampal CNTF promotes NSC differentiation 
into neurons after FiFx transection. Many studies have shown 
two main CNTF-related signaling pathways. Vigneswara et al. 
(2014) reported that CNTF reduces apoptosis of retinal gan-
glion cells through the JAK/STAT signaling pathway. Moreover, 
other studies have shown that CNTF participates in neuronal 
migration and neurite outgrowth of the dorsal root ganglion 
through the PI3K/Akt and JAK2/STAT3 signaling pathways 

Figure 3 Immunofluorescence analysis of MAP2 and GFAP expression in hippocampal NSCs derived from embryonic day 17 fetal rats.  
(A) Cells were separately stained for GFAP (red) and MAP2 (green), with total cell number indicated by Hoechst (blue). Scale bar: 20 μm. (B) 
MAP2-positive cells are indicated by a percentage of total cells. (C) GFAP-positive cells are indicated by a percentage of total cells. Data are the 
mean ± SEM. Experiments were performed in triplicate. *P < 0.05, **P < 0.01, vs. control (two-tailed Student’s t-test). MAP2: Microtubule associ-
ated protein-2; GFAP: glial fibrillary acidic protein; CNTF: ciliary neurotrophic factor. 
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(Liu et al., 2014b). Therefore, in future studies, we will deter-
mine if endogenous CNTF promotes neuronal differentiation 
of hippocampal NSCs in the denervated hippocampus via 
these two signaling pathways in vivo. Of course, there may be 
other signaling pathways involved in this process.

In the present study, the neuronal differentiation efficiency 
of hippocampal NSCs induced by CNTF in vitro was still 
low. Based on these findings, we speculate that the denervat-
ed hippocampus promotes expression of endogenous CNTF 
and upregulated CNTF may be involved in hippocampal 
NSC differentiation into neurons in vivo. These changes may 
be beneficial to repair and regeneration of the hippocampus 
after injury. Although the molecular mechanisms of this 
phenomenon have not yet been fully confirmed, our findings 
provide the experimental basis for neuronal differentiation 
of NSCs with CNTF. These findings may help to promote 
the clinical application of cell replacement therapy.
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