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Radiotherapy (RT), or radiation therapy, has been widely used in clinical practice for the
treatment of local advanced gastrointestinal carcinoma. RT causes DNA double-strand
breaks leading to cell cytotoxicity and indirectly damages tumor cells by activating
downstream genes. Non-coding RNA (including microRNAs, long non-coding RNAs
(ncRNAs), and circular RNAs) is a type of RNA that does not encode a protein. As the
field of ncRNAs increasingly expands, new complex roles have gradually emerged for
ncRNAs in RT. It has been shown that ncRNAs can act as radiosensitivity regulators in
gastrointestinal carcinoma by affecting DNA damage repair, cell cycle arrest, irradiation-
induced apoptosis, cell autophagy, stemness, EMT, and cell pyroptosis. Here, we review
the complex roles of ncRNAs in RT and gastrointestinal carcinoma. We also discuss the
potential clinical significance and predictive value of ncRNAs in response to RT for guiding
the individualized treatment of patients. This review can serve as a guide for the application
of ncRNAs as radiosensitivity enhancers, radioresistance inducers, and predictors of
response in RT of gastrointestinal carcinoma.
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BACKGROUND

Gastrointestinal carcinoma poses a significant burden for human health, according to the Global
Cancer Statistics 2020 (Sung et al., 2021). Gastrointestinal carcinomas can be classified as gastric
cancer (GC), colon cancer (CC), and rectal cancer (RC). At the time of diagnosis, most patients are
diagnosed with advanced-stage cancer due to the lack of characteristic symptoms and effective
screening methods (Dekker et al., 2019; Smyth et al., 2020). Although the survival rate of patients
with gastrointestinal carcinoma recently improved due to the advances in treatments, the long-term
survival of advanced-stage cancer patients is still poor (Shitara and Ohtsu, 2016; Biller and Schrag,
2021). Radiotherapy (RT) is an essential tool for treating patients with local advanced gastrointestinal
carcinoma (Zhang et al., 2018a; Thompson et al., 2018; Tam and Wu, 2019), and the response to RT
is critical to the long-term survival of these patients. Previous studies have demonstrated that various
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factors, including non-coding RNAs, could affect the
effectiveness of RT (Grassberger et al., 2019; Ozpiskin et al.,
2019; McLaughlin et al., 2020).

The ncRNAs, including microRNAs (miRNAs), long ncRNAs
(lncRNAs), and circular RNAs (circRNAs), cannot encode
proteins. Several reports have shown that ncRNAs can play
key roles in cell cycle transition, apoptosis, metastasis,
autophagy, stemness, and pyroptosis in gastrointestinal
carcinoma at post-transcriptional process (Zhang et al., 2018b;
Li et al., 2019a; Wang et al., 2019a; Peng et al., 2019; Li et al.,
2020a; Li et al., 2020b; Yang et al., 2020; Li et al., 2021a; Peng et al.,
2021; Wang et al., 2021). ncRNAs can regulate radiosensitivity by
targeting mRNAs or proteins (Wang et al., 2014; Afshar et al.,
2018; Chen et al., 2019; Chen et al., 2020; Gao et al., 2021). In
addition, the aberrant profiles of ncRNAs in tissues or body fluids
can be used as biomarkers to predict the response to RT in
gastrointestinal cancer patients, guiding the selection of the
treatment (Azizian et al., 2015; Campayo et al., 2018;
D’Angelo et al., 2016; Kelley et al., 2017).

Previous studies have investigated whether ncRNAs
participate in radiosensitivity or radioresistance and whether
they are positive or negative biomarkers to predict complete
response to RT. In this review, we elaborate on the roles of
ncRNAs in RT and gastrointestinal carcinoma as follows: 1)
ncRNAs as radiosensitivity enhancers in RT, 2) the
mechanism of ncRNAs as radiosensitivity enhancers in RT, 3)
ncRNAs as radioresistance inducers in RT, 4) the mechanism of
ncRNAs as radioresistance inducers in RT, 5) ncRNAs as
biomarkers to predict the response to RT, and 6) the clinical
application of ncRNAs in gastrointestinal carcinoma. This review
highlights the diverse functions of ncRNAs in RT and
gastrointestinal cancer and their importance in predicting the
efficacy of RT in patients with gastrointestinal cancer.

Non-Coding RNAs Enhance
Radiosensitivity
Studies have shown that tumor cell radiosensitivity is closely
associated with alterations in the tumor microenvironment
(TME), epigenetics, and the expression of key genes (Zhang
et al., 2019a; Buckley et al., 2020; Zhang et al., 2020; Chen
et al., 2021). The role of miRNAs, a type of ncRNAs, have
been widely investigated in RT and gastrointestinal carcinoma
as direct or indirect targets. Saeid et al. identified that miR-185
strengthened radiosensitivity by promoting irradiation-induced
apoptosis of colorectal cancer (CRC) cells (Afshar et al., 2018).
miR-451 were downregulated in GC and CRC samples compared
to adjacent normal tissues, while overexpressed miR-451
increased the sensitivity of GC and CRC cells (Bandres et al.,
2009). Ge et al. reported that miR-122-5p was increased in the
plasma of patients after irradiation, and upregulated miR-122-5p
strengthened the radiosensitivity by repressing cell survival and
accelerating irradiation-induced apoptosis of Human Intestinal
Epithelial Crypt (HIEC) cells (Ge et al., 2020). Levels of miR-130a
were decreased in a resistant RC cell line and increased in a
sensitive RC cell line. miR-130a sensitized the RC cells to RT via
suppressing the epithelial-mesenchymal transition (EMT) and

invasion (Ha Thi et al., 2019). Ji et al. found that miR-15b was
significantly reduced in CRC tissues, and increased miR-15b
enhanced the sensitivity of CRC cells to RT by suppressing
cell growth and metastasis (Ji et al., 2018). Through a series of
functional experiments, Liao et al. reported that overexpressed
miR-506-3p or miR-140-5p significantly improved the
radiosensitivity of CRC cells (Liao et al., 2020). miR-124 was
reduced in both CRC tissues and cell lines, and elevated miR-124
improved the sensitivity of CRC cells to RT (Zhang et al., 2014;
Lin et al., 2016). miR-214, miR-21-5p, and miR-519b-3p were
increased in the tissues of CRC, RC, and locally advanced RC
(LARC) patients that responded to RT. Besides, miR-214
enhanced the sensitivity of CRC cells to RT by repressing
irradiation-induced autophagy in vitro and in vivo (Hu et al.,
2018). In SW480 cells, overexpressed miR-21-5p increased the
sensitivity to RT (Lopes-Ramos et al., 2014). miR-519b-3p
reinforced the sensitivity of CRC cells to RT by facilitating
irradiation-induced apoptosis (Luo et al., 2018). Luu et al.
(2013) revealed that inhibition of let-7a repressed the
sensitivity to RT in CRC cells with wild-type TP53 by
negatively regulating K-Ras activity. miR-451a was elevated in
the tissues of RC patients with partial response to RT, and its
overexpression improved the radiosensitivity of CRC cells by
repressing cell growth and reducing cell survival (Ruhl et al.,
2018). Using microarray analysis and qPCR, miR-320a, miR-132,
and let-7g were found to be downregulated in radioresistant cell
lines, while overexpressed miR-320a, miR-132, and let-7g
significantly promoted the radiosensitivity of CRC cells
(Salendo et al., 2013). In addition, let-7e was reported to
enhance the radiosensitivity of CRC cells by suppressing cell
cycle transition and cell survival and accelerating irradiation-
induced apoptosis (Samadi et al., 2019). Similarly, miR-196b
strengthened the sensitivity of GC cells to RT by suppressing
cell cycle transition and DNA damage repair (Shen et al., 2018).
miR-320 was downregulated in both CC tissues and cell lines, and
elevated miR-320 reinforced the radiosensitivity of CC cells (Wan
et al., 2015). miR-100 was downregulated in CRC tissues, while
overexpressed miR-100 significantly promoted the
radiosensitivity of CRC cells by facilitating irradiation-induced
apoptosis and suppressing DNA damage repair (Yang et al.,
2015). miR-630 was decreased in the radioresistant CRC cell
lines after irradiation. Upregulated miR-630 increased the
sensitivity and radiation-induced cytotoxicity of CRC cells to
RT (Zhang et al., 2015). miR-145 enhanced the radiosensitivity of
CRC cells by antagonizing SNAI1-mediated stemness (Zhu et al.,
2018).

In addition, novel emerging functions of lncRNAs and
circRNAs in RT and gastrointestinal carcinoma are gradually
being unveiled. Lnc-p21 levels were decreased in both GC and
CRC tissues and cell lines, and elevated lnc-p21 improved the
sensitivity of GC cells and CRC cells to RT (Wang et al., 2014;
Chen et al., 2019). Lnc-OIP5-AS1 was downregulated in
radioresistant CRC cell lines using microarray analysis and
qPCR, while overexpressed lnc-OIP5-AS1 significantly
promoted the radiosensitivity in CRC cells (Zou et al., 2018).
Lnc-NEAT1 increased the sensitivity of CRC cells to RT by
accelerating the irradiation-induced pyroptosis (Su et al.,
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TABLE 1 | The radiosensitivity enhancement of non-coding RNAs in gastrointestinal carcinoma.

Cancer
type

Non-coding
RNAs

Expression Sources Sample
number

Targets Biological
functions

Upstream References

CRC miR-185 — — — IGF1R and
IGF2

Promote irradiation-induced
apoptosis

— Afshar et al. (2018)

GC lnc-p21 Decreased Tissue and cell
line

40 paired — Suppress cell growth, cell cycle
transition, migration, and sensitize
cell to RT

Irradiation Chen et al. (2019)

CRC lnc-p21 Decreased Tissue and cell
line

30 paired — Promote irradiation-induced
apoptosis and enhance
radiosensitivity

Irradiation Wang et al. (2014)

CRC miR-451 Decreased Tissue 12 paired MIF Reduce cell proliferation and
sensitize cell to RT

— Bandres et al.
(2009)

GC miR-451 Decreased Tissue 67 (45 for
Kaplan-Meier
analysis)

MIF Reduce cell proliferation and
sensitize cell to RT

— Bandres et al.
(2009)

RC miR-122-5p Increased Serum and mice
tissue

3 RC patients
and 20 mice

CCAR1 Inhibit cell survival, enhance
radiosensitivity, and increase cell
apoptosis

Irradiation Ge et al. (2020)

RC miR-130a Increased Radiosensitive
RC cells

— SOX4 Inhibit EMT, invasion, repair of DNA
damage and enhance
radiosensitivity

— Ha Thi et al. (2019)

CRC miR-15b Decreased Tissue 135 paired DCLK1 Inhibit cell growth, invasion, and
metastasis and enhance
radiosensitivity

— Ji et al. (2018)

CRC miR-506-3p
and miR-
140-5p

Increased Serum 18 — Decrease cell proliferation, survival
rate, and enhance radiosensitivity

— Liao et al. (2020)

CRC miR-124 Decreased Tissue and cell
line

24 paired PRRX1 Promote irradiation-induced
apoptosis, inhibit EMT and cell
stemness, and enhance
radiosensitivity

— Zhang et al. (2014),
Lin et al. (2016)

CRC miR-214 Decreased Serum and cell
line

10 ATG12 Inhibit IR-induced autophagy and
enhance radiosensitivity

— Hu et al. (2018)

RC miR-21-5p Increased Tissue 43 SATB1 Enhance radiosensitivity — Lopes-Ramos et al.
(2014)

RC miR-519b-3p Increased Tissue 55 ARID4B Inhibit cell growth, promote
irradiation-induced apoptosis, and
enhance radiosensitivity

— Luo et al. (2018)

CRC Let-7a — — — — Inhibit cell growth and enhance
radiosensitivity

— Luu et al. (2013)

RC miR-451a Increased Tissue 12 CAB39 and
EMSY

Inhibit cell proliferation, attenuate
surviving fraction, and enhance
radiosensitivity

Irradiation Ruhl et al. (2018)

CRC miR-320a,
miR-132 and
let-7g

— — — — Enhance radiosensitivity — Salendo et al. (2013)

CRC let-7e — — — IGF-1R Arrest cell cycle transition, promote
apoptosis, and enhance
radiosensitivity

— Samadi et al. (2019)

GC miR-196b Decreased Cell line — RAD23B Impair DNA damage repair, arrest
cell cycle transition, and enhance
radiosensitivity

Irradiation Shen et al. (2018)

CC miR-320 Decreased Tissue and cell
line

55 paired FOXM1 Inhibit cell growth, cell cycle
transition, migration, invasion, and
enhance radiosensitivity

— Wan et al. (2015)

CRC miR-100 Decreased Tissue and cell
line

30 paired — Promote irradiation-induced
apoptosis and DNA double-strand
breaks, and enhance radiosensitivity

— Yang et al. (2015)

CRC miR-630 Decreased Cell line — BCL2L2
and
TP53RK

Enhance irradiation-induced
cytotoxicity and enhance
radiosensitivity

CREB Zhang et al. (2015)

CRC miR-145 decreased Cell line — — inhibit cell stemness and enhance
radiosensitivity

SNAI1 Zhu et al. (2018)

CRC lnc-
OIP5-AS1

Decreased Cell line — Impair cell clonogenic survival,
promote irradiation-induced

— Zou et al. (2018)

(Continued on following page)
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2021). Upregulated circ-CBL.11 boosted the sensitivity of CRC
cells to RT via suppressing the cell growth in vitro (Li et al.,
2019b). The abovementioned data indicated that the ncRNAs
effectively improved the sensitivity of gastrointestinal carcinoma
cells to RT (Table 1).

The Mechanism of Radiosensitivity
Enhancement
RT directly leads to DNA damage, mainly caused by double-
strand breaks in tumor cells, and indirectly damages tumor cells
through the generated reactive oxygen species (De Ruysscher
et al., 2019; Martin and Martin, 2020). Furthermore, radiation
modifies the TME, affecting the anti-tumor immune response
(Horsman et al., 2012; Grassberger et al., 2019; Shu et al., 2021). In
these processes, it is possible to enhance radiation sensitivity by
enhancing the transcription of specific genes or the activity of key
proteins (El Bezawy et al., 2019; Ma et al., 2019). miRNAs regulate
the cellular protein expression by binding to the 3′ untranslated
region of mRNA, resulting in a decrease or degradation of the
target genes, thus affecting the sensitivity of tumor cells to RT.
Irradiation causes DNA damage and apoptosis of tumor cells; to
compensate the damage, some genes are activated, triggering
DNA damage repair and irradiation-induced apoptosis. It has
been found that miR-185, let-7e, miR-451, miR-122-5p, miR-
130a, miR-124, miR-519b-3p, miR-451a, miR-196b, lnc-p21,
miR-100, and lnc-OIP5-AS1 can strengthen the
radiosensitivity of gastrointestinal carcinoma cells by altering
DNA damage repair and promoting irradiation-induced
apoptosis by binding to their respective target genes (Bandres
et al., 2009; Wang et al., 2014; Zhang et al., 2014; Yang et al., 2015;
Lin et al., 2016; Afshar et al., 2018; Luo et al., 2018; Ruhl et al.,
2018; Shen et al., 2018; Zou et al., 2018; Chen et al., 2019; Samadi
et al., 2019; Ge et al., 2020). Furthermore, several reports
indicated that the characteristics of tumor cell stemness and
EMT profoundly influenced the sensitivity of tumor cells to
RT. miR-130a sensitized RC cells to RT by targeting SOX4
and inhibiting transcription of the EMT-related genes and
NBS1 (Ha Thi et al., 2019). miR-15b enhanced the
radiosensitivity of CRC cells by interacting with DCLK1 to
inhibit the EMT via regulating BMI1 and β-catenin expression
(Ji et al., 2018). miR-124 and miR-145 boosted the
radiosensitivity of CRC cells by inhibiting the cell stemness by
targeting PRRX1 (Zhang et al., 2014; Lin et al., 2016; Zhu et al.,

2018). In addition, some studies found that increasing G2/M
phase arrest could significantly improve the radiosensitivity of
tumor cells. For instance, lnc-p21, let-7e, miR-196b, and miR-320
improved the radiosensitivity of cells by blocking cell cycle
transition via the Wnt/β-catenin pathway (Wang et al., 2014;
Wan et al., 2015; Shen et al., 2018; Chen et al., 2019; Samadi et al.,
2019). circ-CBL.11 was increased in CRC cells after irradiation
and elevated circ-CBL.11 reinforced the radiosensitivity by
repressing the phosphorylation of P53 through sponging to
miR-6778-5p to regulate the YWHAE expression (Li et al.,
2019b). In addition, miR-214 expression was downregulated
after exposure to irradiation both in CRC cells and plasma of
CRC patients. Mechanistically, miR-214 enhanced the
radiosensitivity by suppressing cell autophagy through LC3
repression and elevating P62 via directly binding to ATG12
(Hu et al., 2018). miR-21-5p targeted SATB1 in SW480 cells
to improve the sensitivity to RT (Lopes-Ramos et al., 2014).
Zhang et al. revealed that CREB increased miR-630 expression by
binding in the promoter region of miR-630; in turn, miR-630
regulated the radiosensitivity of CRC cells by targeting BCL2L2
and TP53RK (Zhang et al., 2015). Lnc-NEAT1 was also
upregulated in CRC cells after irradiation. Elevated lnc-
NEAT1 enhanced the GSDME-mediated pyroptosis resulting
in the radiosensitivity of CRC cells by competitively binding to
miR-448 (Su et al., 2021). Thus, ncRNAs could be used as
therapeutic targets in RT by exploring the molecular
mechanism of radiosensitivity (Figure 1).

Non-Coding RNAs Induce Radioresistance
Several studies have reported a close relationship between
ncRNAs and radioresistance of RT in cancer therapy (Fan
et al., 2018; Zhang et al., 2019b; Zheng et al., 2020). As shown
in Table 2, Chen et al. (2020) investigated that miR-93-5p was
upregulated in CRC tissues and induced the resistance to RT in
CRC cells by facilitating cell growth and suppressing irradiation-
induced apoptosis. Lnc-00152, miR-155, and miR-222 were
elevated in the radioresistant CRC cell lines. Reduced levels of
lnc-00152 in radioresistant cells significantly repressed the
migratory and invasiveness of CRC cells (Chen et al., 2018).
miR-155 and miR-222 induced the radioresistance in CRC cells
by promoting cell proliferation and DNA damage repair
(Khoshinani et al., 2017). Moreover, after miR-21
upregulation, the radioresistant characteristics of CC cells were
enhanced by promoting cell cycle transition and cell invasion and

TABLE 1 | (Continued) The radiosensitivity enhancement of non-coding RNAs in gastrointestinal carcinoma.

Cancer
type

Non-coding
RNAs

Expression Sources Sample
number

Targets Biological
functions

Upstream References

miR-369-
3p/
DYRK1A

apoptosis, and enhance
radiosensitivity

CRC lnc-NEAT1 Increased Cell line — miR-448/
GSDME

Promote IR-induced pyroptosis and
enhance radiosensitivity

Irradiation Su et al. (2021)

CRC circ-CBL.11 Increased Cell line — miR-6778-
5p/YWHAE

Suppress cell proliferation Irradiation Li et al. (2019b)

CRC, colorectal cancer; CC, colon cancer; GC, gastric cancer; RT, radiation therapy; RC, rectal cancer; EMT, Epithelial-Mesenchymal Transition.
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inhibiting irradiation-induced apoptosis (Deng et al., 2014). Gao
et al. (2021) reported that circ_0055625 was increased in CC
tissues and cell lines, and overexpressed circ_0055625
significantly reduced the sensitivity of CC cells to RT. Besides,
Liu et al. (2020a) found that lnc-RI significantly interfered with
sensitivity of CRC cells to RT by improving the cell viability and
DNA damage repair and preventing irradiation-induced
apoptosis. Lnc-HOTAIR was also increased in CRC tissues,
cell lines, and serum of patients after RT. Furthermore, lnc-
HOTAIR resulted in radioresistance by promoting cell growth
and cell autophagy and restraining irradiation-induced apoptosis
in vitro and in vivo (Yang et al., 2016; Liu et al., 2020b). The
resistance of CRC cells to RT was induced in vitro after miR-622
upregulation in the cells (Ma et al., 2015). Overexpression of miR-
224 reduced the sensitivity of CRC cells to RT in vitro (Salendo
et al., 2013). Elevated miR-210 resulted in radioresistance in CC
cells, as miR-210 enhanced cell survival and autophagy (Sun et al.,
2015). IncreasedmiR-29a levels caused the resistance of CRC cells
and intestinal cells to irradiation (Wang et al., 2016). Circ-
CCDC66 was also increased in radioresistant CC tissues
compared to radiosensitive tissues and induced the resistance
of CC cells to irradiation by boosting cell growth and constraining
irradiation-induced apoptosis (Wang et al., 2019b). Xiao et al.
(2020) demonstrated that lnc-TRPM2-AS promoted the
resistance of GC cells to RT by improving cell survival
fraction and promoting DNA damage repair. Circ-ABCB10,
circ-BANP, lnc-ROR, and miR-183-5p were also elevated in
CRC tissues and cell lines. Circ-ABCB10 resulted in
radioresistance of CRC cells by facilitating cell growth and
promoting EMT (Xie et al., 2021a). Circ-BANP reduced the
sensitivity of CRC cells to irradiation by elevating cell survival
fraction and stimulating cell autophagy (Xie et al., 2021b).
Moreover, the inhibition of lnc-ROR alleviated the resistance
of CRC cells to RT by constraining cell growth and boosting
irradiation-induced apoptosis (Yang et al., 2017). Furthermore,

miR-183-5p exacerbated the resistance of CRC cells to RT,
increasing cell survival and stimulating cell proliferation
in vitro and in vivo (Zheng et al., 2019). Lnc-UCA1 was
increased in CRC tissues, CC cell lines, and tissues from RT
patients. Lnc-UCA1 interfered with the radiosensitivity of CRC
cells by boosting EMT and G2/M arrest and suppressing
irradiation-induced apoptosis (Yang et al., 2018). Yu et al.
(2021) reported that lnc-TLCD2-1 was downregulated in CRC
tissues and radiosensitive cell lines. lnc-TLCD2-1 induced the
radioresistant status of CRC cells by elevating cell viability and
repressing irradiation-induced apoptosis. miR-106b was
increased in CRC tissues and highly differentiated CRC cell
lines. Overexpressed miR-106b conferred radioresistance to
CRC cells by facilitating tumor-initiating capacity, cell survival
fraction, and DNA damage repair (Zheng et al., 2015). Zhang
et al. (2021) found that LINC00909 was increased in tissue
samples from LARC patients that did not respond to
neoadjuvant chemoradiotherapy. Furthermore, overexpression
of LINC00909 induced cell resistance to RT in vivo and
in vitro. Lnc-EGOT was upregulated in RC tissues and cell
lines. Lnc-EGOT significantly facilitated cell growth and
inhibited the irradiation-induced apoptosis of RC cells, thereby
resulting in cell resistance to RT (Li et al., 2021b). Thus, ncRNAs
play critical roles in the resistance of gastrointestinal carcinoma to
irradiation.

The Mechanism of Radioresistance
Induction
RT has been widely accepted as an essential treatment for various
cancers and it is the recommended treatment strategy for patients
with locally advanced gastrointestinal carcinoma (LAGC) (Bhide
and Nutting, 2010; Cercek et al., 2018; Hajj and Goodman, 2015).
Unfortunately, resistance to RT is becoming widespread,
currently being one of the main limitations of RT treatment

FIGURE 1 | Schematic diagram of ncRNAs as radiosensitivity enhancers in gastrointestinal carcinoma.
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TABLE 2 | The radioresistance induction of non-coding RNAs in gastrointestinal carcinoma.

Cancer
type

Non-coding
RNAs

Expression Sources Sample
number

Targets Biological functions Upstream References

CRC miR-93-5p Increased Tissue 75 paired FOXA1 Facilitate cell proliferation, inhibit
radiation-induced apoptosis, and
promote radiation resistance

EVs Chen et al.
(2020)

CC Circ_0055625 Increased Tissue and
cell line

57 paired miR-338-3p/
MSI1

Facilitate cell proliferation, migration, and
invasion, repress radiation-induced
Apoptosis, and induce radiation
resistance

Irradiation Gao et al.
(2021)

CRC miR-224 — — — — Induce radiation resistance — Salendo et al.
(2013)

CRC LINC00152 Increased Cell line — — Facilitate cell proliferation, migration, and
invasion, and promote radiation
resistance

— Chen et al.
(2018)

CRC miR-155 and
miR-222

Increased Cell line — — Facilitate cell proliferation and induce
radiation resistance

Irradiation Khoshinani
et al. (2017)

CC miR-21 — — — hMSH2 Inhibit irradiation-induced apoptosis,
enhance cell growth, invasion, cell cycle
transition, and induce radiation
resistance

— Deng et al.
(2014)

CRC lnc-RI — — — miR-4727-5p/
LIG4

Facilitate cell growth and cell cycle
transition, repress radiation-induced
apoptosis, and induce radiation
resistance

— Liu et al.
(2020a)

CRC lnc-HOTAIR Increased Serum, tissue
and cell line

12 paired
+71 paired

MiR-93/ATG12 Facilitate cell viability and cell autophagy,
repress radiation-induced cell apoptosis,
and induce radiation resistance

— Liu et al.
(2020b)

CRC lnc-HOTAIR Increased Tissue and
cell line

53 paired — Promote cell proliferation, migration, and
invasion, inhibit radiation-induced
apoptosis, and induce radiation
resistance

— Yang et al.
(2016)

RC miR-622 Increased Tissue and
cell line

17 RB1 Increase surviving fraction and induce
radiation resistance

Irradiation Ma et al. (2015)

CC miR-210 — — — Bcl-2 Increase cell growth and autophagy,
inhibit radiation-induced apoptosis, and
induce radiation resistance

HIF-1α Sun et al.
(2015)

CRC miR-29a Increased Cell line — PTEN Increase surviving fraction and induce
radiation resistance

Irradiation Wang et al.
(2016)

CC circ-CCDC66 Increased Tissue and
cell line

84 miR-338-3p Increase cell viability and surviving
fraction, and induce radiation resistance

Irradiation Wang et al.
(2019b)

GC lnc-TRPM2-AS Increased Tissue and
cell line

80 paired miR-612/
IGF2BP1 and
FOXM1

Increase survival fractions and DNA
damage repair, and induce radiation
resistance

Irradiation Xiao et al.
(2020)

CRC circ-ABCB10 Increased Tissue and
cell line

20 paired miR-217 Promote cell proliferation, migration,
invasion, and induce radiation resistance

— Xie et al.
(2021a)

CRC circ-BANP Increased Tissue and
cell line

20 paired miR-338-3p Increase cell viability, cell survival fraction
and cell autophagy, and induce radiation
resistance

— Xie et al.
(2021b)

CRC lnc-ROR Increased Tissue and
cell line

30 paired p53/miR-145 Promote cell viability, inhibit radiation-
induced apoptosis, and induce radiation
resistance

— Yang et al.
(2017)

CRC miR-183-5p Increased Tissue and
cell line

39 paired ATG5 Enhance cell viability and survival fraction,
and induce radiation resistance

— Zheng et al.
(2019)

CRC lnc-UCA1 Increased Tissue and
cell line

32 paired — Promote cell proliferation, cell cycle
transition and EMT, inhibit radiation-
induced apoptosis, and induce radiation
resistance

— Yang et al.
(2018)

CRC lnc-TLCD2-1 Decreased Tissue and
cell line

10 paired miR-193a-
5p/YY1

Promote cell proliferation, inhibit
radiation-induced apoptosis, and induce
radiation resistance

- Yu et al. (2021)

CRC miR-106b Increased Tissue and
cell line

15 paired PTEN and p21 Enhance the tumor-initiating cell capacity,
cell survival fraction and DNA damage
repair, and induce radiation resistance

— Zheng et al.
(2015)

LARC LINC00909 Increased Tissue 31 — Enhance cell viability and induce radiation
resistance

— Zhang et al.
(2021)

(Continued on following page)
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(Jin et al., 2020; Pera et al., 2012). Therefore, understanding the
molecular mechanisms leading to radioresistance, as well as
conducting clinical translational therapies, may significantly
improve the prognosis of patients with gastrointestinal
carcinoma. The mechanisms of ncRNAs in radioresistance
induction are presented in Figure 2. Cancer-associated
fibroblasts (CAF)-derived extracellular vesicles can deliver
miR-93-5p to induce radioresistance in CRC cells by targeting
FOXA1 and elevating TGFB3 via the TGF-β signaling pathway
(Chen et al., 2020). miR-21 also conferred radioresistance to CC
cells by binding to hMSH2 mRNA and modulating TP and DPD
expression (Deng et al., 2014). Circ-005625, lnc-HOTAIR, miR-
622, miR-29a, circ-CCDC66, lnc-TRPM2-AS, and lnc-EGOT
were upregulated in gastrointestinal carcinoma cells after
irradiation. Elevated circ-005625 conferred the radioresistant
ability to CC cells by regulating MSI1 expression via sponging
miR-338-3p (Gao et al., 2021). lnc-HOTAIR acted as a molecular
sponge of miR-93 to regulate ATG12-mediated autophagy in
CRC cells, resulting in radioresistance (Liu et al., 2020b). miR-622
regulated the activity of the p-Rb-E2F1-P/CAF complex to affect
the radioresistance of CRC cells by binding to RB1 (Ma et al.,
2015). miR-29a activated the PI3K/Akt pathway to cause
radioresistance in CRC cells and intestinal cells by directly

targeting PTEN (Wang et al., 2016). Both circ-CCDC66 and
circ-BANP induced the resistance of CC cells and CRC cells to
irradiation by competitively binding to miR-338-3p (Wang et al.,
2019b; Xie et al., 2021b). Lnc-TRPM2-AS resulted in the
resistance of GC cells to irradiation via modulating the
IGF2BP1 and FOXM1 expression by sponging miR-612 (Xiao
et al., 2020). Lnc-EGOT conferred the resistance to RT in RC cells
via accumulating ErbB4 by sponging miR-211-5p (Li et al.,
2021b). Lnc-RI conferred radioresistance to CRC cells by
adjusting LIG4 expression via binding to the miR-4727-5p
(Liu et al., 2020a). HIF-1α is an important protein increased
in hypoxic conditions; Sun et al. reported that miR-210 levels
increased with the elevation of HIF-1α and caused the
radioresistance of CC cells through targeting the Bcl-2 (Sun
et al., 2015). Circ-ABCB10 targeted miR-217 to cause
radioresistance in CRC cells (Xie et al., 2021a). Yang et al.
revealed that lnc-ROR induced radioresistance in CRC cells by
inhibiting the translation of P53 and reducing miR-145 (Yang
et al., 2017). miR-183-5p abated the response of CRC cells to RT
by directly binding to ATG5 (Zheng et al., 2019). Lnc-TLCD2-1
activated the NF-lB pathway to cause radioresistance in CRC
cells via regulating YY1 by targeting miR-193a-5p (Yu et al.,
2021). Increased miR-106b levels downregulated PTEN and p21

TABLE 2 | (Continued) The radioresistance induction of non-coding RNAs in gastrointestinal carcinoma.

Cancer
type

Non-coding
RNAs

Expression Sources Sample
number

Targets Biological functions Upstream References

RC Lnc-EGOT Increased Tissue and
cell line

40 paired miR-211-5p/
ErbB4

Promote cell proliferation, inhibit
radiation-induced apoptosis, and induce
radiation resistance

Irradiation Li et al. (2021b)

CRC, colorectal cancer; EVs, extracellular vesicles; CC, colon cancer; GC, gastric cancer; RC, rectal cancer; EMT, epithelial-mesenchymal transition.

FIGURE 2 | Schematic diagram of ncRNAs as radioresistance inducers in gastrointestinal carcinoma.
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expression and subsequently enhanced radioresistance in CRC
cells (Zheng et al., 2015). Insights into the mechanisms of
radioresistance induction might provide therapeutic
orientation for patients with gastrointestinal carcinoma.

Non-Coding RNAs Predict the Response
to RT
ncRNAs have been widely investigated as diagnostic biomarkers
or therapeutic efficacy predictors in cancer (Li et al., 2020a; Ha
Thi et al., 2021; Konoshenko et al., 2021). Accurate prediction of
response to RT by ncRNAs profiles would undoubtedly improve
the prognosis of LAGC patients and allow individualized
treatment. Azizian et al. reported that low expression of miR-
573 in the tissues of patients with RC showed a better response to
RT (Azizian et al., 2016). RC patients with lower levels of
circulating miR-18b and miR-20a presented a better outcome
to preoperative RT. Notably, miR-18b and miR-20a showed high
specificity and sensitivity to distinguish those patients with
negative postoperative nodal stage after RT (Azizian et al.,
2015). Furthermore, the positive predictive value (PPV) and
negative predictive value (NPV) of miR-18b and miR-20a
were 0.35 and 0.79, 0.41, and 0.85, respectively. miR-200c was
decreased in LARC patients with advanced T-stage. In addition,
downregulated miR-200c was closely related to non-responsive
primary or recurrent LARC to neoadjuvant RT (Bhangu et al.,
2014). miR-21, miR-99b, and miR-375 were greatly decreased in
RC patients with better tumor regression after preoperative RT.
The area under the curve (AUC) value of the combination of
miR-21, miR-99b, and miR-375 was 0.736 (sensitivity of 0.60;
specificity of 0.829) to distinguish RC patients with better
response from others (Campayo et al., 2018). LARC patients
with high miR-21 expression predicted a good response to
preoperative RT. The AUC value of miR-21 was 0.736 with a
sensitivity and specificity value of 0.866 and 0.60, respectively
(PPV = 0.92 and NPV = 0.428), to distinguish patients with a
complete response from those with a non-complete response
(Caramés et al., 2015). LARC patients with a high level of miR-31
expression predicted a poor response to preoperative RT. The
AUC value of the miR-31 was 0.71 with 0.608 sensitivity and
0.763 specificity (PPV = 0.518 and NPV = 0.823) to discriminate
between LARC patients with minimal, moderate, complete, or no
response (Caramés et al., 2016). LARC patients with a high miR-
125b in tissues or serum predicted a poor response to
preoperative RT. The AUC of miR-125b in tissue and plasma
was 0.9026 and 0.7821 to separate RC patients that did not
respond from those that did, respectively (D’Angelo et al.,
2016). miR-194 was increased in LARC tissues of patients
responding to RT, and elevated miR-194 predicted a good
outcome for neoadjuvant RT (D’Angelo et al., 2018). miR-
1183, miR-483-5p, miR-622, miR-125a-3p, miR-1224-5p, miR-
188-5p, miR-1471, miR-671-5p, miR-1909, miR-630, and miR-
765 were greatly increased in the LARC tissues of patients that
achieved pathological complete response (pCR), while miR-
1274b and miR-720 were decreased in the LARC tissues of
good response patients after neoadjuvant RT. In addition,
miR-622 and miR-630 had 100% sensitivity and 100%

specificity in dividing patients with pCR from non-response
patients (Della Vittoria Scarpati et al., 2012). Drebber et al.
demonstrated that miR-145 was increased in post-therapeutic
tissues compared to pre-therapeutic specimens of LARC patients,
and a low level of post-therapeutic miR-145 expression presented
a poor response to neoadjuvant RT (Drebber et al., 2011). Du
et al. revealed that miR-548c-5p, miR-548d-5p, and miR-663a
were upregulated in patients with pCR compared to non-
complete response patients and an elevated cluster of
microRNAs indicated a good response to RT of RC patients
(Du et al., 2018; Du et al., 2019). Ji et al. (2018) discovered that
miR-15b was greatly reduced in CRC tissues compared to
adjacent normal tissues, and elevated miR-15b predicted a
good outcome after neoadjuvant RT. miR-31 and miR-30c
were greatly reduced in the serum of RC patients compared to
healthy controls. In addition, miR-31 and miR-30c were also
decreased in the serum of patients after the completion of
neoadjuvant RT and radical surgery (Jo et al., 2017). miR-
451a, miR-502–5p, miR-223–3p, and miR-1246 were increased
in the partial responders compared to non-responders via
microarray analysis. Furthermore, higher miR-451a expression
was confirmed in the serum of complete responders compared to
that of non-responders and partial responders (Kelley et al.,
2017). Through microarray analysis, miR-16, miR-590-5p,
miR-153, miR-519c-3p, and miR-561 were upregulated in the
tissues of RC responders. miR-16, miR-590-5p, and miR-153
were used to distinguish complete responders from incomplete
responders with 100% accuracy. miR-519c-3p and miR-561 were
used to discriminate between good responders and poor
responders with 100% predictive power (Kheirelseid et al.,
2013). Li et al. discovered a close connection between
lncRNA-miRNA-mRNA regulation network and the response
of LARC patients to neoadjuvant RT (Li et al., 2019c). Although
lnc-p21 was downregulated in CRC tissues, its expression was
increased in the tissues and serums of responders. RC patients
with a high level of lnc-p21 expression in tissues also showed a
good response to postoperative RT (Li et al., 2020c). Circulating
miR-506-3p and miR-140-5p were upregulated in the plasma of
radiosensitive CRC patients, and patients with a high level of
miR-506-3p and miR-140-5p in the serum exhibited a good
response to RT. The predictive accuracy of miR-506-3p and
miR-140-5p was 0.925 to separate radiosensitive patients from
radioresistant patients (Liao et al., 2020). miR-214 was
overexpressed in radiosensitive CRC specimens, while its
expression in plasma decreased in CRC patients after RT.
Moreover, a higher expression of miR-214 in tissues predicted
a better response to RT for CRC patients (Hu et al., 2018). The
upregulated miR-21-5p was validated in the tissues of RC
responders via microarray analysis and qPCR. Higher miR-21-
5p expression correlated with a better response to RT. The
sensitivity and specificity of miR-21-5p in discriminating good
outcomes from RC patients to RT were 0.78 and 0.86, respectively
(Lopes-Ramos et al., 2014). miR-519b-3p was also overexpressed
in the tissues of LARC responders. The AUC value of miR-519b-
3p was 0.91 with 100% sensitivity and 0.81 specificity in
distinguishing responsive and non-responsive patients (Luo
et al., 2018). Increased miR-622 expression was found in non-
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TABLE 3 | The predictive response of radiotherapy of non-coding RNAs in gastrointestinal carcinoma.

Cancer
type

Non-coding RNAs Expression in
responder

Sources Sample
number

Predictive value References

RC miR-18b and miR-20a Low Serum 42 Patient with reduced expression of
miR-18b (specificity: 0.50, sensitivity:
0.67, PPV = 0.35, NPV = 0.79) and
miR-20a (specificity: 0.57, sensitivity:
0.75, PPV = 0.41, NPV = 0.85)
during CRT was associated with
negative postoperative nodal stage

Azizian et al. (2015)

RC miR-21, miR-99b and miR-
375 combination

Low Tissue 96 Patient with low expression of miR-
21, miR-99b, and miR-375
combination shows a good response
to CRT. The AUC value of the
combination of three miRNAs was
0.736 with 0.60 sensitivity and 0.829
specificity to distinguish patients with
maximum response from others

Campayo et al.
(2018)

LARC miR-125b Low Serum and
tissue

34 and 38 Patient with high expression of miR-
125b in serum or tissue shows a
poor response to CRT. The AUC
value of the miR-125b in tissue was
0.9026 to distinguish patients with
non-response from response. The
AUC of circulating miR-125b is
0.7821 to distinguish patients with
non-response from response

D’Angelo et al.
(2016)

LARC miR-451a High Tissue and
Serum

45 + 45 Patient with high expression of miR-
451a in serum or tissue shows a
good response to RT.

Kelley et al. (2017)

LARC miR-15b High Tissue 92 Patient with high expression of miR-
15b shows a good response to CRT.

Ji et al. (2018)

CRC miR-506-3p and miR-140-5p High Serum 18 Patient with high expression of miR-
506-3p and miR-140-5p shows a
good response to RT. The AUC value
of the miR-506-3p and miR-140-5p
was 0.925 to distinguish patients with
radiosensitive from radioresistant

Liao et al. (2020)

CRC miR-214 High Tissue and
serum

42 + 10 Patient with high expression of miR-
214 in tissue shows a good
response to RT.

Hu et al. (2018)

RC miR-21-5p High Tissue 43 Patient with high expression of miR-
21-5p shows a good response to
CRT. Overall sensitivity and
specificity of miR-21-5p in predicting
complete response to CRTwas 0.78
and 0.86, respectively

Lopes-Ramos
et al. (2014)

LARC miR-519b-3p High Tissue 55 Patient with high expression of miR-
519b-3p shows a good response to
CRT. The AUC value of the miR-519b-
3p was 0.91 with 100% sensitivity and
81% specificity to distinguish patients
with response from non-response

Luo et al. (2018)

RC miR-451a High Tissue 12 Patient with high expression of miR-
451a shows a good response to RT.

Ruhl et al. (2018)

LARC miR-622 Low Tissue 17 Patient with high expression of miR-
622 shows a poor response to RT.

Ma et al. (2015)

LARC DBET, LINC00909 and
FLJ33534

Low Tissue 89 Patient with high expression of
DBET, LINC00909 and FLJ33534 in
tissue shows a poor response to
neoadjuvant CRT. The AUC value of
the DBET, LINC00909 and
FLJ33534 in tissue was 0.65, 0.82,
and 0.67, respectively, to distinguish
patients with response from non-
response

Zhang et al. (2021)

(Continued on following page)
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TABLE 3 | (Continued) The predictive response of radiotherapy of non-coding RNAs in gastrointestinal carcinoma.

Cancer
type

Non-coding RNAs Expression in
responder

Sources Sample
number

Predictive value References

RC miR-573 Low Tissue 147 Patient with low expression of miR-
573 shows a good response to CRT.

Azizian et al. (2016)

RC miR-200c High Tissue 69 Patient with low miR-200c is
associated with non-response in
primary tumors and recurrent
cancers to neoadjuvant RT.

Bhangu et al.
(2014)

LARC miR-21 High Tissue 92 Patient with high expression of miR-
21 shows a good response to CRT.
The AUC value of the miR-21 was
0.736 with 0.866 sensitivity and 0.60
specificity (PPV = 0.92, NPV =
0.428) to distinguish patients with
complete response from
noncomplete response

Caramés et al.
(2015)

LARC miR-31 Low Tissue 78 Patient with high expression of miR-
31 shows a poor response to CRT.
The AUC value of the miR-31 was
0.71 with 0.608 sensitivity and 0.763
specificity (PPV = 0.518, NPV =
0.823) to distinguish patients with
non-response from response

Caramés et al.
(2016)

LARC miR-194 High Tissue 38 + 29 Patient with high expression of miR-
194 shows a good response to CRT.

D’Angelo et al.
(2018)

RC miR-1183, 483-5p, 622,
125a-3p, 1224-5p, 188-5p,
1471, 671-5p, 1909, 630,
765, 1274b, 720

High (miR-1183, 483-5p, 622,
125a-3p, 1224-5p, 188-5p, 1471,
671-5p, 1909, 630, 765) and low
(miR-1274b, 720)

Tissue 38 Patient with high expression of miR-
1183, 483-5p, 622, 125a-3p, 1224-
5p, 188-5p, 1471, 671-5p, 1909,
630, 765 shows a good response to
CRT. Patient with low expression of
miR-1274b and miR-720 shows a
good response to CRT. miR-622
and miR-630 had a 100% sensitivity
and specificity in selecting
pathological complete response
cases

Della Vittoria
Scarpati et al.
(2012)

LARC miR-145 High Tissue 40 Patient with low intratumoral post-
therapeutic expression of miR-145
shows a poor response to CRT.

Drebber et al.
(2011)

LARC miR-548c-5p, miR-548d-5p,
and miR-663a

High Tissue 38 Patient with high expression of miR-
548c-5p, miR-548d-5p, and miR-
663a shows a good response
to CRT.

Du et al. (2019)

RC miR-16, miR-590-5p, miR-
153, miR-519c-3p, miR-561

High Tissue 12 Three miRNA transcripts (miR-16,
miR-590-5p, and miR-153) to
predict complete versus incomplete
response and two miRNA
transcripts (miR-519c-3p and miR-
561) to predict good versus poor
response with a median accuracy
of 100%

Kheirelseid et al.
(2013)

CRC lnc-p21 High Tissue and
serum

177 + 20 RC patient with high expression of
lnc-p21 in tissue shows a good
response to post-operative CRT.

Li et al. (2020c)

LARC miR-487a-3p Low Tissue 87 Patient with high expression of miR-
487a-3p shows a poor response to
CRT. The AUC value of the miR-
487a-3p was 0.766 with 0.78
sensitivity and 0.60 specificity to
distinguish patients with non-
response from response

Machackova et al.
(2020)

LARC miR-630 Low Tissue 59 Patient with high expression of miR-
630 shows a poor response to CRT.

Millino et al. (2017)

RC miR-125b and miR-137 Low Tissue 66 Svoboda et al.
(2008)

(Continued on following page)

Frontiers in Cell and Developmental Biology | www.frontiersin.org April 2022 | Volume 10 | Article 86256310

Li et al. Non-Coding RNAs in Radiotherapy

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


regression tumors of patients with RC. Besides, higher miR-622
expression predicted a worse outcome for RT (Ma et al., 2015).
Elevated miR-487a-3p expression was confirmed in the tissues of
non-responder LARC patients using multi-phase verifications.
The AUC value of the miR-487a-3p was 0.766 with 0.78
sensitivity and 0.60 specificity to distinguish patients with
non-response from response (Machackova et al., 2020).
Millino et al. reported that miR-630 was upregulated in the
tissues of RC non-responders and decreased in the tissues of
responders (Millino et al., 2017). Additionally, Ruhl et al.
demonstrated that RC patients with a partial response to RT
frequently expressed high levels of miR-451a in tissues (Ruhl
et al., 2018). Salendo et al. (2013) found that 14 microRNAs were
increased, and 22 microRNAs were decreased in the
radioresistant CRC cell lines via microarray analysis. Higher
levels of miR-125b and miR-137 expression in the tissues of
RC patients usually determined a worse response to RT (Svoboda
et al., 2008). High expression of let-7e, miR-196b, miR-450a,
miR-450b-5p, and miR-99a predicted a good response to RT in
LARC patients, while high expression of miR-215, miR190b, and
miR-29b-2 predicted a poor response. Using these miRNAs, the
PPV and NPV are 0.9 and 0.9 to distinguish responders from
non-responders (Svoboda et al., 2012). Xiong et al. reported that
three circRNAs and one lncRNA were increased and two
circRNAs and five lnc-RNAs were decreased in the
radioresistant CRC cell lines via microarray analysis and qRT-
PCR (Xiong et al., 2015; Xiong et al., 2017). Xu et al. (2014) also
revealed that lnc-R05532, lnc-NR_015441, and lnc-NR_033374
were positively correlated with the resistance of CRC cell lines to
irradiation. By using microarray analysis and qRT-PCR, elevated
miR-345 expression was confirmed in the tissues and plasma of
non-responder LARC to RT. In addition, LARC patients with

high expression of miR-345 in tissues or serum usually faced a
poor response to RT. The AUC value of the plasmatic miR-345
was 0.75 to distinguish patients with a response from non-
response (Yu et al., 2016). LARC patients with low expression
of DBET, LINC00909, and FLJ33534 often showed a poor
response to RT. The accuracy of DBET, LINC00909, and
FLJ33534 was 0.65, 0.82, and 0.67, respectively, to differentiate
LARC patients between response and non-response (Zhang et al.,
2021). As shown in Table 3, ncRNAs can effectively predict the
outcome of gastrointestinal carcinoma patients to RT.

Clinical Application of Non-coding RNAs
Despite their potential, the use of ncRNAs for therapy poses the
following limitations in vivo: poor cellular uptake, unstable
pharmacological structures, off-target effects, and possible
immunogenicity (Singh et al., 2018). However, it is still
possible to manipulate these molecules for cancer therapy,
combined with the effective application of RNA-delivering
systems, such as chemical modifications of ncRNAs, lipid-
based ncRNAs delivery systems, and organic/inorganic
nanoparticles (Rupaimoole and Slack, 2017; Singh et al., 2018).
In addition, aberrant profiles of ncRNAs in the tumor tissues or
the circulation can also be used to predict the long-term survival
of patients (Flippot et al., 2019; Yuan et al., 2020; Sharma et al.,
2021). Resorting effective treatments would undoubtedly and
significantly improve the outcome of patients with LAGC
before tumor progression (Deng et al., 2019; Tomita et al.,
2020; Wang et al., 2020; Sun et al., 2021). Bandres et al.
demonstrated that not only GC patients with stage III but also
the whole GC patients with lower expression of miR-451
predicted shorter disease-free survival (DFS) and overall
survival (OS) (Bandres et al., 2009). The expression of miR-

TABLE 3 | (Continued) The predictive response of radiotherapy of non-coding RNAs in gastrointestinal carcinoma.

Cancer
type

Non-coding RNAs Expression in
responder

Sources Sample
number

Predictive value References

Patient with high expression of miR-
125b and miR-137 shows a poor
response to CRT.

LARC miR-215, 190b, 29b-2, 196b,
450a, 450b-5p, 99a and let-7e

High (let-7e, miR-196b, 450a,
450b-5p, 99a) and low (miR-215,
190b and miR-29b-2)

Tissue 20 Patient with high expression of let-
7e, miR-196b, miR-450a, miR-
450b-5p, and miR-99a shows a
good response to CRT. Patient with
high expression of miR-215,
miR190b, and miR-29b-2 shows a
poor response to CRT. Using these
miRNAs, the PPV and NPV are 0.9
and 0.9 to distinguish patients with
response from non-response

Svoboda et al.
(2012)

LARC miR-345 Low Tissue and
Serum

20 + 129 Patient with high expression of miR-
345 in tissue or serum shows a poor
response to CRT. The AUC value of
the miR-345 in serum was 0.75 to
distinguish patients with response
from non-response

Yu et al. (2016)

RC, rectal cancer; CRT, chemoradiotherapy; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the curve; LARC, locally advanced rectal cancer; RT,
radiotherapy; CRC, colorectal cancer.
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15b was negatively connected with the adverse
clinicopathological characteristics and liver metastasis of CRC
patients. In addition, patients with low miR-15b were
significantly associated with worse therapeutic results of
neoadjuvant therapy and poor DFS and OS (Ji et al., 2018).
The survival would be significantly shortened in CC patients with
a high level of circ_0055625 expression (Gao et al., 2021). Liu
et al. reported that the expression of lnc-HOTAIR was negatively
correlated to the survival of CRC patients via the analysis of
follow-up data (Liu et al., 2020b). Xiao et al. (2020) revealed that
the high lnc-TRPM2-AS expression was accurately forecasted
advanced clinicopathological characteristics and significantly
correlated to the shorter OS and recurrence-free survival (RFS)
of GC patients. Meanwhile, high lnc-TLCD2-1 expression
predicted worse OS and disease-specific survival of CRC
patients from the GSE17536 dataset (Yu et al., 2021). For CRC
patients with high miR-183-5p expression, the OS was worse
(Zheng et al., 2019). High miR-573 or low miR-200c usually
predicted poor OS and cancer-specific survival of RC patients
(Bhangu et al., 2014; Azizian et al., 2016). Campayo et al. reported
that the low level of miR-21, miR-99b, and miR-375 combination
was correlated to a worse DFS in RC patients (p = 0.068)
(Campayo et al., 2018). High miR-31 indicated poor OS in

LARC patients (Caramés et al., 2016). Li et al. (2020c)
reported various predictive roles of lnc-p21 in CRC patients.
High lnc-p21 levels determined poor OS and DFS in CRC or RC
patients. For RC patients who underwent postoperative CRT,
high lnc-p21 meant better OS. High levels of lnc-p21 in the
plasma of CRC patients also suggested a worse OS. Low plasmatic
miR-345 usually signified better 3-year local RFS for LARC
patients (Yu et al., 2016). Low DBET and LINC00909 often
suggested a better OS in patients. However, high DBET,
LINC00909, and FLJ33534 usually indicated a poor DFS in
patients with CRC (Zhang et al., 2021). The abovementioned
data validated the critical role and clinical value of ncRNAs as
prognostic biomarkers in gastrointestinal carcinoma (Table 4).

CONCLUSION

RT has been used in the clinic to treat patients with localized
advanced gastrointestinal carcinomas. The use of RT directly
leads to DNA damage, mainly caused by double-strand breaks in
tumor cells. RT also indirectly damages tumor cells through the
activation of downstream genes. ncRNAs can act as
radiosensitivity enhancers or radioresistance inducers in

TABLE 4 | The clinical application of non-coding RNAs in gastrointestinal carcinoma.

Cancer
type

Non-coding RNAs Expression Sources Sample number Prognosis References

CC circ_0055625 Increased Tissue 57 Worse survival of CC patients with high circ_0055625 Gao et al. (2021)
RC miR-21, miR-99b and miR-

375 combination
Low in
responder

Tissue 96 Mean DFS for patients with low levels were
74.5 months, while it was 78.8 months for those with
high levels (p = 0.068)

Campayo et al.
(2018)

GC miR-451 Decreased Tissue 67 (45 for Kaplan-
Meier analysis)

Shorter DFS and OS for patients with low miR-451 Bandres et al.
(2009)

CRC miR-15b Decreased Tissue 135 Shorter DFS and OS for patients with low miR-15b Ji et al. (2018)
CRC lnc-HOTAIR Increased Serum/

Tissue
12/71 Poor prognosis of CRC patients with high lnc-HOTAIR Liu et al. (2020b)

GC lnc-TRPM2-AS Increased Tissue 80 Worse OS and RFS for GC patients with high lnc-
TRPM2-AS

Xiao et al. (2020)

CRC miR-183-5p Increased Tissue 39 Worse OS for CRC patients with high miR-183-5p Zheng et al.
(2019)

CRC lnc-TLCD2-1 Decreased Tissue 10 Worse OS and DSS for CRC patients with high lnc-
TLCD2-1

Yu et al. (2021)

CRC DBET, LINC00909and
FLJ33534

Low in
responder

Tissue 138 Low expression of DBET and LINC00909 was
associated with a better DFS and OS in CRC patients.
High expression of the FLJ33534was associated with a
worse DFS in CRC patients

Zhang et al.
(2021)

RC miR-573 Low in
responder

Tissue 147 Worse OS and CSS for patient with high miR-573 Azizian et al.
(2016)

RC miR-200c High in
responder

Tissue 69 Worse OS and CSS for patient with low miR-200c Bhangu et al.
(2014)

LARC miR-31 Low in
responder

Tissue 78 Worse OS for patient with high miR-31 Caramés et al.
(2016)

CRC lnc-p21 High in
responder

Tissue/
Serum

177/20 Worse OS and DFS for CRC or RC patient with high lnc-
p21. Better OS for RC patient with high lnc-p21 from
post-operative CRT. Worse OS for CRC patient with
high plasmatic lnc-p21 from mesenteric vein

Li et al. (2020c)

LARC miR-345 Low in
responder

Tissue/
Serum

20/129 Better 3-year local recurrence free survival for patient
with low plasmatic miR-345

Yu et al. (2016)

GC, gastric cancer; CRC, colorectal cancer; LARC, locally advanced rectal cancer; RC, rectal cancer; DFS, disease-free survival; OS, overall survival; RFS, recurrence free survival; DSS,
disease-specific survival; CSS, cancer-specific survival; PFS, progression-free survival.
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gastrointestinal carcinoma by affecting DNA damage repair, cell
cycle arrest, irradiation-induced apoptosis, cell autophagy,
stemness, EMT, and cell pyroptosis through targeting various
genes (Figures 1, 2). In addition, the predictive value of ncRNAs
in response to RT was evaluated. ncRNAs could be used to guide
individualized treatments. Overall, further studies are needed to
explore the potential value of ncRNAs in RT and gastrointestinal
carcinoma.
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