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A classical model for social-influence-driven opinion change is the threshold model. Here we study cascades
of opinion change driven by threshold model dynamics in the case where multiple initiators trigger the
cascade, and where all nodes possess the same adoption threshold w. Specifically, using empirical and
stylized models of social networks, we study cascade size as a function of the initiator fraction p. We find that
even for arbitrarily high value of w, there exists a critical initiator fraction pc(w) beyond which the cascade
becomes global. Network structure, in particular clustering, plays a significant role in this scenario. Similarly
to the case of single-node or single-clique initiators studied previously, we observe that community structure
within the network facilitates opinion spread to a larger extent than a homogeneous random network.
Finally, we study the efficacy of different initiator selection strategies on the size of the cascade and the
cascade window.

I
t has long been known through empirical studies that in a population of socially interacting individuals where
each individual node holds an opinion from a binary set, a small fraction of initiators holding opinion opposite
to the one held by the majority can trigger large cascades and eventually result in a dominant majority holding

the initiators’ opinion. Some recent studies have investigated such phenomena in the context of the adoption of
scientific, cultural, and commercial products1,2. One of the simplest models that captures adoption dynamics,
irrespective of context, is the threshold model3–6. According to the threshold model, an individual changes its
opinion only if a critical fraction of its neighbors have already adopted the new opinion. This required fraction of
new adoptees in the neighborhood is designated the adoption threshold3,7. Here, we denote the adoption threshold
by w. Since its introduction3, the threshold model has been studied extensively on complex networks to analyze the
conditions under which a vanishingly small fraction (of the total system size) of initiators is capable of triggering a
cascade of opinion change4,6,8. In particular, these studies considered initial conditions with a single ‘‘active’’ node4

or an active connected clique (a single node and all of its neighbors)6 as initiators. In this scenario, the condition
for global cascades in connected sparse random networks is w , 1/Ækæ4,6,8, where Ækæ is the average degree of the
network. However, with a few exceptions9–11, little attention has been paid to the question of how the size and the
selection of this initiator fraction affects the spreading of an opinion in the network, in particular, in the regime
where a single active node or a small clique is insufficient to trigger global cascades.

In case of multiple initiators, how to select these initiators from among the nodes of the network so as to
maximize the spread (cascade size), remains an open question. To address this issue we compare three different
heuristic ways of selecting a set of initiators with predefined size, on Erdős-Rényi (ER) random networks12.
Specifically, we look at the size of the spread for a varying range of the average degree Ækæ of the ER networks.
As found earlier for the case of cascades triggered by single initiators4,8, we find that when the average degree is too
low or too high, large cascades are not triggered. However, within an intermediate range of Ækæ, large cascades are
realized. This range is referred to as the cascade window5. We find that the width of this cascade window is the
largest when the initiator nodes are selected successively in descending order of degree starting with the node
having the largest degree. We also find that the total time taken for the cascade to terminate is shortest for this
selection strategy.

In both ER4 and empirical6 networks it was observed that for a given Ækæ, there is a critical threshold wc such that
cascades are only triggered if w , wc for a single-node or a very small initiator set4,6. Here, we systematically study
the effect of varying the initiator fraction p with w held fixed, for the entire range of values of the adoption
threshold w. We find that for any given threshold w , 1 there exists a critical value of the fraction of initiators pc,
above which global cascades can be triggered. We discuss the dependence of pc on w which turns out to be a
smooth curve separating the two phases, one in which cascades are observed and the other where cascades cannot
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be triggered. This finding constitutes an important insight into how
local neighborhood-level thresholds can constrain the emergence of
tipping points for cascades on global scales on sparse graphs. We
note that in Refs. 9,10, the authors went beyond basic heuristic selec-
tions of the initiators (targets) by employing a systematic greedy
selection and a scalable influence maximization algorithm, respect-
ively; however they did not explore the region for global [O(N)]
cascades (and the corresponding tipping point pc of initiators
required to trigger them), but rather, only focused on the p=1
regime. In Ref. 11, assuming locally tree-like structures, the authors
developed an asymptotic approach to approximate the size of the
cascades. This method is expected to work better for random graphs
with small average degree (with negligible presence of triads) and to
gradually break down for graphs with higher Ækæ. We will comment
on its applicability in determining the tipping point pc(w) in the
Results section.

Details of the network structure beyond the average degree Ækæ,
also play an important role in the spreading process13. The network’s
degree distribution and the presence of community structure and
local clustering can significantly affect the dynamics of spreading
and vulnerability to cascades in both social networks (driven by
influencing)6,14,15 and infrastructure networks (driven by load-based
failures)16.

To elucidate the effect of clustering, we study the effect of network
rewiring on the cascades triggered by different methods. Specifically,
starting from an empirical network with a community structure and
relatively high clustering, we redistribute the links in the network
while preserving the original degree sequence, using a number of
different methods. The cascade sizes are found to be larger and more
likely in the original network which, in addition to having an inher-
ent community structure, has much higher clustering coefficient
(essentially capturing the density of triads)13. These results indicate
that local clustering, just like in the case of a single node (or single-
clique) initiator6,15, facilitates the spreading of global cascades in the
case of multiple initiators as well.

A recent study17 also considered cascades in the threshold model
in multiplex networks (a natural framework and terminology for
interdependent networks18–20 in the social setting). In this case, indi-
viduals can be connected by multiple types of edges (representing
multiple kinds of social ties, e.g., colleagues, friends, or family). It was

shown that multiplex networks facilitate cascades, i.e., increase the
social network’s vulnerability to spreading17.

Results
In the threshold model, every node in the network can be in one of
the two possible states, 0 (inactive) or 1 (active), that can be also be
thought of as signifying distinct binary opinions on an issue. The
typical initial condition for studying threshold model dynamics is
one where all nodes except a minority - the initiators - are in state 0.
Then, the dynamics proceeds as follows. At each time step, a node is
selected at random. If the node is inactive, it becomes active if at least
a threshold fraction w of its neighboring nodes are active i.e. in state 1.
The active state is assumed to be permanent i.e. once a node becomes
active it remains active indefinitely. The system evolves according to
these rules until no further activations can occur. The threshold w, in
general, can be different for every node but for simplicity, we con-
sider the case where every node has the same threshold. The size of
the cascade at any point during its evolution or after it has termi-
nated, is quantified by the fraction of active nodes in the network. In
the following sections we discuss the simulation of this dynamics for
various network topologies.

Selection strategies. The decision that a node will adopt 1 depends
only on the states of its neighbors. If the fraction of its neighborhood
in state 1 exceeds w then the node updates its state. As a result of this
threshold condition a node’s degree plays an important role in
determining how easily it can be influenced. The threshold
condition is more easily satisfied for a low-degree node than a
high-degree node, since the former requires fewer active nodes to
be present than the latter, given a fixed adoption threshold w for all
nodes. Similarly, the average degree of the network Ækæ determines to
what extent, if at all, the entire network can be influenced. For a fixed
number of initiators, high degree nodes are less likely to get
influenced because it is more difficult for their neighbors to satisfy
the threshold condition. A high Ækæ is therefore not a desirable
condition for cascades. On the other hand, for low Ækæ, the network
consists of disconnected clusters of sizes less than O(N), and cascades
remain confined to one or few of these clusters. As a result, global
cascades only become possible in an intermediate range of Ækæ - the
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Figure 1 | Cascade size S as a function of the average degree on ER networks of N 5 1000 nodes with threshold w 5 0.18 for different selection strategies of

multiple initiators for (a) p 5 0.01; for (b) p 5 0.02. Time evolution of the average cascade size S on ER networks of N 5 1000 nodes with average

degree Ækæ 5 6.0 and threshold w 5 0.18 for different selection strategies of multiple initiators for (c) p 5 0.01; for (d) p 5 0.02.
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cascade window. In general, cascade window sizes depend on both,
the threshold w, and the initiator fraction p.

The precise choice of initiators also plays an important role in the
size of the cascade and consequently the cascade window itself. A
strategic selection of initiators can dramatically increase the average
size of the spread, which we denote by S. Here, we compare three
heuristic strategies for selecting a set of initiators constituting a frac-
tion p of the total network size: (i) random selection, (ii) selecting
nodes in the descending order of their degrees, and (iii) selection in
the descending order of k-shell index21. In (ii) and (iii), the choice of
initiators may not be unique. If there are many sets of initiators that
can be selected for the same degree (or k-shell), one of these sets is
selected at random.

The simulation results are shown in Fig. 1(a) for a fixed fraction of
initiators p 5 0.01 on an ER graph with N 5 1000 and w 5 0.18. We
first look at the average spread size as a function of average degree Ækæ
on an ER random graph as shown in Fig. 1(a). When Ækæ is small, all
three strategies perform equally well because the network consists
only of small clusters without a giant component and hence spread is
localized to those clusters. As soon as Ækæ becomes large enough for a
giant component to arise, the spread covers a large portion of the
network. Further increasing Ækæ makes it harder for the nodes to
satisfy the threshold condition and S decreases again.

To understand the differences in the performance of these heur-
istics, we first note that there are two distinct aspects determining the
efficacy of a node as an initiator. First, it must be capable of influ-
encing a large number of nodes, i.e. it should have a large degree.
Second, it must be connected to nodes which have an easily satisfiable
threshold condition i.e. the degrees of its neighbors must be suffi-
ciently low. Additionally, and related to the first point, it also makes
sense to choose the highest-degree nodes as initiators, since they are
the hardest to influence. In light of these arguments, the highest-
degree selection strategy appears to be a natural choice for generating
large cascades. It would appear that high k-shell nodes are a com-
parably good choice, since high k-shell nodes also possess a high
degree. However, by construction, nodes in the highest k-shells are
a special subset of the high-degree nodes that are predominantly
connected to other nodes of high-degree. In other words, nodes
selected in descending order of their k-shell index have fewer easily
influencable neighbors than nodes selected purely on the basis of
degree. This qualitatively explains why the k-shell method does not
perform as well as the high-degree selection. Finally, the random
selection works the poorest since it largely selects low-degree nodes
which trigger a small number of cascades many of which frequently
terminate when they encounter a high-degree node.

An increase in the initiator fraction p makes the cascade window
wider by allowing cascades to occur for even higher Ækæ values as

shown in Fig. 1(b) where p is increased to 0.02. The selection strat-
egies follow the same ranking in this case as well.

Results obtained from simulations indicate that highest degree
method also works better (followed by the k-shell method) in terms
of the speed of the cascade. The results for p 5 0.01 and p 5 0.02 are
shown in Figs. 1(c) and (d), respectively.

Tipping point for multiple initiators. As discussed in the previous
section, for a small (O(1)-size) seed of initiators, cascades can only
occur if w is smaller than a critical value (w , 1/Ækæ for sparse random
graphs4,6,8). However, this does not hold if we introduce a sufficiently
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large fraction of initiators in the system. We look at the quantity S
(average fraction of nodes in state 1) as a function of p. (We will refer
to S as cascade size for short.) Gradually increasing p shows that in
the beginning when p=1, (global) cascades are not observed. When
p reaches a critical value pc, a discontinuous transition occurs and
large cascades are seen immediately as shown in Fig. 2(a). The need
for a minimum critical fraction of committed nodes for consensus
has been observed in different models of influence22–24 (see
Discussion for more details).

Since starting with a finite p itself accounts for a large number of
nodes in state 1, the relevant quantity to look at is the number of
nodes that were initially in state 0 and eventually adopted state 1 (i.e.,
excluding the initiators). Thus, we define

~S~
S{p
1{p

, ð1Þ

which measures the fraction of non-initiator nodes that participate in
the cascade. Transitions in ~S are shown in Fig. 2(b) for different w
values and several network sizes. It can clearly be seen that the trans-
ition only depends upon w and is independent of system size N. This
transition (the emergence of the tipping point) is quite generic in the
threshold model, and can be observed in networks with different
sizes and average degrees, as well as for different selection methods
for initiators (see Supplementary Information Sections S.1 and S.2
for more details).

The critical point pc in each case is calculated by numerically
computing the derivative of ~S with respect to p and finding its max-
imum. Having calculated pc allows us to explicitly look at the rela-
tionship between pc and w as shown in Fig. 3(a) for different average
degrees Ækæ. As Ækæ increases, all curves appear to converge to the
limiting case of the fully-connected network (complete graph) for
which pc 5 w. Therefore, for a given threshold w the minimum
number of initiators needed to trigger large cascades can be esti-
mated. We also employed a previously developed asymptotic me-
thod11 to estimate pc(w) analytically (see Supplementary Information

Section S.3 for more details). This method uses a tree-approximation
for the network structure and calculates the cascade size by assuming
a progressive, directed activation of nodes from the surface of the tree
to the root. Consequently, the method works well only for low Ækæ and
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Figure 4 | Time evolution of the size of the cascades S on the high-school (HS) network and its randomized version by X-swaps with identical
degree sequence, with N 5 921, Ækæ 5 5.96, and w 5 0.18 for two different values of fraction of initiators. (a) HS friendship network and (b)

its x-swapped randomized version. (c) Direct comparison of the ensemble-averaged time series for the original HS network (red solid curve) and for

its x-swapped randomized version (green solid curve); blue solid curves represent conditional average over runs for which the spread reaches the entire

network. Thin black curves in (a) and (b) are individual time series. The fraction of initiators for (a–c) is p 5 0.01. (d) HS friendship network and (e)
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Figure 5 | Visualizations of spreading in the threshold model (typical
individual runs) for various networks at different times during evolution
(arrow on top indicates the direction of time evolution). N 5 921, Ækæ 5

5.96, p 5 0.01 and w 5 0.18. Nodes in state 1 (active nodes) are colored red.

(a) Original high-school network; (b) Randomized network (by X-Swap)

when eventual spread is local; and (c) The same randomized network but

for a run that reaches the whole network.
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low p. For large Ækæ, the tree-approximation breaks down, while for
large p, deviations from the assumed progressive and directed activa-
tion of levels, become significant. The comparison of the analytically
predicted pc using this method to values obtained from simulations
clearly show regions of approximation validity and breakdown
[Fig. 3(a)].

For a fixed Ækæ 5 10 and N 5 5000, we also studied by simulations
how the selection of initiators affect the critical fraction pc.
Simulation results in Fig. 3(b) show that selection of initiators by
their degree works better than the other two methods across the
range of threshold w.

Impact of network structure and clustering. In this section we
study how the dynamics of the threshold model is affected by
structural changes in the network. We study the dynamics on an
empirical high-school friendship network, using one particular
network from the Add Health data set (also employed in14) and a
few degree-sequence preserving randomized versions of it. [Add
Health was designed by J. Richard Udry, Peter S. Bearman, and
Kathleen Mullan Harris, and funded by a grant P01-HD31921
from the National Institute of Child Health and Human Develop-
ment, with cooperative funding from 17 other agencies. For data files
contact Add Health, Carolina Population Center, 123 W. Franklin
Street, Chapel Hill, NC 27516-2524, addhealth@unc.edu, url: , http://
www.cpc.unc.edu/projects/addhealth/ (Accessed June 20, 2013).] To
simplify things, we extract the giant component from the high-school
network which has N 5 921 nodes and Ækæ < 5.96. Hereafter, we only
consider the giant component of this network and refer to it as the
high-school network. The initiator fraction is kept fixed at p 5 0.01.
The network contains two communities which are roughly equal in
size. We generate two distinct ensembles of networks from this
high-school network by employing the following randomization
methods:

1. The link swap method (henceforth referred to as x-swap) in
which two links are selected at random and then one end point
of a link is swapped with the end point of the other link. An x-

swap step is disallowed if it results in fragmentation of the
network. This swapping is done repeatedly so that the network
is randomized to an extent that any community structure, local
clustering, or degree-degree correlation is eliminated25–27.

2. The exact sampling method by Del Genio et al. (DKTB)28, a
connected network is constructed from the degree sequence of
the original network. The algorithm takes as input the exact
degree sequence of the network and joins the link stubs from
different nodes until every stub has been paired with another
stub28,29.

Both methods of randomization leave the degree sequence
unchanged. (Results for x-swapped and exact sampling28 are very
similar and we only show them in detail for the former.) We look
at the size of spread S as a function of time for p 5 0.01 in the original
high-school network Fig. 4(a) and the x-swapped high-school net-
work Fig. 4(b), while Fig. 4(c) shows the direct comparison between
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the corresponding ensemble-averaged time series. Analogous plots
for p 5 0.02 are shown in Figs. 4(d–f). For the empirical high-school
network, some runs reveal the existence of community structure in
the network where spread is faster in one community compared to
other. More specifically, in some of these runs, the cascade first
sweeps one of the communities (while the other one resists) before
it becomes global. This can be seen by the step-like evolution in the
corresponding time series in Fig. 4(a) [randomized networks do not
exhibit this behavior, see Figs. 4(b)]. The same phenomena can also
be observed in the configuration snapshots in Fig. 5(a), while their
randomized counterparts do not show this behavior [Fig. 5(b,c)]. In
general, the results show that triggered cascades are larger and more
likely for a network with high local clustering than for a randomized
network with the same degree sequence [Fig. 4], although the impact
of clustering is diminishing for larger values of p. Note that the
clustering coefficient of the original high-school (HS) graph is CHS

< 0.125; for its randomized versions obtained by x-swaps (XS) and
exact-degree sequence (DKTB28) construction are CXS < CDKTB <
0.008 (see Supplementary Information Section S.4 for more details).

The average cascade size S [Fig. 6(a) and (b)] and the probability of
global cascades Pc [Fig. 6(c) and (d)] as a function of threshold w also
indicate that strong clustering (present in empirical networks)
facilitates threshold-limited spreading. (We define a global cascade
as a cascade that covers at least 60% percent of the network size N.)
Hence, this important feature of threshold-limited spreading6,15 is
preserved for the case of multiple initiators studied here.

The temporal evolution of the average cascade size in the original
HS network, its two randomized versions, and an ER network of the
same size and with the same average degree is shown in Fig. 7. The
two methods of randomization (x-swap and exact sampling) roughly
give the same cascade size S. In case of randomized networks, for
some realizations spread reaches the full network [Fig. 5(c)] and for
some realizations spread is minuscule [Fig. 5(b)] and therefore S , 1.

Finally, analogous to Fig. 2, we show the emergence of global
cascades (at the tipping point pc) in the high-school network, as
the density of initiators is varied [Fig. 8].

Discussion
Several recent studies have addressed, for a variety of agent-based
opinion spreading models, the impact of a special set of initiators viz.
inflexible individuals22, also referred to synonymously as commit-
ted14,23,24,30–34 or stubborn35 agents, true believers36, zealots37–39, or
inflexible contrarians40,41. The rules of state updating (or opinion
switching) in these models is symmetric, and governed purely by
the local density of states in the neighborhood of a node. In such a
system, the inflexible nodes constitute a special set of nodes which
never change their opinion, thereby breaking the symmetry of the
system and giving rise to tipping points beyond which the entire

network conforms to the state adopted by the committed agents. It
has been shown that the emergence of tipping points in some of these
models is related to metastable regions and barriers (saddle points) in
the corresponding opinion landscapes23,30,31. Because these models
allow frequent changes of state or opinion at the individual level,
these models are more suitable for scenarios where switching an
individual’s state incurs virtually no cost.

In contrast to the above models, the threshold model (or the
qualitatively similar threshold contact process42–45) is more suited
to modeling the diffusion of innovations or adoption of new products
where investment in a new idea comes at a cost, and the incentive to
switch back after becoming active is low. Here, spreading is an asym-
metric process and is also inhibited by a local threshold: individuals
can only adopt the new product or norm if a sufficient fraction of
their neighbors have already done so. (The threshold model or
threshold contact process, in spirit, is closer to the family of
Susceptible-Infected-Susceptible- or contact-process-like mod-
els21,46–51, in that the spreading of a disease or norm is an inherently
asymmetric process by the rules of the local dynamics.)

The focus of this work was to identify tipping points for global
cascades triggered by multiple initiators and governed by local
thresholds. Our findings demonstrate that these tipping points
emerge in both ER and empirical high-school networks, in a qualita-
tively similar fashion.

Further, we studied three different heuristic strategies to select a
fraction of initiators for the threshold model on ER network as well as
on an empirical network. Our results demonstrate that selecting
initiators by their degree (highest first) results in the largest (as well
as fastest) spread. Naturally, for high values of the local threshold (w
. 1/Ækæ), single initiators or small cliques cannot trigger global cas-
cades. We showed by simulations that there exists a critical value of
initiator fraction pc that is needed to trigger cascades for high values
of w. We also studied how structural changes, such as randomizing an
empirical network using different randomizing methods, would
affect the size of the cascades triggered (in the cases studied here)
by multiple initiators. Our simulation results on the empirical high-
school network show that randomizing the network in fact results in
narrower cascade windows compared to the original network with
strong clustering, implying that clustering facilitates spreading in
threshold-limited diffusion with multiple initiators.
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7. Latané, B. & L’Herrou, T. Spatial clustering in the conformity game: dynamic
social impact electronic groups. J. Personality and Social Psychology 70,
1218–1230 (1996).

8. Lu, Q., Korniss, G. & Szymanski, B. K. Threshold-Controlled Global Cascading in
Wireless Sensor Networks. in Proceedings of the Third International Conference
on Networked Sensing Systems (INSS 2006) (Transducer Research Foundation,
San Diego, CA, 2006) pp. 164–171; http://arxiv.org/abs/cs.NI/0606054 (Accessed
June 20, 2013).

9. Kempe, D., Kleinberg, J. & Tardos, E. Maximizing the spread of influence
through a social network. in Proceedings of the 9th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (ACM New York, NY,
2003), pp. 137–146.

10. Chen, W., Yuan, Y. & Zhang, L. Scalable Influence Maximization in Social
Networks under the Linear Threshold Model. in Proceedings of the 2010 IEEE
International Conference on Data Mining (IEEE Computer Society, Washington,
DC, 2010), pp. 88–97.

11. Gleeson, J. P. & Cahalane, D. J. Seed size strongly affects cascades on random
networks. Phys. Rev. E 75, 056103 (2007).
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