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Background. The tumor microenvironment (TME) plays a significant role in the progression and prognosis of acute myeloid
leukemia (AML). This study is aimed at exploring TME-associated biomarkers and identify their potential mechanism in the
microenvironment of AML. Method. In this study, the stromal, immune, and ESTIMATE scores of AML patients were
evaluated with the ESTIMATE and CIBERSORT algorithms; then, the AML samples were divided into high- and low-score
groups. We evaluated the association between clinicopathological characteristics, survival rate, and the stromal/immune/
ESTIMATE scores. Furthermore, we identified TME-associated differentially expressed genes (DEGs) then carried out pathway
enrichment analysis, protein-protein interaction (PPI) network, Cox regression analysis, and Kaplan-Meier survival analysis to
select the most crucial genes. In addition, we further explored the potential mechanism of HCK in the AML
microenvironment. Results. We identified 624 TME-associated DEGs and found that HCK was the most promising biomarker
associated with AML. The results of the gene set enrichment analysis (GSEA) indicated that HCK was mainly involved in
immune and inflammation-related signaling pathways. In addition, CIBERSORT analysis showed that HCK was closely related
to tumor immune infiltration, with HCK expression associated with various infiltrating immune cells, including B cells, T cells,
tumor-associated macrophages (TAM), NK cells, plasma cells, eosinophils, and neutrophils. Furthermore, HCK expression was
closely related with ELN risk stratification in patients with AML. Conclusion. HCK could regulate immune cell infiltration in
the microenvironment of AML and may act as a potential biomarker for the treatment and prognosis of AML patients.

1. Introduction

Acute myeloid leukemia (AML) is a highly heterogeneous
hematological malignancy, which is the most common type
of acute leukemia in adults [1]. Currently, the main treat-
ment strategies for AML are intensive induction chemother-
apy and postremission treatment. Although most patients
with AML can achieve significant remission initially through
chemotherapy, complete elimination remains a challenge
[2]. Promising treatments have been proposed in recent

years, such as CART cell therapy targeting CD33 and alloge-
neic hematopoietic stem cell transplantation [3, 4]; however,
many patients are still at risk of disease recurrence and even
die within 5 years after diagnosis. Therefore, identifying
potential biomarkers will contribute to the diagnosis, treat-
ment, and prognosis of patients with AML.

The tumor microenvironment (TME) has been consid-
ered a crucial factor for the diagnosis and response to treat-
ment of cancer patients in recent years [5]. TME
components (such as inhibitory immune cells, soluble
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factors, and extracellular matrix) could contribute to inter-
fering with tumor immunotherapy, inducing chemoresis-
tance, and promoting tumor progression [6]. Furthermore,
the breakthrough approach of PD-1/PD-L1 targeted immu-
notherapy was found when evaluating tumor matrix inter-
actions and TME-specific changes [7]. Therefore, the
changes in the components of the TME may play a signif-
icant role in the entire process of malignant tumor progres-
sion and are considered to be important factors when
identifying novel therapeutic targets. There are multiple
and complex interactions among tumors, stromal cells,
and immune cells due to changes in soluble factors and
components of the extracellular matrix [8]. Stromal cells
and infiltrating immune cells are two main nontumor com-
ponents in the TME, which are related to the diagnosis and
prognosis of tumor [9]. The interaction between leukemia
cells and the bone marrow microenvironment has been
shown to influence the chemoresistance of AML patients,
which has become the focus of preclinical researches and
clinical trials [10, 11].

In this study, we downloaded the gene expression profile
data and clinical information from the TCGA-LAML data-
base, and then, the immune and stromal scores of the
AML patients were calculated using the ESTIMATE
algorithm. Furthermore, we identified TME-associated dif-

ferentially expressed genes (DEG) then carried out pathway
enrichment analysis, protein-protein interaction (PPI) net-
work analysis, Cox regression analysis, and Kaplan-Meier
survival analysis to select the most crucial genes. Further-
more, we further explored the potential mechanism of the
selected genes in the AML microenvironment. Our study
may help clarify the important role of TME in AML and
improve the prognosis and treatment of the patients of
AML.

2. Methods

2.1. Data Source and Preprocessing. Firstly, we obtained
mRNA expression and clinical data from the TCGA-LAML
database. We removed patients with follow-up time <30
days and those lacking clinical information and finally
obtained 200 patients. The mRNA expression data were
processed with the R package and then calibrated, standard-
ized, and log2 transformed. The ESTIMATE algorithm was
used to calculate the “stromal score”, “immune score,” and
“ESTIMATE score” in AML patients with the “estimate”
package in R software. The stromal and immune score were
calculated based on the relative proportion of the immune
and stromal components. ESTIMATE scores were the sum
of the two types of scores.

200 AML sample in TCGA-LAML

ESTIMATE CIBERSORT

StromalScore ImmuneScore

Intersection

624 DEGs in common

PPI network Cox regression

Intersection

HCK

Survival Clinical correlation GSEA

Infiltrating immune cells profile

Correlation of infiltrating immune cells

Difference analysis

Correlation analysis

Figure 1: Work flow of the study.
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Figure 2: Continued.

3Disease Markers



2.2. Subgroup Analysis of Clinicopathological Characteristics
and Survival Analysis. AML patients were divided into high-
and low-score groups according to stromal, immune, and
ESTIMATE scores. We investigated the relationship
between each score and the clinicopathological characteris-
tics. In addition, Kaplan-Meier analysis was used to evaluate
the association between the survival rate and the stromal/
immune/ESTIMATE scores, which were tested by the log-
rank test. The analyses were performed with the “survival”
and “survminer” functions in the R software packages.

2.3. Identification and Enrichment Analysis of TME-
Associated DEGs. DEGs in the stromal-score and immune-
score groups were identified with the “limma” package in
R software with the criteria of log2fold change
(∣log 2FC ∣ >1) and false discovery rate ðFDRÞ < 0:05. To
study the biological function of these DEGs, Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) analyses were performed with “ggplot2,” “enrich-
plot,” and“clusterprofiler” package in R, and P < 0:05 was
considered statistically significant. The GO analysis indi-
cated the characteristics of DEGs in terms of biological
process, cellular component, and molecular function [12],
while the KEGG analysis reflected the enrichment of DEGs
in the signaling pathways [13].

2.4. PPI Network and Cox Analysis for Screening the Most
Important DEGs. We explored the correlation between these
DEGs with a node association confidence score > 0:95
according to the STRING database (https://stringhttp://db

.org/cgi/input.pl) [14]. Then, Cytoscape was applied to
visualize networks. In addition, univariate Cox regression
analysis was performed to identify candidate prognostic
genes. The five most important genes (CD4, ITGAM,
ITGB2, CCR5, and HCK) were finally obtained by cross-
screening of the most connected PPI related genes and the
candidate prognostic genes.

2.5. Evaluation the Prognostic Value of the Five Key Genes.
Firstly, we compared the expression differences of these five
genes between the normal group and the AML group. We
then performed Kaplan-Meier survival analysis and log-
rank test to evaluate the correlation between the five genes
and overall survival (OS) using the R packages “survival”
and “survminer”. In addition, Kaplan-Meier survival analy-
sis was performed to investigate the relationship between
prognostic genes and different clinical characteristics,
including age and gender. The patients were divided into
subgroups according to age (<65 years and ≥65 years), gen-
der (male and female subgroups), and European
LeukemiaNet (ELN) risk (favorable, intermediate, and poor
prognosis).

2.6. Gene Set Enrichment Analysis. GSEA was used to evalu-
ate the trend of gene distribution in a predefined gene set in
a list of genes ranked by their relevance to the phenotype,
thus determining their contribution to the phenotype [15].
GSEA analysis was conducted to investigate HCK-related
signaling pathways in the high-expression group and the
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Figure 2: The correlation of the stromal, immune, and ESTIMATE scores with the overall survival rate of AML patients. (a) Stromal score
group. (b) Immune score group. (c) ESTIMATE score group.
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Figure 3: Correlation between scores and clinicopathological characteristics. (a) Correlation analysis of the stromal score, (b) immune score,
and (c) ESTIMATE score with age, gender, and ELN risk stratification. 0 represents <65 years; 1 represents ≥65 years in the age subgroup; 0
represents male; 1 represents female in the gender subgroup.
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Figure 4: Identification of TME-associated differentially expressed genes (DEGs). (a) Heatmaps of top 50 DEGs between the high-score
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low-expression group. The enriched pathways were selected
based on FDR < 0:05 after 1000 permutations.

2.7. Relationship between HCK and Immune Cell Infiltration.
Based on the high specificity and sensitivity of gene expres-
sion profiles, CIBERSORT helps to distinguish 22 types of
human immune cells, including T cells, B cells, macro-
phages, NK cells, dendritic cells, and myeloid subset cells
[16]. To identify the association of HCK with tumor-
infiltrating immune cells (TIICs), the CIBERSORT algo-
rithm was used to evaluate the proportion of immune cells
infiltrated in the TME. The relationship between TIICs and
HCK was visualized by the “vioplot” package. Furthermore,
a correlation analysis between HCK expression and TIICs
was performed with the “limma,” “ggplot2,” “ggpubr,”
“ggExtra,” and “corrplot” packages.

2.8. Statistical Analysis. Statistical analysis in this study was
conducted by the R version 4.0.3. Group comparisons were
performed with the t-test for continuous variables and χ2

− test for categorical variables. Spearman’s or Pearson’s cor-
relation test was used for correlation analyses. The P value
< 0:05 was considered a statistically significant difference.

3. Results

3.1. Correlation between Stromal, Immune, and ESTIMATE
Scores with Overall Survival and Clinicopathological
Characteristics in AML. The flowchart of the study was
shown in Figure 1. The stromal, immune, and ESTIMATE
scores for the AML patients were calculated using the ESTI-
MATE algorithm. Based on the scores, we assigned AML
patients into the high- and low-score groups and compared
the OS rates, respectively. The results showed that the low-
score group had a better survival rate than the high-score
group in the immune and ESTIMATE subgroups. However,
no statistical differences were observed in the stromal sub-
group (Figure 2). Furthermore, we also investigated the rela-
tionship between the stromal/immune/ESTIMATE scores
and different clinical characteristics, including age, gender,
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Figure 5: Functional enrichment analysis of common differentially expressed gene. (a) GO analysis. (b) KEGG pathway enrichment
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and ELN risk. The patients were divided into subgroups
according to age (<65 years and ≥65 years), gender (male
and female subgroups), and European LeukemiaNet (ELN)
risk (favorable, intermediate, and poor prognosis). The stro-
mal/immune/ESTIMATE groups were closely associated
with age; however, none of the scores was associated with
the patients’ gender. In the ELN risk subgroup, patients with
high immune scores had a relativity poorer prognosis than
those with low scores. Patients with an intermediate progno-
sis had higher ESTIMATE scores than those with a favorable
prognosis but not significantly different from those with a
poor prognosis. However, there were no statistical differ-
ences found in the stromal group (Figure 3).

3.2. Identification and Functional Enrichment Analysis of
TME-Associated DEGs. Firstly, we conducted a differential
analysis to identify the TME-associated DEGs and plotted
the findings using a heatmap including the stromal and
immune scores groups, respectively (Figures 4(a) and 4(b)).
A total of 785 genes, including 567 upregulated genes and
218 downregulated genes, were identified as DEGs in the
stromal group based on a threshold of P < 0:05 and ∣logFC
∣ >1. Also, 785 DEGs were selected between the high-score
and low-score stromal groups. In addition, 897 DEGs were
identified in the immune group, including 655 upregulated
and 242 downregulated genes. Finally, 624 common TME-
associated DEGs were obtained, including 522 upregulated
and 102 downregulated genes (Figures 4(c) and 4(d)). Then,
the functional enrichment analysis was conducted to deter-
mine biological functions of the 624 TME-associated DEGs.

The result of GO analysis showed that common DEGs were
mainly involved in neutrophil activation involved in
immune response, positive regulation of cytokine produc-
tion, regulation of immune effector process, and immune
receptor activity (Figure 5(a)). The KEGG analysis also
showed that the TME-associated DEGs were significantly
enriched in the cytokine-cytokine receptor interaction, the
NOD-like receptor signaling pathway, and the chemokine
signaling pathway (Figure 5(b)).

3.3. PPI Network and COX Analysis for Screening the Most
Crucial DEGs. The PPI network consisted of 178 nodes
and 288 edges (Figure 6(a)). The top 30 hub genes of the
PPI networks were shown in Figure 6(b). A total of 67 prog-
nostic DEGs were defined through univariate Cox regression
analysis (Figure 6(c)). Then, an intersection analysis was
performed between the top 30 hub genes and 67 prognostic
DEGs, five crucial target genes (CD4, ITGAM, ITGB2,
CCR5, and HCK) were finally screened out, and HCK was
identified as a potential novel prognosis biomarker for
AML patients. (Figure 6(d)).

3.4. Prognostic Significance of the Five Hub Genes. We fur-
ther investigated the differences in expression of the five
hub genes in normal and tumor samples. The results indi-
cated that the five genes were highly expressed in the tumor
sample compared to the normal tissues (Figure 7(a)). Then,
we investigated the prognostic significance of the five hub
genes in AML patients. These findings indicated that high
expression of the five genes predicted a poor prognosis for
patients with AML (Figures 7(b)–7(f)). In addition, we
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investigated the relationship between HCK expression and
different clinical characteristics, including age, gender, and
ELN risk stratification. The result indicated that HCK
expression was closely associated with age, however, not
related with gender. Patients with high HCK expression
had a relatively poor prognosis, suggesting that HCK expres-
sion may be a promising predictor for AML patient progno-
sis (Figures 8(a)–8(c)).

3.5. GSEA Analysis. GSEA analysis was conducted to inves-
tigate HCK-related signaling pathways in the high-
expression group and the low-expression group. The result
indicated that HCK was mainly enriched in immune- and
inflammation-related signaling pathways, including PI3K-
AKT-MTOR signaling pathway, TNFα signaling via NF-
κB, poptosis, P53-pathway, and oxidative phosphorylation
(Figure 8(c)).

3.6. CIBERSORT Algorithm. The overall situation of TME
immune infiltration in AML was shown in Figure 9(a). Each
bar plot represented the proportion of 22 TIICs in each
AML sample. Furthermore, the correlation between different
TIICs in AML was shown in Figure 9(b). As shown in
Figure 9(b), follicular helper T cells were positively corre-
lated with activated mast cells (Cor = 0:57), while plasma
cells, CD4 memory resting T cells, and monocytes were
strongly negatively correlated (Cor = −0:57).

3.7. HCK Expression was Correlated with Immune
Infiltration in AML. We further explored the possible mech-
anism of HCK expression in TME, and correlation analysis
between HCK expression and the TIICs was performed.
The results showed that memory B cells, naive B cells, CD8
cells, resting CD4 memory cells, plasma cells, resting NK

cells, monocytes, M2 macrophages, resting mast cells, acti-
vated mast cells, eosinophils, and neutrophils showed signif-
icant difference between the high and low HCK-expression
groups (Figure 10).

3.8. Correlation Analysis of HCK Expression with TIICs in
AML. We further investigated the correlations of HCK
expression with TIICs in AML. The results indicated that
HCK was positively correlated with the infiltration of mono-
cytes (R = 0:84), memory B cells (R = 0:22), neutrophils
(R = 0:26), and M1 macrophage (R = 0:17) but was nega-
tively correlated with the infiltration of plasma cells
(R = −0:63), resting memory CD4 cells (R = −0:6), native B
cells (R = −0:55), resting mast cells (R = −0:38), CD8 cells
(R = −0:37), resting NK cells (R = −0:34), activated mast cells
(R = −0:34), and eosinophils (R = −0:28) (Figure 11).

4. Discussion

Recently, the TME has been proved to participate in the
occurrence and progression of many cancers [17]. However,
the specific mechanism and genes related to the progression
and prognosis of AML in the TME remain to be determined.
Therefore, exploring the interaction of stromal and immune
cells in the TME may contribute to the development of novel
therapeutic targets for AML. In our study, the stromal and
immune scores of AML samples were evaluated with the
ESTIMATE and CIBERSORT algorithms. The stromal,
immune, and ESTIMATE scores were significantly associ-
ated with the clinicopathological parameters of AML, such
as age and ELN risk. The results revealed that the stromal
and immune cells that infiltrate the TME may play a crucial
role in the progression of AML. We then performed enrich-
ment analysis, PPI network, and Cox regression analysis to
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identify the most crucial TME-associated DEGs. Finally, five
genes (CD4, ITGAM, ITGB2, CCR5, and HCK) were found
to be associated with the OS of AML patients. Importantly,
HCK was closely associated with immune infiltration and
ELN risk stratification, which implied that HCK could be a
promising novel therapeutic and prognosis target for AML
through modulating the TME.

ITGAM is involved in the bone marrow differentiation
and lysine specific demethylase-1 (LSD-1) activity, which
contributes to the immune escape from leukemia cells [18].
The ITGAM also plays an important role in the tumor
microenvironment in leukemia cell activation, chemotaxis,
and cytotoxicity [19]. Several studies have shown that the
positive expression of ITGAM was closely associated with

the prognosis of AML patients [20, 21]. A previous study
indicated that lncRNA ITGB2 was significantly associated
with various immune signatures in AML [22]. Chemokines
play an important role in tumor cell migration and infiltra-
tion of distant organ sites [23]. Natural human AML cells
can generate CCL5 and express CCR5, and the CCL5/
CCR5 axis can promote tumorigenesis by regulating the
tumor microenvironment [24, 25]. HCK is a member of
the Src family of nonreceptor tyrosine kinases, which is
mainly expressed in myeloid and B lymphocyte cells [26].
Previous studies have indicated that HCK can regulate a
variety of signal transduction pathways such as cell growth,
proliferation, differentiation, migration, and apoptosis [27,
28]. Chemotherapy, targeted drugs, and hematopoietic stem

N
eu

tr
op

hi
ls

Eo
sin

op
hi

ls

M
on

oc
yt

es

M
as

t c
el

ls 
re

sti
ng

N
K 

ce
lls

 re
sti

ng

N
K 

ce
lls

 ac
tiv

at
ed

T 
ce

lls
 g

am
m

a d
el

ta

T 
ce

lls
 fo

lli
cu

la
r h

el
pe

r

T 
ce

lls
 re

gu
la

to
ry

 (t
re

gs
)

M
ac

ro
ph

ag
es

 M
0

M
ac

ro
ph

ag
es

 M
1

M
ac

ro
ph

ag
es

 M
2

M
as

t c
el

ls 
ac

tiv
at

ed

D
en

dr
iti

c c
el

ls 
re

sti
ng

D
en

dr
iti

c c
el

ls 
ac

tiv
at

ed

T 
ce

lls
 C

D
4 

m
em

or
y 

re
sti

ng

T 
ce

lls
 C

D
4 

na
iv

e

T 
ce

lls
 C

D
8

B 
ce

lls
 n

ai
ve

B 
ce

lls
 m

em
or

y

Pl
as

m
a c

el
ls

T 
ce

lls
 C

D
4 

m
em

or
y 

ac
tiv

at
ed

Neutrophils

Eosinophils

Monocytes

Mast cells resting

NK cells resting

NK cells activated

T cells gamma delta

T cells follicular helper

T cells regulatory (tregs)

Macrophages M0

Macrophages M1

Macrophages M2

Mast cells activated

Dendritic cells resting

Dendritic cells activated

T cells CD4 memory resting

T cells CD4 naive

T cells CD8

B cells naive

B cells memory

Plasma cells

T cells CD4 memory activated

1

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

–1

(b)

Figure 9: CIBERSORT algorithm. (a) The fractions of 22 types of tumor infiltratedimmune cells in AML. (b) Correlation with 22 types of
tumor infiltrated immune cells.

18 Disease Markers



cell transplantation are still the mainstays of AML treat-
ment. Patients with AML show great heterogeneity in clini-
cal manifestations and treatment prognosis; thus, adequate
risk stratification prior to treatment is particularly important
for choosing a reasonable treatment path [29]. The ELN risk
classification was widely used for risk stratification of
patients with AML [30]. Therefore, we further investigated
the relationship between HCK expression and ELN risk
stratification. The result indicated that patients with high
HCK expression had a relativity poor prognosis, suggesting
that HCK was closely associated with the development and
prognosis of patients with AML.

With the rapid development of immunotherapy for
AML in recent years, including agents targeting CTLA-4
and PD-1, research on key components in the TME has
gradually become a hot topic. Therefore, we investigated
the potential influence of HCK on the TME. The result of
GSEA findings indicated that HCK was enriched in immune
and inflammatory-related pathways, suggesting that HCK
could be involved in regulating immune activity in the
AML microenvironment. Furthermore, we evaluated the
proportion of infiltrated immune cells in the TME with
CIBERSORT algorithm. Then, the correlation analysis
between HCK and infiltrated immune cells in the TME
was further estimated with difference and correlation analy-
sis. The results indicated that HCK was associated with a
variety of infiltrated immune cells, including B cells, T cells,

NK cells, monocytes, plasma cells, mast cells, tumor-
associated macrophages (TAMs), and neutrophils.

Previous studies have determined that inhibition of HCK
can target TAMs, which leads to the reduction of infiltrated
immune cells, lessened immunosuppression, and an
improved efficacy for chemotherapy pancreatic ductal ade-
nocarcinoma [31]. In addition, inflammatory mediators
secreted by the tumor cell immune microenvironment can
induce HCK activation in macrophages and neutrophils,
promoting tumor expansion and invasion [32–34]. Further-
more, HCK also plays a crucial role in neutrophil phagocy-
tosis [35]. Therefore, in addition to its direct carcinogenic
effects on leukemia cancer cells, early tumor cells can stimu-
late excessive activation of HCK in adjacent immune cells by
promoting cytokine secretion, to strengthen the role of
tumor-promoting microenvironment [28, 36]. Take
together, these results imply that HCK may regulate
immune cell infiltration in the AML microenvironment
and is expected to be a potential biomarker for the treatment
and prognosis of AML patients.

However, this study has some limitations. Firstly, the
TME score of tumor tissue was calculated based on the
ESTIMATE algorithm and the proportion of immune cells
was performed with the CIBERSORT algorithm based on
mRNA expression data. However, more real-world optimi-
zation is required, as these algorithms are still in the explor-
atory stage. Furthermore, an external cohort is lacking to
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validate the role of the TME-score in predicting treatment
response in the clinical setting. In addition, all the results
were obtained from bioinformatics analysis and cannot be
validated due to the absence of experimental findings.
Therefore, future experimental verification is required to
clarify the potential mechanisms of HCK in the AML
microenvironment.

5. Conclusion

In this study, five genes (CD4, ITGAM, ITGB2, CCR5, and
HCK) were found to be related to the OS of AML patients.
Importantly, HCK was closely associated with immune infil-
tration and ELN risk stratification, which implied that HCK
might be a novel promising therapeutic and prognosis target
for AML duo to its modulatory activity in the TME.
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