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A third plasmid-mediated colistin resistance gene, mcr-3, is increasingly being reported 
in Enterobacteriaceae and Aeromonas spp. from animals and humans. To investigate 
the molecular epidemiology of mcr in the gut flora of Chinese outpatients, 152 stool 
specimens were randomly collected from outpatients in our hospital from May to June, 
2017. Stool specimens enriched in alkaline peptone water or Luria-Bertani (LB) broth 
were screened for mcr-1, mcr-2, and mcr-3 using polymerase chain reaction (PCR)-
based assays. Overall, 19.1% (29/152) and 5.3% (8/152) of the stool samples enriched 
in alkaline peptone water were PCR-positive for mcr-1 and mcr-3, respectively, while 
2.7% (4/152) of samples were positive for both mcr-1 and mcr-3. Strains isolated from 
the samples that were both mcr-1- and mcr-3-positive were subjected to antimicrobial 
susceptibility testing by broth microdilution. They were also screened for the presence 
of other resistance genes by PCR, while multilocus sequence typing and whole-genome 
sequencing were used to investigate the molecular epidemiology and genetic environ-
ment, respectively, of the resistance genes. mcr-3-positive Aeromonas veronii strain 
126-14, containing a mcr-3.8-mcr-3-like2 segment, and mcr-1-positive Escherichia coli 
strain 126-1, belonging to sequence type 1485, were isolated from the sample from a 
diarrheic butcher with no history of colistin treatment. A. veronii 126-14 had a colistin 
minimum inhibitory concentration (MIC) of 2 µg/mL and was susceptible to antibiotics in 
common use, while E. coli 126-1 produced TEM-1, CTX-M-55, and CTX-M-14 β-lact-
amases and was resistant to colistin, ceftazidime, and cefotaxime. Overall, there was a 
higher detection rate of mcr-3-carrying strains with low colistin MICs from the samples 
enriched in alkaline peptone water than from samples grown in LB broth.

Keywords: mcr-3, Aeromonas veronii, diarrheic outpatient, alkaline peptone water, enrichment method

INTRODUCTION

Since the identification of a third plasmid-mediated colistin resistance gene, mcr-3, in a porcine 
Escherichia coli isolate from China in 2017 (1), several mcr-3 variants have been detected in clinical 
E. coli and Salmonella isolates from Denmark, Spain, and China (2–5). The amino acid sequence 
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of MCR-3 is highly similar to that of phosphoethanolamine 
transferases from various Aeromonas and Enterobacteriaceae 
species (1). Ling et al. reported that chromosomally located mcr-3 
variants, including mcr-3.3 and mcr-3-like, which were identi-
fied in Aeromonas veronii from chicken meat, showed 95.2 and 
84.2% nucleotide sequence identity, respectively, to mcr-3 from 
E. coli of porcine origin (6). Interestingly, the reported minimum 
inhibitory concentration (MIC) of colistin for the mcr-3-carrying 
A. veronii isolate from chicken meat was 2 µg/mL while colistin 
MICs for the mcr-3-positive Enterobacteriaceae were in the range 
of 4–8 µg/mL. Thus, mcr-3-positive Aeromonas spp. strains are 
likely to go undetected by routine clinical tests. Our previous 
studies have established an optimized enrichment method for 
the screening of mcr-1 from human gut and environmental water 
sources (7, 8), in which the mcr-1-carrying strains demonstrated 
MICs for colistin of 1–32 µg/mL. As Aeromonas spp. generally 
prefer an alkaline pH, we improved the enrichment method using 
alkaline peptone water. In this study, we used the newly developed 
enrichment method to investigate the epidemiology of mcr in the 
gut flora of outpatients treated in our hospital.

MATERIALS AND METHODS

Stool Specimens and Microbial 
Enrichment
A total of 152 stool specimens were randomly collected from out-
patients suffering from acute diarrhea at the Intestinal Clinic of 
the Second Affiliated Hospital of the Zhejiang University School 
of Medicine from May to June 2017. Aliquots (~1 g) of each stool 
sample were individually inoculated into 5 mL of alkaline peptone 
water (Binhe, Hangzhou, China) and 5 mL of Luria-Bertani (LB) 
broth for enrichment overnight at 35°C. The alkaline peptone 
water was adjusted to a pH of 8.4–9.2 and contained 15.0 g/L of 
tryptone, 4.0 g/L of beef extract, and 10.0 g/L of NaCl.

Detection of mcr-Positive Isolates  
by Enrichment Culture
Following incubation, each enrichment culture tube was inverted 
10 times to resuspend the cells and a 1-mL aliquot of suspen-
sion was transferred to a fresh 1.5-mL tube. The suspension was 
centrifuged for 3 min at 8,000 rpm, after which the supernatant 
was discarded and 1 mL of 0.9% (w/v) saline was added to wash 
and resuspend the cell pellet. The centrifugation step was then 
repeated, and 70 µL of ultra-pure water was added to the pellet, 
which was then boiled for 5 min. Following centrifugation, a 3-µL 
aliquot of the supernatant was used as template for polymerase 
chain reaction (PCR) amplification of mcr-1, mcr-2, and mcr-3 as 
described previously (1, 9, 10).

Following initial PCR-based screening, four of the alkaline 
peptone water enrichment cultures tested positive for both mcr-
1 and mcr-3 and were therefore selected for colony isolation.  
A 10-µL aliquot of suspension from the enrichment cultures was 
inoculated onto Salmonella–Shigella agar plates and incubated at 
37°C overnight. Resultant colonies were selected for further puri-
fication and confirmation of the presence of the mcr genes using 
the PCR-based method described above. Final identification of 

the mcr-positive colonies was performed by matrix-assisted laser 
desorption/ionization time-of-flight mass spectrometry (Bruker 
Daltonik GmbH, Bremen, Germany) analysis. As this method 
cannot distinguish between E. coli and Shigella spp., Kligler Iron 
Agar and Motility-indole-Urea medium were added to help 
identify E. coli strains. An mcr-3-positive A. veronii isolate and 
a mcr-1-positive E. coli isolate were identified from one of the 
four mcr-1- and mcr-3-positive alkaline peptone water enrich-
ment cultures, and were tested for antimicrobial susceptibility 
and screened for the presence of other common β-lactamase-
encoding genes using further PCR.

Antimicrobial Susceptibility Testing
The MICs of eight antibiotics against mcr-positive isolates were 
determined using a broth microdilution procedure. The sus-
ceptibilities of each of the isolates to meropenem, ceftazidime, 
cefotaxime, cefoperazone–sulbactam, amikacin, and ciprofloxa-
cin were determined according to the Clinical and Laboratory 
Standards Institute guidelines (11). The breakpoints for colistin 
and tigecycline against E. coli were obtained from the European 
Committee on Antimicrobial Susceptibility Testing breakpoint 
tables (12). E. coli ATCC25922 was used as a quality control strain 
for broth microdilution assays.

Detection of Other Common β-Lactamase-
Encoding Genes
Additional β-lactamase-encoding genes, including blaTEM, blaSHV, 
blaCTX-M-1-group, and blaCTX-M-9-group were detected by PCR using 
previously described primers and conditions (13).

Multilocus Sequence Typing (MLST)
Molecular typing of the mcr-1-positive E. coli isolate was per-
formed by MLST using conditions and primers described on the 
MLST website (http://mlst.warwick.ac.uk/mlst/dbs/Ecoli). The 
sequences of the seven housekeeping genes were compared with 
those in the E. coli MLST database.

Whole-Genome Sequencing
The selected mcr-3-positive A. veronii isolate was submitted for 
300-bp paired-end whole-genome sequencing using the Illumina 
Hiseq 2500 system (Annoroad, Beijing, China). The raw Illumina 
reads were assembled into a draft genome sequence using 
CLC Genomics Workbench 9.0 (CLC Bio, Aarhus, Denmark). 
Antibiotic resistance genes were analyzed using SRST2 (14), with 
reference sequences for the antibiotic resistance genes obtained 
from the ARG-ANNOT database (15).

RESULTS

Detection of mcr-Positive Isolates 
Following Enrichment Culture
Following enrichment in alkaline peptone water, 19.1% (29/152) 
and 5.3% (8/152) of the stool samples were PCR-positive for mcr-
1 and mcr-3, respectively, while 18.4% (28/152) of the samples 
enriched in LB broth were positive for mcr-1. None of the LB 
enrichment samples tested positive for mcr-3 (Table 1), and none 
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Table 1 | Initial polymerase chain reaction screening results for the presence of 
mcr genes in enrichment stool cultures.

Enrichment  
culture type

Sample 
size

mcr-1 
(n, %)

mcr-2 
(n, %)

mcr-3 
(n, %)

mcr-
1 + mcr-
3(n, %)

Alkaline peptone  
water

152 29, 19.1 0, 0 8, 5.3 4, 2.7

Luria-Bertani broth 152 28, 18.4 0, 0 0, 0 0, 0

Table 2 | MICs and resistance gene profiles of mcr-3-positive Aeromonas veronii 126-14 and mcr-1-positive Escherichia coli 126-1.

Isolate MICs of (μg/mL) Resistance gene(s)

CL MEM CAZ CTX SCF AMK CIP TIG

A. veronii 126-14 2 ≤0.25 ≤0.5 ≤0.25 ≤1/0.5 ≤8 ≤0.25 1 mcr-3
E. coli 126-1 8 ≤0.25 >32 >32 8/4 ≤8 0.5 1 mcr-1, blaTEM-1, blaCTX-M-55, blaCTX-M-14

MIC, minimum inhibitory concentration; CL, colistin; MEM, meropenem; CAZ, ceftazidime; CTX, cefotaxime; SCF, cefoperazone-sulbactam; AMK, amikacin; CIP, ciprofloxacin; TIG, 
tigecycline.

Figure 1 | The genetic environment of the mcr-3.8-mcr-3-like2 segment in the Aeromonas veronii isolate identified in this study. Arrows represent the directions of 
the genes. Gray shading indicates two areas with significant similarity.
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yellow loose stool did not contain any leukocytes or erythrocytes. 
Levofloxacin and viable Lactobacillus acidophilus tablets were 
administrated, and the patient attained complete remission.

Antimicrobial Susceptibility Testing
Identified as sequence type 1485 by MLST, mcr-1-positive  
E. coli isolate 126-1 showed resistance to colistin, ceftazidime, 
and cefotaxime, and additional PCR analyses confirmed the 
co-existence of blaTEM-1, blaCTX-M-55, and blaCTX-M-14 in this strain. 
mcr-3-positive A. veronii isolate 126-14 was susceptible to all 
tested antibiotics, and had MICs for colistin and tigecycline of 2 
and 1 µg/mL, respectively (Table 2).

Whole-Genome Sequencing
Whole-genome sequencing of mcr-3 positive A. veronii isolate 
126-14 produced 146 contigs. Two adjacent mcr-3 variants, the 
novel upstream variant termed mcr-3.8 and the downstream 
variant termed mcr-3-like2, were located on 5,338-bp contig 85 
and were separated by only 66 bp. The sequences of these two 

of the samples from either enrichment method were positive  
for mcr-2.

An mcr-3-positive A. veronii isolate (strain 126-14) and a 
mcr-1-positive E. coli isolate (strain 126-1) were simultaneously 
isolated from the same alkaline peptone water-enriched stool 
sample. The sample was collected from a 42-year-old male pork 
butcher with no medication history of colistin. He was admitted 
to the gastroenterology clinic for 2  days suffering from acute 
abdominal pain and diarrhea following ingestion of watermelon. 
He developed a fever (38.4°C), and stool analysis showed the 
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Figure 2 | Alignment of the MCR-3, MCR-3.3, MCR-3-like, MCR-3.8, and MCR-3-like2 sequences from Escherichia coli (GenBank accession no. KY924928) and 
Aeromonas isolates (GenBank accession no. MF495680 and PPTE01000085.1).
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mcr-3-positive A. veronii isolate 126-14 had a colistin MIC of 
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colistin MIC for a mcr-3-carrying A. veronii isolate from chicken 
meat (6). Therefore, these results suggest that unsupplemented 
Salmonella–Shigella agar rather than medium supplemented 
with colistin is better for selection of mcr-3-carrying Aeromonas 
spp. strains. Overall, only one mcr-3-positive A. veronii isolate 
was recovered from the four PCR-positive alkaline peptone 
water-enriched stool samples. Although Aeromonas spp. are 
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environments (21), they usually constitute a small percentage 
of the human gut flora (22). As such, the number of Aeromonas 
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In conclusion, the alkaline peptone water enrichment method 
was optimal for detection of mcr-3-carrying strains with low 
colistin MICs from the human gut microbiota. The method 
is simple to perform and can be used in any laboratory that is 
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water at the proper pH. In addition, as the human intestine may 
serve as a reservoir for antibiotic resistance genes, including mcr-
3, and play an important role in horizontal gene transfer, the rapid 
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