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Two novel ECHS1 variants, affecting splicing
and reducing enzyme activity, is associated
with mitochondrial encephalopathy in
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Abstract

Background: Short-chain enoyl-CoA hydratase (ECHS1) is a multifunctional mitochondrial matrix enzyme involved
in the second step of mitochondrial fatty acid β-oxidation. Mitochondrial diseases resulting from ECHS1 mutations
are often characterised by encephalopathy, deafness, epilepsy, optic atrophy, cardiomyopathy, dystonia, and lactic
acidosis. In this study, we report two novel heterogeneous variants, c.414 + 5G > A (in intron 3) and c.310C > G (in
CDS), of ECHS1 in an infant with mitochondrial encephalopathy.

Case presentation: The two novel variants, c.414 + 5G > A (Chr10:135183403) in intron 3 and c.310C > G (Chr10:
135183512) in CDS, were identified by next generation sequencing (NGS). A minigene assay was used to analyse
the function of the c.414 + 5G > A variant. ECHS1 enzyme activity was measured by spectrophotometry in the
patient-derived myoblasts. The 2-year old patient presented with mitochondrial encephalopathy since birth. Clinical
features were encephalopathy, epilepsy, and hindered psychomotor and language development. Serum lactate and
blood ammonia levels were elevated, and brain magnetic resonance imaging showed abnormal signals in the
bilateral frontal, parietal, and occipital cortices and brainstem and basal ganglia. We found two novel
heterogeneous variants in ECHS1 in this patient. Minigene assay revealed the c.414 + 5G > A variant as the cause of
intronic cryptic splice site activation and 39 bp deletion in mature mRNA. In silico analysis predicted that c.310C > G
might change glutamine (Q) to glutamic acid (E) in the 104th amino acid sequence (p.Q104E). To investigate the
impact of these two variants on protein function, we constructed a 3D model of human ECHS1 and showed that
the variants might alter the highly conserved region in close proximity to the active site, which might hinder, or
even halt, enzymatic activity. The experimental assay showed that ECHS1 enzyme activity in the patient-derived
myoblasts decreased compared to that in control.
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Conclusions: Our findings are the first to report a mitochondrial encephalopathy infant carrying two novel ECHS1
variants, c.414 + 5G > A and c.310C > G, which might be deleterious variants, function as pathogenicity markers for
mitochondrial encephalopathy, and facilitate disease diagnosis.
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Background
Mitochondrial disorders, mostly genetically heteroge-
neous, include different clinical phenotypes. Brain in-
volvement is commonly found in most cases, but rarely
is the unique clinical manifestation. Therefore, it is diffi-
cult to make a definitive diagnosis of mitochondrial dis-
orders in patients, especially infants. Various genetic
defects in nuclear genes that encode mitochondrial pro-
teins could cause mitochondrial dysfunction, ultimately
resulting in mitochondrial diseases. It is important for
medical staff to know the association between clinical
manifestations and genetic testing of mitochondrial dis-
orders to establish accurate diagnoses.
ECHS1, a nuclear gene, is located on chromosome

10q26.2-q26.3 [1, 2]. The ECHS1 gene encodes the mito-
chondrial short-chain acryloxyethyl CoA hydratase
(short-chain enoyl-CoA hydratase, SCEH, or ECHS1),
which is localised in the mitochondrial matrix and catal-
yses the hydration of enoyl-CoA in many metabolic
pathways, including short-chain fatty acid β-oxidation,
branched-chain amino acid catabolism, and mitochon-
drial enzyme catalytic unsaturated fatty acids [3, 4].
ECHS1 has been extensively investigated in model or-
ganisms due to its special role in mitochondrial oxida-
tion; however, the relationship between ECHS1 and
infant health and disease is obscure.
In this study, we reported two novel ECHS1 variants

and provided experimental evidence that attests to the
functional significance of these variants and their associ-
ation with severe encephalopathy.

Case presentation
A 2-year old patient was hospitalised in Wuhan Chil-
dren’s Hospital (Wuhan Maternal and Child Healthcare
Hospital). Signatures of written informed consent forms
by the patients and their family members were acquired,
and the study was approved by the review boards of the
ethics institutions.
The patient reported was an infant boy with healthy

and non-related parents, born after a 40-week pregnancy
(weight 3500 g, length 51 cm). This patient was the first
affected child in his family (his parents had two children,
his elder brother was unaffected). His parents were both
Chinese and not cousins. When he was born, a hug-like
disease attack began, occurring 5–6 times a day, fre-
quently at night. Subsequently, at 1 month of age, the

patient was hospitalised due to neonatal pneumonia,
neonatal jaundice, and left hydronephrosis. Psychomotor
developmental delay was noted at 8 months of age. He
could not raise his head at 8 months of age, and could
not sit alone at 13 months of age, or speak a meaningful
word when he was 2 years old, with muscle hypotonia
and spasticity becoming prominent after the first year.
Electromyography (EMG) and repeated EEG record-

ings were normal. Laboratory tests showed elevated lac-
tic acid- 11.41 mmol/L (normal range 0.5–2.22 mmol/L)-
and blood ammonia- 201 μmol/L (normal range 18–
72 μmol/L). Blood acylcarnitine analysis showed no ab-
normality. The value of blood total ketone body of this
infant is 0.2 mmol/L. Urinary organic acid profiling re-
vealed elevated 3-hydroxybutyrylcarnitine excretion.
Urine analysis showed KET3+, BIL1+, and PRO1+. A posi-
tive result in the fecal occult blood test suggested that
intestinal mucosal damage was present. Myocardial en-
zyme, electrolyte, T3, T4, and TSH levels were within
the normal range, and liver and renal functions were ba-
sically normal. Our diagnosis was “mitochondrial myop-
athy”, and we administered the appropriate therapeutic
cocktail for about 3 months. After the treatment, there
was significant improvement in the symptoms, especially
in the hug-like episode frequency.
Brain magnetic resonance imaging showed diffuse,

long T1 and T2 signals distributed symmetrically in the
cortex, brainstem, and basal ganglia of the double fore-
head occipital lobe. The lateral ventricles were slightly
enlarged, and the cerebral sulcus was slightly wider.
There was no obvious abnormal signal in the cerebellum
of the posterior fossa and no shift in the midline struc-
ture (Fig. 1). The MRS results indicated a decrease in
NAA with a Ch/NAA of 3.47 (Fig. 2).

Functional analysis of c.414 + 5G > A and c.310C > G
variants
Next generation sequencing was used to analyse the
whole exome of the patient with suspected mitochon-
drial disorders. A noncoding rare heterozygous variant
c.414 + 5G > A (chr10: g. 135,183,403) in intron 3 and a
novel heterozygous variant c.310C > G (Chr10:
135183512) in CDS of the ECHS1 [MIM #602292] gene
were found. No other changes were observed in the
studied region. Because most mitochondrial diseases
caused by nuclear DNA mutations are inherited in an
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autosomal recessive manner, the two novel variants
seemed particularly peculiar. We proceeded to verify the
genomic ECHS1 DNA from both the patient and his
parents using Sanger sequencing. The results revealed
no other ECHS1 variants. Furthermore, the patient’s
father was heterozygous for only one variant, c.414 +
5G > A, and the mother for only the other variant,
c.310C > G, indicating that the patient inherited one
variant from each parent, and that both mutant alleles
were expressed (Fig. 3). The information on the two
novel variants is summarised in Table 1.
We predicted the variant c.310C >G function by Phyre2

(http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index)
and I-TASSER (https://zhanglab.ccmb.med.umich.edu/I-
TASSER/). The analysis indicated that this variant might
change glutamine (Q) to glutamic acid (E) in the 104th
amino acid sequence (p.Q104E).

Because c.414 + 5G > A was located in an intron, we
first performed bioinformatic analysis using the Human
Splice Finder, Splice Port, and Fruit Fly Splice Predictor.
The results showed high probability for intronic cryptic
splice site activation, leading to 39 bp deletion. Splice
site score calculator (http://rulai.cshl.edu/new_alt_exon_
db2/HTML/score.html) was used to assess the strength
of the constitutive and cryptic acceptor splicing sites,
yielding 14.2 and 7.9, respectively. To prove that the 39
bp deletion was caused by the c.414 + 5G > A variant, we
then conducted the minigene-based splicing experiment.
The minigene splicing products were analysed by PCR
amplification with plasmid-specific primers and visua-
lised with polyacrylamide gel electrophoresis (Fig. 4a).
The electrophoresis results of wild-type and c.414 +
5G > A transfections indicated that the c.414 + 5G > A
variant exerted significant effects on splicing patterns.

Fig. 1 The MRI assay of the patient. (a-b) DWI image; (c-d) T2 image;(e-f)T2 FLAIR image
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The amplicons confirmed by Sanger sequencing showed
that the cDNA fragment obtained from the c.414 + 5G >
A plasmid contained the same 39 bp deletion as the
cDNA of the patient (Fig. 4c).

In silico analysis of c.414 + 5G > A and c.310C > G variants
in protein function
To predict the impact of 39 bp deletion and p.Q104E
caused by c.414 + 5G > A and c.310C > G on protein
function, we performed in silico analysis. VariantValida-
tor [5] was used to verify the annotation of the Chr10:
135183403 deletion. The Human Splice Finder [6],
Splice Port [7], and Fruit Fly Splice Predictor [8] were
used to assess the predicted effect on the splicing site.
SMART analysis (http://smart.embl-heidelberg.de) sug-
gested that the catalytic domains of the core enzyme
comprised amino acids 42 to 290 in the ECHS1 se-
quence. The 39 bp deletion in mature mRNA might
cause a 13 amino acid-deletions (from amino acid 126 to
138) in the core enzyme catalytic region of ECHS1. The
13 missing amino acids and p.Q104E were both located
in the protein active site. Subsequently, PyMol software
was used to construct the 3D model of ECHS1 (Fig. 5).
Such alteration with the involvement of highly conserva-
tive amino acids probably had a crucial impact on pro-
tein activity. Therefore, we speculated that the
mutations severely reduced ECHS1 enzyme activity.

Measurement of ECHS1 enzyme activity in patient’s
myoblasts
Based on the above computer prediction, in order to test
the exact functional impact of the novel variants, we
proceeded to determine if ECHS1 enzyme activity chan-
ged in the mitochondria of patient’ myoblasts. ECHS1
enzyme activity in the patient-derived primary fibroblast
cell lysates was determined by spectrophotometry,
followed by measuring the absorbance of the unsatur-
ated substrate crotonyl-CoA over time (15 min). The ex-
perimental procedure was performed according to
previous publications [9]. The experiments were per-
formed in triplicates. Error bars represent standard devi-
ations. Our results showed that ECHS1 enzyme activity
in mitochondrial fractions of myoblast cell lysates from
patients was remarkably reduced when normalised to
control activity. ECHS1 enzyme activity from patients
decreased to 28% of the normal value (Fig. 6). Overall,
the variants might generate a serious depletion of
ECHS1 enzyme activity.

Discussion and conclusions
In this report, we identified a 2-year old patient harbour-
ing two novel heterozygous variants, c.414 + 5G > A and
c.310C > G, in ECHS1. To our knowledge, our study is
the first to report the c.414 + 5G > A and c.310C > G var-
iants, and provided the first experimental

Fig. 2 The MRS assay of the patient
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characterisation of the c.414 + 5G > A variant, eluci-
dating its impact on splicing. The c.310C > G variant
in the CDS region might result in a single amino acid
mutation, changing glutamine (Q) into glutamic acid
(E) in the number 104th amino acid sequences
(p.Q104E). The c.414 + 5G > A variant was located in
intron 3, and the variant might bring about 13 amino
acid deletions. 3D structure prediction of ECHS1

showed that p.Q104E mutation and 13 amino acid
deletions might destroy the activity domain. Surpris-
ingly, we found that ECHS1 enzyme activity was
lower in patient-derived myoblasts than in the con-
trol, which corroborates the previous speculation.
ECHS1 deficiency, as reported previously, is mostly char-

acterised by the following prominent neurological symp-
toms: sensorineural deafness, developmental retardation,

Fig. 3 ECHS1 Sanger sequence analysis and ECHS1 functional domain. a Sanger sequencing of genomic DNA of patient and his parents. b A
schematic diagram of the functional domains in ECHS1 and the locations of the mutation and deletion

Table 1 The information of variants

Gene name Chromosome localization
(GRCh37/hg19)

Variant NM Location Homozygosis/
Heterozygosis

Amino acid
alteration

Inheritance model Variation
source

ECHS1 Chr10:135183403 c.414 + 5G > A NM_004092.3 Intron3 Heterozygosis N/A Autosomal recessive
inheritance

Father

Chr10:135183512 c.310C > G CDS Heterozygosis p.Q104E Autosomal recessive
inheritance

Mather
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epileptic seizures, optic atrophy, and hypotonia. Other clin-
ical features include cardiomyopathy, respiratory insuffi-
ciency, and elevated lactic acid levels in blood, urine, and
cerebrospinal fluid. MRI images of the brain are similar to
those of Leigh syndrome, with white matter changes, sym-
metrical high T2 signal in the bilateral basal ganglia, and
brain atrophy [10, 11]. In our report, the patient presented
with similar symptoms that were indicative of neurologic
disorders, as well as elevated lactic acid levels. Regarding

the association between ECHS1 genetic variants and dis-
eases, previous publications have reported different types of
variants in patients. There were 34 pathogenic mutant
forms, among which 29 were missense mutations, 3 were
splicing mutations, 1 was a code shift mutation, and 1 was
a nonsense mutation [1, 12]. Missense mutations and com-
plex heterozygous mutations were found in the majority of
the cases. Homozygous mutations, mostly found in exon 4,
exon 5 and exon 6 as well as in exon 8, and splicing

Fig. 4 Minigene assay of c.414 + 5G > A variant. a The electrophoresis results of wild-type and c.414 + 5G > A transfections; b The schematic
image of normal and aberrant splicing products; c Sanger sequence of wide type and c.414 + 5G > A variant

Fig. 5 3D model of the human ECHS1. a Wide type, red-confidently predicted active domain, blue-deleted amino acids, green-glutamine (Q); b
Mutated type, the number 126–138 amino acids deleted, yellow-glutamic acid (E)
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mutations, were also found in some cases. The most fre-
quently studied variants were c.476A >G (p.Gln159Arg),
c.538A >G (p.Thr180Ala), and c.817A >G (p.Lys273Glu)
[1, 3, 13, 14]. Many types of variants were found; however,
no clear association between the clinical phenotype and
genotype of ECHS1 was found. We presently found two
novel variants, c.414 + 5G >A and c.310C >G, in the
ECHS1 gene, and no other variants were found in the study
region. Both computer prediction and experimental analysis
showed that ECHS1 enzyme activity was decreased in the
patient’s myoblasts. However, there were some limitations
to our study. First, we lacked an in vitro experiment, espe-
cially exogenous expression of the respective mutant
ECHS1 protein in cancer cells, to verify the exact effects of
these two variants on ECHS1 expression and enzyme activ-
ity. Second, a rescue assay is needed. Inserting wild-type
ECHS1 into immortalised patient-derived myoblasts to ob-
serve the enzyme activity level and mitochondrial function,
which requires several more patients, in order to determine
the detailed association between these variants and disease.
In conclusion, two novel c.414 + 5G > A and c.310C >

G variants leading to decreased ECHS1 activity were
identified in our study. Establishing a diagnosis in pa-
tients with a proposed mitochondrial disorder is often a
challenge, especially in paediatric cases. Therefore, we
hope that these pathogenic variants could serve as bio-
markers for mitochondrial encephalopathy, making the
diagnosis of mitochondrial diseases simpler, more con-
venient, and more accurate.
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