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Abstract
Background: High levels of estrogen are associated with increased risk of breast and endometrial cancer and have been suggested to also play 
a role in the development of ovarian cancer. Cancerogenic effects of estradiol, the most prominent form of estrogen, have been highlighted as a 
side effect of estrogen-only menopausal hormone therapy. However, whether high levels of endogenous estrogens, produced within the body, 
promote cancer development, has not been fully established.
Objective: We aimed to examine causal effects of estradiol on breast, endometrial, and ovarian cancer.
Methods: Here we performed a two-sample Mendelian randomization (MR) to estimate the effect of endogenous estradiol on the risk of 
developing breast, endometrial, and ovarian cancer, using the UK Biobank as well as 3 independent cancer cohorts.
Results: Using 3 independent instrumental variables, we showed that higher estradiol levels significantly increase the risk for ovarian cancer 
(OR = 3.18 [95% CI, 1.47-6.87], P = 0.003). We also identified a nominally significant effect for ER-positive breast cancer (OR = 2.16 [95% CI, 
1.09-4.26], P = 0.027). However, we could not establish a clear link to the risk of endometrial cancer (OR = 1.93 [95% CI, 0.77-4.80], P = 0.160).
Conclusion: Our results suggest that high estradiol levels promote the development of ovarian and ER-positive breast cancer.
Key Words: estradiol, ovarian cancer, breast cancer, endometrial cancer, Mendelian randomization
Abbreviations: BCAC, Breast Cancer Association Consortium; ECAC, Endometrial Cancer Association Consortium; ER, estrogen receptor; GWAS, genome-
wide association study; IVW, inverse-variance weighted; MR, Mendelian randomization; OCAC, Ovarian Cancer Association Consortium; SNP, single nucleotide 
polymorphism.

Previous studies have shown that women with high blood 
levels of estradiol have an increased risk of breast cancer both 
before [1, 2] and after menopause [3, 4]. Ovarian cancer is 
the most fatal of the gynecological cancers worldwide, with 
no screening test and therefore typically late-stage diagnosis 
[5, 6]. Epidemiological studies have suggested a strong role 
of estrogen activity as well as the duration of exposure to 
estrogen in the initiation, pathogenesis, and progression of 
ovarian cancer [5]. Endometrial cancer, which is the most 
common gynecological cancer, is also known to be hormone 
dependent [7]. Endometrial cancer risk increases with use of 
menopausal hormonal treatment that includes estrogen only. 
However, this risk can be reduced if the treatment is com-
bined with (opposed by) progesterone [5, 8], and a protective 
effect on both endometrial and ovarian cancer has been iden-
tified among oral contraceptive users [9, 10], most likely due 
to fewer ovulations [11].

Even though estrogen has been linked to all 3 cancer types, 
there is a lack of knowledge about whether the body’s own pro-
duction of estrogen promotes the development of breast, endo-
metrial, and ovarian cancer. One difficulty, when studying risk 
factors such as estrogen levels on cancer, is to distinguish cor-
relation from causation. Mendelian randomization (MR) is an 
instrumental variable approach that can be used to disentangle 

the effect that estradiol exerts on the risk of developing cancer. 
In MR, germ-line genetic variants are used as instrumental vari-
ables. Thereby, the MR estimate is not affected by reversed caus-
ation, since genetic variants are not confounded by lifestyle or 
environmental factors. MR can therefore be used for estimating 
causal effects. In MR, the instrumental variables must fulfill 3 
fundamental assumptions in order to be valid: 1)  the variant 
must be associated with the exposure (estradiol); 2) the variant 
should not be associated with any potential confounder in the 
exposure-outcome relation; and 3) the variant should not be dir-
ectly associated with the outcome (cancer) [12]. Two previous 
MR studies, both including only one genetic variant, close to 
the CYP19A1 gene, identified a causal effect of higher estradiol 
levels on endometrial cancer risk [13, 14]. An effect of estra-
diol levels on estrogen receptor (ER)-positive breast cancer, as 
well as a suggestive effect on ovarian cancer of the endometrioid 
subtype, was also identified in Larsson et al [14]. MR studies 
based on a single genetic variant may be greatly biased, as a re-
sult of undetectable pleiotropic effects [15]. To our knowledge, 
no previous study has identified a causal effect of estradiol on 
ovarian, breast, or endometrial cancer using multiple instru-
ments for estradiol levels.

Here, we use MR, with 3 genetic variants, none of them 
included in previous MR studies for estradiol, aiming to 
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establish and replicate a causal effect of estradiol on breast, 
endometrial, and ovarian cancer. We perform two-sample 
MR using 3 different independent cancer cohorts, with no 
overlapping samples with the estradiol genome-wide associ-
ation study (GWAS) performed in the UK Biobank.

Methods
Study Samples
UK Biobank
The UK Biobank is a population-based cohort including 
502 682 participants, of whom 273 404 are women, recruited 
from all across the United Kingdom. Participants were be-
tween 37 and 73 years old at the time of recruitment between 
2006 and 2010. Health variables have been collected through 
questionnaires, interviews, and death and hospital records, as 
well as cancer registries. For all genetic analyses in the UK 
Biobank, the third release of the imputed genetic data was 
used.

Estradiol levels and instrumental variables for estradiol
Four instrumental variables to be used in the MR analyses 
were selected from our previously published GWAS for es-
tradiol in UK Biobank [16]. Briefly, estradiol levels were 
measured from blood samples taken at the first assessment 
in association with the recruitment, using a two-step com-
petitive analysis on a Beckman Coulter Unicel Dxl 800. 
Unfortunately, this measurement method was unable to de-
tect estradiol levels below 175 pmol/L, which resulted in a 
substantial fraction of the participants without measured 
estradiol. In the discovery GWAS [16], estradiol was there-
fore analyzed as a binary variable (above or below detection 
limit). The GWAS included Caucasian UK Biobank partici-
pants, clustering with regards to their genetic principal com-
ponents. Quality control and information on covariates have 
been described previously [16]. A total of 4 instrumental vari-
ables, the single nucleotide polymorphisms (SNPs) with the 
lowest P values (P < 1 × 10-7) in the previous GWAS in fe-
males (Table 1), all with an F-statistics > 10, were selected for 
the current MR study. All SNPs were nominally significant 
also when analyzed in post- and premenopausal women sep-
arately and the estimates were very similar between strata, ex-
cept for 1 SNP, rs45446698 in CYP3A7, for which the effect 
was larger in postmenopausal women (see Supplementary 
Table S1 in Schmitz et al [16]). CYP3A7 is well known to be 
the key enzyme in metabolizing exogenous hormones (e.g., 
from hormone replacement therapy) [17]. Since hormone re-
placement therapy triggers the development of endometrial 
cancer [5, 8], rs45446698 might indeed influence cancer risk, 
through exogenous hormones rather than endogenous as we 
aim to investigate in this study. Consequently, rs45446698 
could be regarded as pleiotropic and was excluded from the 
main MR analysis. Previous estradiol MR studies included the 
SNP rs727479 within the CYP19A1 gene as an instrument, 
selected from a previous GWAS performed in postmenopausal 
women [13]. The rs727479 SNP did not pass quality control 
in UK Biobank, but another CYP19A1 SNP (rs7175531), in 
perfect linkage disequilibrium (R2 = 1.0) with rs717479, was 
available in UK Biobank but not strongly associated with es-
tradiol levels among females (P = 0.001). The CYP19A1 SNP 
has previously been highlighted as potentially pleiotropic 

in an MR for endometrial cancer [13] and for this reason, 
rs7175531 was excluded from our primary MR, too, and 
only included in sensitivity analyses. Excluding instruments 
used in previous studies gives us a unique set of estradiol in-
struments for replication. The variance explained by each 
genetic variant was estimated by calculating the difference 
between Nagelkerke’s pseudo-R2 for the full model, including 
both covariates and the SNP, and the reduced model, only 
including the covariates. The F-statistic for each SNP was es-
timated from the full model by computing the squared ratio 
of the SNP’s beta estimate and its standard error (Table 1).

To perform analysis of estradiol levels as a quantitative ex-
posure, including all participants below detection limit (175 
pmol/L), we applied censored regression (Tobit-I) modeling 
[16, 18], and recalculated the effect estimates of the SNPs 
prior to the MR analyses. In this way, a potential problem 
of using dichotomized quantitative exposures in MR could 
be eliminated [19]. The tobit model incorporates a partially 
integrated error term, up to the detection limit, which enables 
censored individuals to be included. The VGAM package (ver-
sion 1.1-2) in R was used to run the tobit regression models 
for each SNP, with estradiol levels being transformed using 
rank-based inverse normal transformation. For the tobit re-
gression, women who reported a cancer diagnosis before as-
sessment (Data field 2452), when blood samples were drawn 
(N = 14 635), were excluded. Also, current users of hormone 
replacement therapy (N = 9752) and oral contraceptives 
(N = 2681), and all women with unknown menopausal 
status, were removed, leaving 154 148 females (38 068 pre- 
and 116 080 postmenopausal). Of these, 30 044 had estra-
diol levels above the detection limit (25 111 pre- and 4933 
postmenopausal). Finally, 136 487 women had both genotype 
and covariate information available and were included in the 
tobit analysis.

Two-Sample MR With Publicly Available 
GWAS Data
Two-sample MR was performed, since any weak instrument 
bias generally is directed toward null in the two-sample MR, 
in contrast toward the confounded association in a one-
sample MR. Furthermore, the type I error is not inflated in 
a two-sample setting. For breast, endometrial, and ovarian 
cancer, respectively (Table 1), the effect sizes and standard 
errors for the SNPs were extracted from publicly available 
GWAS data, not including UK Biobank participants. For 
breast cancer, we used summary statistics from the Breast 
Cancer Association Consortium (BCAC) [20], including 
122 977 breast cancer cases and 105 974 healthy controls 
of European ancestry (downloaded from http://bcac.ccge.
medschl.cam.ac.uk/ on February 22, 2021). Using data from 
BCAC, we could also stratify for ER status. In the BCAC co-
hort, the SNP rs10638101 was not genotyped, and the proxy 
rs897797, in perfect linkage disequilibrium with rs10638101 
(R2 = 1.0), was therefore included. For endometrial cancer, 
we used data from the Endometrial Cancer Association 
Consortium (ECAC), which includes 12 research cohorts 
based in Australia, Europe, and the USA. From the ECAC 
cohort, GWAS summary statistics from O’Mara et al (2018) 
[21], excluding participants from UK Biobank to avoid sample 
overlap, were used. This restricted ECAC dataset consisted of 
12 270 cancer cases and 46 126 controls of European des-
cent. Data from ECAC were available after request from the 
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authors [21]. However, the effect of the instrument within 
CYP19A1 (used in the sensitivity analyses) was downloaded 
from the MR-base homepage (https://www.mrbase.org), on 
December 19, 2021, and did include UK Biobank partici-
pants. For ovarian cancer, we used GWAS summary statistics 
from the Ovarian Cancer Association Consortium (OCAC) 
[22]. For OCAC, genetic association analysis had been per-
formed for 25 509 epithelial ovarian cancer cases and 40 941 
healthy controls. Summary statistics were downloaded from 
http://ocac.ccge.medschl.cam.ac.uk/data-projects/results-
lookup-by-region/, on February 26, 2021.

The main MR analyses were performed with the inverse-
variance weighted (IVW) MR approach included in the 
“MendelianRandomization” package in R [23]. We further 
performed sensitivity analyses using weighted median and the 
MR-Egger methods, included in the same R package [23]. We 
also performed a sensitivity analysis including 2 potentially 
pleotropic instruments, rs45446698 and rs7175531, as well 
as running each of these instruments separately. Causal esti-
mates were measured as the change in odds per 1 SD increase 
in rank-transformed estradiol levels.

Results
Out of the 3 instrumental variables selected for estradiol in 
the main analysis, none were strongly associated with any 
cancer phenotype. However, rs4764934 was weakly associ-
ated with ovarian cancer, rs897797 with breast cancer and 
ER-positive breast cancer, and rs16991615 with endometrial 
cancer (Table 1). rs45446698, located close to the CYP3A7 

gene, and rs7175531 close to the CYP19A1, previously used 
as an instrument in a MR study [13], were both strongly as-
sociated with endometrial cancer (Table 1).

Mendelian Randomization
Using our primary MR-method, IVW, a significant effect 
of high estradiol levels on ovarian cancer was identified 
(OR = 3.18 per SD increase in rank-transformed estradiol 
levels [95% CI, 1.47-6.87], P = 0.003) (Fig. 1, Table 2). We 
also identified a nominally significant effect for ER-positive 
breast cancer (OR = 2.16 [95% CI, 1.09-4.26], P = 0.027) 
(Table 2, Fig. 1). However, ER-positive breast cancer did not 
hold for multiple testing (P = 0.05/4 = 0.0125). We could 
not establish a clear link to the risk of endometrial cancer 
(OR = 1.93 [95% CI, 0.77-4.80], P = 0.160), ER-negative 
breast cancer (OR = 1.50 [95% CI, 0.50-4.54], P = 0.471) 
or ER-negative and ER-positive breast cancer combined 
(OR = 1.72 [95% CI, 0.98-3.03], P = 0.061) (Table 2, Fig. 1).

Sensitivity Analyses
As sensitivity analyses, we applied the weighted median and 
the MR-Egger approach for each cancer. Comparing each 
method, we could see that all 3 cancers showed the same dir-
ection of effect (OR > 1), except for MR-Egger which showed 
a negative, but not significant OR for ER-positive breast 
cancer. The weighted median was nominally significant for 
ovarian cancer, which strengthened our main results (Fig. 1, 
Table 2).

Since rs45446698 and rs7175531 are likely to have pleio-
tropic effects in relation to cancer, especially endometrial 
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Figure 1. Results from the 3 different Mendelian randomization methods applied (IVW, MR-Egger, and weighted median) to estimate the causal effect 
of estradiol on breast, endometrial, and ovarian cancer. Breast cancer was also stratified for ER-positive and ER-negative breast cancer. The black 
dots represent the effect size of the SNPs in the GWAS for estradiol (x-axis) and cancer (y-axis) and the black lines are the standard errors. The lines 
represent the estimates from the different MR methods.

https://www.mrbase.org
http://ocac.ccge.medschl.cam.ac.uk/data-projects/results-lookup-by-region/
http://ocac.ccge.medschl.cam.ac.uk/data-projects/results-lookup-by-region/
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cancer (see method section), those SNPs were not included 
in the primary MR analysis. Since we only include 3 to 5 
instruments, we could not perform any formal test for hetero-
geneity among the MR instruments analysis [24]. However, 
we performed additional sensitivity analyses for each of the 2 
possible pleiotropic SNPs in relation to all 3 cancers (Table 3). 
Including only rs45446698 as a single instrument, we identi-
fied a significant effect on endometrial cancer (OR = 54.43 
[95% CI, 8.31-359.61], P < 0.0001), but no significant ef-
fect on other cancer phenotypes (Table 3), which agrees with 
the association results for this SNP (Table 1). Including only 
rs7175531 identified a strong effect on endometrial cancer 
(OR = 3561.72 [379.81-33400.29], P < 0.0001), which 
agrees with the association analysis (Table 1), as well as with 
2 previous MR studies [13, 14]. We also performed sensitivity 
analyses by including both rs45446698 and rs7175531 as in-
struments in the MR analysis which resulted in similar MR 
estimates for ovarian cancer and ER-positive cancer. Here we 
also identified a nominally significant effect for breast cancer 
combined (Table 4). Finally, we included all 5 instruments 
for endometrial cancer. Even if the MR estimate was very 
high, in agreement with the strong effects by rs45446698 and 
rs7175531 individually (Table 1, Table 3), no significant effect 
was identified when including all 5 instruments (OR = 8.24 
[95% CI, 0.59-115.03], P = 0.12), presumably due to hetero-
geneity among the instruments due to pleiotropy.

Discussion
In this study, we performed two-sample MR to show that 
high levels of estradiol in the body promote the development 
of ovarian cancer, as well as identify a nominally significant 
effect of estradiol on ER-positive breast cancer. We used 3 dif-
ferent instrumental variables, that were selected from a recent 
estradiol GWAS [16] and did not overlap with previous MR 
studies for estradiol [13, 14].

Our main estradiol instruments (SNPs) were annotated 
to ASCL1, TMEM150B, and MCM8. The MCM8 SNP 
rs16991615 has previously been associated with age at meno-
pause [25]. However, we have shown previously that there is 
no significant difference in the effect of this SNP on estradiol 
levels, with or without adjustment for age at menopause in 
postmenopausal women [16], which suggests that the effect 
of the SNP on estradiol levels is not mediated by age at meno-
pause. ASCL1 has previously been shown to promote tumor 
progression in lung adenocarcinoma [26] and overall survival 
in ovarian cancer patients [27]. The last instrument maps to 
TMEM150B, which has been associated with age at meno-
pause [28] and with age at menarche [29].

To increase sample size and the power to identify strong 
instruments for the MR study, our prior estradiol GWAS in-
cluded both pre- and postmenopausal women [16]. However, 
estradiol metabolism changes after menopause and that the 
cycle phase could dramatically influence estradiol prior to 
menopause. The previous study by Thompson et al [13], from 
which one of the instruments included in our sensitivity ana-
lysis was identified, only included postmenopausal women to 
limit the cycle phase bias. The estradiol estimates in our pre-
vious GWAS only differed between pre- and postmenopausal 
women for 1 significant SNP (rs45446698) close to CYP3A7 
[16], and we consider that the other 3 instruments selected 
for the main analysis are valid instruments for both post- and 
premenopausal estradiol levels. Cancer often takes a long Ta
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time to develop, and endometrial and ovarian cancer espe-
cially might be triggered during the reproductive period of a 
woman’s life. Since few postmenopausal women had detect-
able estradiol levels, our results might mainly reflect estradiol 
effects prior to menopause, even if most cancers are detected 
among postmenopausal women.

The previously used instrument rs7175531, within the 
CYP19A1 gene, was not strongly associated with estra-
diol in UK Biobank females (P = 0.001), and not included 
in our main analysis. One reason for this weak association 
in the UK Biobank might be that we combined pre- and 
postmenopausal women, while the previous association was 
identified in postmenopausal women only [13]. CYP19A1 en-
codes aromatase that synthesizes endogenous estrogens from 
testosterone in adipose tissue [30]. The lack of a strong asso-
ciation in the UK Biobank GWAS might also be due to the 
low-sensitivity estradiol measurement, making estradiol levels 
hard to measure in postmenopausal women. We further ex-
cluded an instrument within the CYP3A7 gene. The CYP3A7 
gene encodes cytochrome P450 CYP3A7, which metabol-
izes dehydroepiandrosterone (DHEA), the main precursor of 
circulating estrogens in women [31, 32]. CYP3A7 is mainly 
expressed in the liver, which is one of the primary sites of es-
trogen metabolism [33]. However, CYP3A7 also metabolizes 
exogenous hormones [17], which agrees with a much less sig-
nificant effect on estradiol levels when women using hormone 
replacement therapy were removed from the analyses (Table 
1). When including the CYP19A1 SNP (rs7175531) as well 
as the CYP3A7 SNP (rs45446698) as instruments in our sen-
sitivity analysis, the MR results for breast and ovarian cancer 
were similar to the primary approach. Also, the ER-positive 
and ER-negative cancers analyzed together were found to be 
nominally significant (P = 0.042), most probably driven by 
ER-positive cases. When analyzing the CYP19A1 instrument 
separately, as was done in previous MR studies, we confirm a 
significant effect on endometrial cancer (Table 3).

Even though we used a larger number of instrumental vari-
ables in our MR analyses than previous estradiol MR studies 
on cancer risk, one of the limitations of our study is still the 
low number of instruments, which reduces our ability to in-
vestigate and adjust for pleiotropy. However, we did use 3 
instruments that were independently associated with estradiol 
levels, compared with the 1 used previously, which strengthens 
a true causal effect of estradiol levels on the risk of ovarian 
and breast cancer. Since estradiol is mainly produced by the 
ovaries during the reproductive years, and mainly by subcuta-
neous adipose tissues after menopause [34], another limita-
tion of the present study is that the estradiol GWAS and MR 

includes both pre- and postmenopausal women and it is not 
possible to evaluate the timing of the harmful effects. Another 
limitation of this study is the hormonal fluctuations during 
the menstrual cycle and that estradiol is commonly measured 
at different time points during the menstrual cycle in different 
women. Unfortunately, we did not have information on cycle 
phase for all women and could not adjust for this. More de-
tailed measurements of estradiol during different time points 
of the menstrual cycle would be beneficial to address the 
causal effects of estradiol pre menopause. Further, 4 of our 
instruments were selected from a previous GWAS (P < 1 × 10-

7), each with an F-statistic > 10. However, when reanalyzing 
the GWAS, i.e., removing cancer cases and oral contraceptives 
and hormone replacement therapy users, the P values were 
less significant, which could lead to weak instrument bias.

It is important to consider that our analysis differs from 
previous MR studies in that we use different instruments, 
but it still supports previous studies to confirm that estra-
diol most probably have a causal effect on ovarian cancer 
as well as ER-positive breast cancer. However, our approach 
did not confirm the effect of estradiol on the risk of endo-
metrial cancer as presented previously. Nonetheless, pre-
vious studies were confirmed when the CYP19A1 instrument 
was analyzed separately for endometrial cancer (Table 3). 
To further support the effect of estradiol on ovarian and 
ER-positive breast cancer risk, we also identified a significant 
effect in several of our sensitivity analyses, for example, when 
rs45446698 (CYP3A7) and rs7175531 (CYP19A1) were in-
cluded as instrumental variables, and in the median weighted 
MR. This, together with previous studies, supports the possi-
bility of a true causal effect of estradiol levels on ovarian and 
ER-positive breast cancer.

By identifying a causal link between estradiol and ovarian 
cancer, as well as replicating an effect on ER-positive breast 
cancer, our results further support carcinogenic effects of es-
trogen in these tissues. A deeper understanding of causal re-
lations between estradiol levels and cancer risk could be of 
importance for novel interventions to prevent cancer in women.
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