

Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. ELSEVIER

Contents lists available at ScienceDirect

Medical Hypotheses

journal homepage: www.elsevier.com/locate/mehy

Closing the portal to SARS-CoV-2 cellular entry: May open newer avenues...

ARTICLE INFO

Keywords Camostat mesylate Cellular entry COVID-19 Nafamostat mesylate SARS-CoV-2 pneumonia Thrombosis Transmembrane protease serine 2 (TMPRSS2)

Dear Editor,

Amidst the wide range of challenges posed by COVID-19 associated thrombosis, the Kumar et al proposition of severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) cellular entry based angiotensin converting enzyme 2 (ACE2) signalling alterations being at the cornerstone of endothelial dysfunction and vascular pro-thrombotic environment, can have potentially important therapeutic implications [1,2]. Taking account of their molecular level description, we wish to highlight a few points to substantiate the clinical perspective of the discussion.

- (i) Akin to Kumar and colleagues, the essential role of transmembrane protease serine 2 (TMPRSS2) co-expression in mediating the SARS-CoV-2 cellular entry, has captivated the attention of the fraternity [3–6].
- (ii) In this context, the TMPRSS2 inhibitors such as camostat mesylate (CM) and nafamostat mesylate (NM) are being currently envisaged as promising repurposed drugs (approved for treating pancreatitis in Japan) in COVID-19 for their anti-inflammatory and antiviral properties owing to serine protease inhibition and resultant viral cellular entry block [3–6]. A few researchers cite an incremental value to the therapeutic inclusion of a critical host factor blocker like TMPRSS2 inhibitor over an isolated antiviral regimen, in conferring a subsequent resilience to the rapidly developing viral resistance. They opine that the isolated viral point mutations are unlikely to accommodate for such a critical host component block [7].
- (iii) A recent retrospective observational case-series by Hofmann-Winkler et al outlined an attenuation of the COVID-19 disease severity marked by lower sepsis-related organ failure assessment (SOFA) scores paralleled by an ameliorated inflammatory profile in the six ICU patients who received CM compared to the five ICU patients treated with hydroxychloroquine [3]. The maximum CM dose administered in their evaluation amounted to 2×100 mg pills three times daily for 5 days which was in accordance with the protocol of a large Denmark randomized controlled trial

https://doi.org/10.1016/j.mehy.2020.110464 Received 30 November 2020; Accepted 16 December 2020 Available online 22 December 2020 0306-9877/© 2020 Elsevier Ltd. All rights reserved. (RCT, CamoCo-19, NCT04321096). In addition to the aforementioned, a number of double to quadruple blinded RCTs are also ongoing with the aim of evaluating the role of CM as a monotherapy or as an add-on therapy in COVID-19 patients [4].

(iv) Centralizing the focus on thrombosis as in Kumar et al discussion [1], NM has additional anticoagulant and antifibrinolytic effects with Asakura and Ogawa suggesting a heparin and NM combination therapy in COVID-19 patients [5,6]. Interestingly, three elderly high-risk SARS-CoV-2 pneumonia patients with a progressive disease despite antiviral therapy demonstrated an improved clinical profile following administration of 200 mg NM over a span of 24 h [6].

To conclude, the therapeutic armamentarium against COVID-19 is doubtlessly going to become more SARS-CoV-2 specific as an augmented comprehension of the disease related mechanisms transpires. This is heralded by the exemplar of a comprehensive SARS-CoV-2 cellular level patho-physiological description staged by Kumar et al [1], in opening distinctly novel and selective therapeutic avenues aimed at the highest priority societal goal of mitigating the COVID-19 associated morbidity and mortality.

CRediT authorship contribution statement

Ridhima Sharma: Conceptualization, Writing - original draft. : . **Rohan Magoon:** Conceptualization, Writing - original draft, Conceptualization, Writing - original draft. **Brajesh Kaushal:** Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Correspondence

Medical Hypotheses 146 (2021) 110464

References

- [1] Kumar A, Narayan RK, Kumari C, Faiq MA, Kulandhasamy M, Kant K, Pareek V. SARS-CoV-2 cell entry receptor ACE2 mediated endothelial dysfunction leads to vascular thrombosis in COVID-19 patients. Med Hypotheses 2020;145:110320. https://doi.org/10.1016/j.mehy.2020.110320.
- [2] Magoon R, ItiShri, Kohli JK, Kashav R. Inhaled milrinone for sick COVID-19 cohort: a pathophysiology driven hypothesis! Med Hypotheses 2020:110441. https://doi. org/10.1016/j.mehy.2020.110441.
- [3] Hofmann-Winkler H, Moerer O, Alt-Epping S, Bräuer A, Büttner B, Müller M, et al. Camostat mesylate may reduce severity of Coronavirus disease 2019 sepsis: a first observation. Crit Care Explor 2020;2(11):e0284. https://doi.org/10.1097/ CCE.00000000000284.
- [4] Breining P, Frølund AL, Højen JF, Gunst JD, Staerke NB, Saedder E, et al. Camostat mesylate against SARS-CoV-2 and COVID-19—rationale, dosing and safety. Clin Pharmacol Toxicol 2020. https://doi.org/10.1111/bcpt.13533.
- [5] Asakura H, Ogawa H. Potential of heparin and nafamostat combination therapy for COVID-19. J Thromb Haemost 2020;18(6):1521–2. https://doi.org/10.1111/ ith.14858.
- [6] Jang S, Rhee J-Y. Three cases of treatment with nafamostat in elderly patients with COVID-19 pneumonia who need oxygen therapy. Int J Infectious Diseases 2020;96: 500–2. https://doi.org/10.1016/j.ijid.2020.05.072.

[7] Prussia A, Thepchatri P, Snyder JP, Plemper R. Systematic approaches towards the development of host-directed antiviral therapeutics. Int J Mol Sci 2011;12:4027–52. https://doi.org/10.3390/ijms12064027.

Ridhima Sharma^a, Rohan Magoon^b, Brajesh Kaushal^{c,*} ^a Department of Paediatric Anaesthesia, Superspeciality Paediatric Hospital & Postgraduate Teaching Institute, Noida 201301, India ^b Department of Cardiac Anaesthesia, Atal Bihari Vajpayee Institute of Medical Sciences (ABVIMS) and Dr. Ram Manohar Lohia Hospital, Baba Kharak Singh Marg, New Delhi 110001, India ^c Department of Anaesthesia, Gandhi Medical College and Hamidia Hospital, Bhopal 462001, Madhya Pradesh, India

> * Corresponding author. *E-mail address:* brajeshkaushal3@gmail.com (B. Kaushal).