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ABSTRACT: The cleavage of benzyl ethers by catalytic hydrogenolysis or
Birch reduction suffers from poor functional group compatibility and limits
their use as a protecting group. The visible-light-mediated debenzylation
disclosed here renders benzyl ethers temporary protective groups, enabling
new orthogonal protection strategies. Using 2,3-dichloro-5,6-dicyano-1,4-
benzoquinone (DDQ) as a stoichiometric or catalytic photooxidant, benzyl
ethers can be cleaved in the presence of azides, alkenes, and alkynes. The
reaction time can be reduced from hours to minutes in continuous flow.

The synthesis of complex molecules such as biopolymers
relies on protective groups to ensure chemo-, regio-, and

stereoselectivity.1 Protecting groups are of central importance
to carbohydrate construction, where a host of hydroxyl groups
have to be masked. Installation and selective removal are the
basis for orthogonal protecting group strategies that are key to
the synthesis of well-defined oligosaccharides.2−4 Benzyl ethers
are stable over a wide range of conditions, making them an
ideal protecting group that is removed only at the very end of
the synthesis.1 For this very reason, however, benzyl ether
cleavage requires harsh reduction/oxidation processes, such as
catalytic hydrogenolysis, Birch reduction, or oxidation with
ozone or BCl3, which are incompatible with many functional
groups1,5 and are hazardous.6,7 Methods for the mild and
selective cleavage of benzyl ethers would render them
attractive temporary protective groups that would conceptually
change the strategic approach toward the synthesis of complex
glycans.
Compared with benzyl ethers, p-methoxybenzyl (PMB)

ethers can be selectively cleaved using mild stoichiometric
oxidants.1,8−10 Photoredox catalysis was used to selectively
cleave PMB ethers (Scheme 1a).11−13 Benzyl ethers (EBn‑O‑Me
= 2.20 V vs saturated calomel electrode (SCE)14) have a
significantly higher oxidation potential compared with PMB
ethers (EPMB‑O‑Me = 1.60 V vs SCE14) and are stable during the
photocatalytic PMB cleavage.11−13

A photocatalyst (PC) with a sufficiently strong oxidizing
excited state could facilitate the oxidative cleavage of benzyl
ethers with high functional group tolerance (Scheme 1b). To
move this concept to practice, a suitable PC, H-atom acceptor,
and terminal oxidant had to be identified using the
debenzylation of C(3)-O-benzyl-tetraacetylglucoside (1a) as
a model reaction. Initial efforts with common PCs were not
successful. A combination of 4 mol % 9-mesityl-10-
methylacridinium as the PC and 5.0 equiv of CBr4, for

example, was capable of hydrolyzing the benzyl ether, but
concomitant product degradation resulted in low yields (Table
S2).
Full conversion of the starting material and excellent

selectivity toward the desired product (1b) were achieved
using stoichiometric amounts of 2,3-dichloro-5,6-dicyano-1,4-
benzoquinone (DDQ) (E3

DDQ*/DDQ
−• = 3.18 V vs SCE15) and

green-light irradiation (525 nm) in wet dichloromethane
(Table 1, entry 1). In contrast with photochemical PMB
deprotection,11−13 an additional H-atom acceptor is not
required, as the single electron transfer oxidation and the
hydrogen abstraction are executed by DDQ upon irradiation.16
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Scheme 1. Visible-Light-Mediated Oxidative Deprotection
Strategies of PMB and Benzyl Ethers
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The irradiation source is crucial for achieving high selectivity.
Shorter wavelengths (440 nm) result in the formation of
significant amounts of the corresponding benzoyl ester 1c
(entry 2). The cleavage of benzyl ethers using simple
substrates was previously reported using stoichiometric
amounts of DDQ under UV irradiation but suffered from
low functional group compatibility.17

To avoid the tedious separation of the stoichiometric
byproduct 2,3-dichloro-5,6-dicyano-1,4-hydroquinone
(DDQH2), we ultimately developed a catalytic protocol
using DDQ (25 mol %), tert-butyl nitrite (TBN, 25 mol %)
as the cocatalyst, and air as the terminal oxidant (Table 1,
entry 4).18−25 The nitrite thermally or photochemically
releases NO that is oxidized by O2 to NO2 and reoxidizes
DDQH2 to DDQ.

16 Similar to the protocol with stoichiometric
amounts of DDQ, lower selectivities were observed at shorter
wavelengths (entry 5). Control studies confirmed that photons
and DDQ are necessary for productive catalysis (entries 3, 6,
and 7). Monitoring the reaction using an LED-NMR setup
supported the notion that the reaction ceases upon light source
removal (Figure 1a).26 When DDQ is used in catalytic
amounts and no TBN is added, the reaction stops after one
turnover (Table 1, entry 8). The late addition of TBN can
restore DDQ, and the reaction smoothly proceeds until
completion (Figure 1b). Under anaerobic conditions, the
reaction did not go to completion, confirming that O2 is
required (Table 1, entry 9).
Both protocols were evaluated using carbohydrate substrates

that carry multiple protecting groups (Scheme 2). The
protocol using catalytic amounts of DDQ (protocol B) was
slightly modified (2 equiv of TBN) to avoid long reaction
times. Substrates containing acetyl, isopropylidine, and benzoyl
protecting groups (1a−4a) were smoothly deprotected in <4 h
using both protocols and were isolated in excellent yield (84−
96%). Thioethers that could potentially poison palladium
catalysts during hydrogenolysis were unproblematic using both

photooxidative protocols, and no sulfoxide or sulfone side
products were identified (5a−11a). Several common protect-
ing groups that are not tolerated in hydrogenolysis or Birch
reduction, such as fluorenylmethoxycarbonyl (6a, 7a, 8a),
levulinic ester (8a), allyl carbonate (9a), propargyl carbonate
(10a), and benzylidene (12a), were well tolerated. Azides
(11a), which are essential for biorthogonal labeling, are stable
to the photooxidative benzyl ether cleavage. 2-Naphtylmethyl
ether (NAP, 12a) is routinely removed using stoichiometric
amounts of DDQ in the absence of light. The light-mediated
protocol using 25 mol % DDQ (protocol B) provides a
valuable alternative to avoid stoichiometric amounts of organic
oxidant. The benzyloxycarbonyl (Cbz) group was partially
cleaved using stoichiometric amounts of DDQ (protocol A),
resulting in a modest isolated yield of the desired product 13b.
Using the catalytic method (protocol B), longer reaction times
resulted in significant cleavage of the Cbz group. (See the
Supporting Information.) Phenylselenyl (14a) and tert-
butyldimethylsilyl (TBS, 15a)27 groups are not stable under
the conditions applied. Whereas the photocatalytic protocol
enables the use of benzyl ethers as temporary protective
groups, it is not the method of choice to globally deprotect
carbohydrates. Full deprotection of perbenzylated glucose

Table 1. Optimized Conditions and Control Experiments
for the Visible-Light-Mediated Oxidative Debenzylation
Using Catalytic and Stoichiometric Amounts of DDQa

aReaction conditions: 1a (50 μmol), DDQ (Protocol A: 75 μmol,
Protocol B: 12.5 μmol), TBN (Protocol B: 12.5 μmol), CH2Cl2 (5
mL), H2O (50 μL), 525 nm irradiation at rt. bDetermined by 1H
NMR using maleic acid as the internal standard. cNot detected.

Figure 1. In situ NMR studies using an LED-NMR setup. For
experimental details, see the Supporting Information.
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(16a) was not feasible, and a complex mixture of partially
deprotected derivatives precipitated during the reaction.
The relatively long reaction times for some substrates are a

major limitation, especially using the catalytic protocol. This is
a result of the long wavelengths used, as DDQ absorbs only
weakly above 450 nm (Figure S9). When a 440 nm irradiation
source was applied, we observed significantly shorter reaction
times but had severe selectivity issues due to overoxidation and
product degradation.
Slowing down a chemical reaction to avoid selectivity

problems is a common strategy in batch. Continuous-flow
chemistry can help to overcome selectivity issues, as it offers
precise control over the reaction time and better irradi-
ation.28,29 A two-feed setup introduced the homogeneous
reaction mixture and air into the reactor unit, which consisted
of fluorinated ethylene propylene (FEP) tubing (0.8 mm i.d.)
and a 440 nm light source. A short optimization study using
C(3)-O-benzyl-glucofuranose 2a resulted in a significant
reduction of the reaction time (2.5 min in flow at 440 nm
versus 3 h in batch at 525 nm) while maintaining excellent
selectivity (Figure 2a). An experiment using a longer residence
time showed that selectivity issues indeed arise from prolonged
reaction times at low wavelengths (Figure 2b)
The flow approach was subsequently tested for other

substrates (Figure 2c). The reaction time for the debenzylation
of 10a was significantly reduced to 3 min, whereas
dibenzylated compounds 4a and 6a required 10 min.
In conclusion, we developed a mild, photocatalytic

debenzylation protocol that is significantly more functional-
group-tolerant than traditional methods. The proper choice of
irradiation source is crucial for reaching high selectivities of
benzyl ether cleavage in batch. Green-light irradiation (525
nm) was superior over blue light (440 nm) in suppressing the
formation of side products during batch reactions. A biphasic

continuous-flow system helped to reduce the reaction times.
Precise control of the reaction time and efficient irradiation in

Scheme 2. Substrate Scope and Limitations for the Visible-Light-Mediated Oxidative Cleavage of Benzyl Ethersa

aReaction conditions: benzyl ether (100 μmol), DDQ (protocol A: 150 μmol/benzyl, protocol B: 25 μmol/benzyl), TBN (protocol B, 200 μmol),
CH2Cl2 (5 mL), H2O (50 μL), 525 nm irradiation at rt. bReaction on a 50 μmol scale. cReaction on a 1.5 mmol scale. Isolated yields are reported.

Figure 2. Visible-light-mediated oxidative cleavage of benzyl ethers
using a continuous-flow system.
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flow enabled the use of 440 nm to significantly reduce reaction
times while maintaining high selectivities. The photooxidative
debenzylation overcomes the current limitations of benzyl
ethers as protecting groups that arise from the harsh conditions
necessary for their cleavage. The methodology enables the use
of benzyl ethers as a temporary protective group and is
attractive for the development of new synthetic routes in
glycan synthesis.
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