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Abstract: Through atomistic simulations, this work investigated the permeability of hexagonal
diamond nanochannels for NaCl solution. Compared with the multilayer graphene nanochannel
(with a nominal channel height of 6.8 Å), the diamond nanochannel exhibited better permeability.
The whole transportation process can be divided into three stages: the diffusion stage, the transition
stage and the flow stage. Increasing the channel height reduced the transition nominal pressure
that distinguishes the diffusion and flow stages, and improved water permeability (with increased
water flux but reduced ion retention rate). In comparison, channel length and solution concentration
exerted ignorable influence on water permeability of the channel. Further simulations revealed
that temperature between 300 and 350 K remarkably increased water permeability, accompanied
by continuously decreasing transition nominal pressure. Additional investigations showed that
the permeability of the nanochannel could be effectively tailored by surface functionalization. This
work provides a comprehensive atomic insight into the transportation process of NaCl solution in
a diamond nanochannel, and the established understanding could be beneficial for the design of
advanced nanofluidic devices.

Keywords: diamond nanochannel; permeability; flow rate; transition nominal pressure; molecular
dynamics simulation

1. Introduction

Inspired by biological nanochannels, synthetic nanochannels have attracted increasing
interest due to their unique transmission behaviors and promising prospects in various
fields, such as biomedicine [1–3], nanofiltration [4,5], water desalination [6–9], and energy
storage [10–12]. The hydration interactions, van der Waal interactions, and electrostatic
interactions are the main factors that confine the transition behaviors of aqueous solutions
down to nanoscale [13–16]. Extensive efforts have been devoted to investigating the charac-
teristics of nanofluids based on experiments [17–21] or theoretical analysis [22–24], covering
different types of synthetic nanochannels [24], such as carbon nanotubes (CNTs) [25–31],
nanopores [32–35], and functionalized nanopores [36–41]. Due to their atomically-smooth
hydrophobic graphitic surface and nanoscale confinements, sp2 carbon-based nanochan-
nels are the most studied nanofluidic structure. It has been found that pressure direction
can be tuned to optimize permeability for ionic transport through a CNT [30], and several
orders of magnitude of higher flow rate inside CNTs have been reported.

Due to structural similarity, fluid transportation characteristics within two-dimensional
(2D) graphene slits [14,42–46] have also been extensively discussed. The interlayer distance,
or the channel height, determines the degree of confinement on the solution, and a wide
range of factors affect the transportation behavior of the confined solutions, such as atomic
structure, surface curvature, surface charge [18], chirality [47], pressure [48], and in-plane
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strain [49]. Due to its low bending stiffness, graphene is often presented with strong
wrinkles, which could introduce strong impact on the solution behavior in nanofluidic de-
vices [50]. Recently, researchers successfully prepared ultrathin 2D diamond [51–53], which
provides a new candidate to construct 2D nanochannels. Theoretical works reveal that 2D
diamond inherits the excellent mechanical properties of bulk diamond, and maintains a
very high bending rigidity, compared with that of graphene [54].

To this end, this work aims to explore the transportation characteristics of sodium chlo-
ride solution in two-dimensional diamond channels using molecular dynamics simulation.
The transportation behaviors of sodium chloride solution in both graphene and diamond
nanochannels are investigated, and the influences from various factors, including channel
length, channel height, temperature, concentration of the NaCl solution and surface func-
tionalization, are discussed. This work provides a theoretical basis and design reference for
the application of diamond nanochannels in desalination, which may be beneficial for the
design of new carbon-based nanofluidic devices.

2. Methods

The nanochannel was constructed from two layers of hexagonal diamond—lonsdaleite.
The two free surfaces of the channel were passivated by H atoms, which created a diamane
like structure [53]. Each layer had a length of about 4 nm (x-axis) and a width of about 3 nm
(y-axis). As illustrated in Figure 1a, the initially considered nanochannel had a height of
about 6.8 Å, and the diamond layer had a height of about 30 Å. Note that the channel height
represents the nominal distance between the H atoms of the upper and lower layers, and
the effective distance was about 4.4 Å, considering the van der Waal radius of H as 1.2 Å.
A reservoir was created on the left of the nanochannel with a length of 60 Å, which was
filled with 1M sodium chloride aqueous solution. Meanwhile, a vacuum space was created
on the right side of the nanochannel for the transportation simulation. After that, water
molecules, sodium and chloride ions were packed into the reservoir using the open-source
package Packmol [55]. The overall size of the simulation box was about 130 × 30 × 30 Å3.
Periodic boundary conditions were adopted in the width and height directions (y- and
z-axis) during the simulation. For comparison purposes, a multilayer graphene-based
nanochannel [56], with a similar geometrical parameter, was also constructed (Figure 1b),
i.e., the graphene has nine layers, with a length and width of about 40 × 30 Å2. The channel
height is kept the same as the diamond nanochannel at 6.8 Å, i.e., the distance between
carbon atoms in the upper and bottom multilayer graphene (with an effective distance of
3.4 Å, considering the van der Waal radius of C as 1.7 Å).
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(b) Nanochannel constructed from multilayer graphene.
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The atomic interactions within and between water molecules were described by the
simple point charge expansion model (SPC/E) [57]. The commonly used AIREBO [58]
potential was adopted to describe the atomic interactions within the diamond channel,
including C-C, C-H, and H-H interactions. Atomic interactions within NaCl, and the
atomic interactions between water molecules, NaCl and the nanochannel were treated
by the Lennard-Jones (LJ) potential using the Lorentz-Berthelot combination rule. The LJ
potential was expressed as,

U(r) = 4ε

[(σ

r

)12
−

(σ

r

)6
]

(1)

where r is the distance between pairs of atoms; ε reflects the depth of the potential energy
curve, while the magnitude of σ represents the equilibrium distance between atoms. The
corresponding parameters [42] are listed in Supplementary Information Table S1, with a
uniform cut-off distance of 12 Å.

All simulations were performed by the open-source package LAMMPS [59]. The
system was first relaxed to the energy minimum status and then equilibrated at 300 K and
1 atm for 50 ps under the isothermal isobaric ensemble (NPT). Afterwards, a virtual wall
was applied on the left of the water reservoir to push the solution forward at a constant
velocity of 0.1 Å/ps. The virtual wall exerts a repulsive force on adjacent atoms expressed
by F = −k(r − R)2, where k = 1 is a constant, R is the position of the virtual wall and r-R
is the distance from the atom to the virtual wall. To mitigate the influence from pressure
fluctuation, the whole system was relaxed for 5 ps under the microcanonical ensemble
(NVE) for every 0.2 Å virtual wall displacement. The reaction force on the virtual wall was
averaged from the last two ps relaxation results. The simulation ceased when the reservoir
was reduced to one third of its original volume. The nanochannels were fixed rigid during
the simulation. A time step of 0.5 fs was applied for all simulations.

3. Results and Discussion
3.1. Transportation Characteristics in a Nanochannel

Firstly, we compared the transportation behavior of 1M NaCl solution between the
graphene and diamond nanochannels, which shared the same channel height of 6.8 Å.
As shown in Figure 2a, the NaCl solution exhibited a bilayer structure in the diamond
nanochannel after a total of 1200 ps simulation (see Supplementary Material Video S1 for the
transportation process). In comparison, a monolayer solution was shown in the graphene
nanochannel (Figure 2b, see Supplementary Material Video S2 for the transportation
process). In contrast, the diamond channel exhibits higher permeability (see Supplementary
Material Figure S1). According to the atomic configurations, some parts of the water
layers exhibited a quasi-square molecular arrangement, either in the diamond or graphene
channel. Such layered phenomena originated from the difference of the energy surface
within the nanochannel. For the diamond nanochannel, the surface was passivated by H
atoms, while the bilayer graphene had a C surface that resulted in stronger energy domain
in the nanochannel. Considering the long-range van der Waal (vdW) interaction within the
nanochannel, we can qualitatively demonstrate the energy domain by visualization of the
LJ interactions between two atomic chains. For simplicity, only the repulsive energy in the
channels is illustrated. As plotted in Figure 2c, the diamond surface is represented by a
C-H diatomic chain. Strong repulsive fields are formed on each side of the upper and lower
diamond layers. Such observation agrees well with the two-layered NaCl solution formed
in the nanochannel. In comparison, C atoms in the multilayer graphene nanochannel are
closer to each other. The repulsive interactions between the upper and lower diamond
layer can be effectively cancelled out in the middle region, and thus form a regime with
weak energy domain (Figure 2d). Thus, only a monolayer solution is formed in the narrow
middle region where the repulsive field cancelled out.
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Figure 2. NaCl solution transportation within the diamond and multilayer graphene nanochannel.
(a) The NaCl solution in the diamond nanochannel (upper panels) and the structure of the water
molecules (lower panel); (b) The NaCl solution in the multilayer graphene nanochannel (upper
panel) and the structure of water molecules (lower panel); and LJ energy domain within: (c) the
diamond nanochannel; and (d) the multilayer graphene nanochannel. Here, only the repulsive force
less than 0.5 nN is visualized here.

Figure 3 highlights the location trajectory of a randomly selected water molecule
during the simulation. As can be seen, the location of the selected water molecule moves
around the entry of the nanochannel until the simulation time of ~900 ps. Afterwards,
it starts to pass through the channel. The varying locations of the water molecule in the
nanochannel indicate that the upper and lower layers of water molecules exchange during
the whole simulation.

With the above understanding, we investigated how the properties of the system
change during the simulation. According to Figure 4a, the nominal pressure (Pn) of the
reservoir increased continuously due to the moving virtual wall during the transportation
simulation, which exhibited a nonlinear relationship with time. Here, the nominal pressure
is calculated from Pn = F/A, where F and A are the reaction force and the area of the
virtual wall, respectively. The displacement (D) of the solution showed a similar nonlinear
increasing profile (Figure 4b), while the changing gradient of the profile suggested different
transportation stages occurred during the simulation. Here, D refers to the maximum
coordinate of the NaCl solution in the channel relative to the entry of the channel along
the transportation direction (x-axis). In detail, D increased gradually before a simulation
time of around 900 ps, corresponding to a displacement less than 10 Å. Afterwards, it
increased remarkably with simulation time, indicating much apparent transportation of
the NaCl solution in the channel. In comparison, the potential energy change (∆EPE) of
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the system had a totally different profile. Here, ∆EPE = EPE
t − EPE

0 , with EPE
t and EPE

0
representing the potential energy of the system at simulation time t and initial status,
respectively. According to Figure 4c, ∆EPE increased continuously until a simulation time
of about 900 ps, which aligned well with the time when D increased significantly. After the
threshold value, ∆EPE decreased continuously with increasing simulation time, suggesting
that the accumulated potential energy was released through the quick transportation of the
NaCl solution. Particularly, ∆EPE dropped to zero after 1100 ps and fluctuated around zero
afterwards. Referring to Figure 4b, it can be seen that the NaCl solution reached the exit
of the channel with D around 40 Å at 1200 ps. In other words, the accumulated potential
energy was released by the flow transportation of the solution.
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Figure 4d further illustrates the relationship between nominal pressure, displacement
and potential energy change of the system. It is seen that the relationship between ∆EPE

(or D) and Pn is similar to its relationship with simulation time. Recall the D profile in
Figure 4b, the whole simulation can be divided into three stages: the diffusion stage before
~900 ps (only small displacements occurred), the transition stage between 900 and 1100 ps,
and the flow stage after 1100 ps. It is estimated that the flow velocity (i.e., the gradient
of the displacement profile) in the flow stage was about 0.3 Å/ps, which was more than
30 times faster than that in the diffusion stage (~9.1 × 10−3 Å/ps). Since pressure is the
driving force for flow transportation, we can thus define a transition nominal pressure
(Pt

n) for the diamond nanochannel that determines when flow transportation occurred,
similar to the definition of glass transition temperature in polymers [60–63]. As plotted in
Figure 4d, the pressure threshold between the diffusion and flow stages is defined as the
transition nominal pressure, which was about 7.7 GPa for the diamond nanochannel. For
the multilayer graphene counterpart, the same Pt

n of 7.7 GPa was estimated. According
to Figure 4d, ∆EPE reached its maximum magnitude around the transition nominal pres-
sure. After reaching the transition nominal pressure, the pressure exceeded the adhesive
constraint from the nanochannel, and thus the solution exhibited flow transportation.

3.2. Factors Influencing the Transportation Behavior

Focusing on the diamond nanochannel, we then investigated how different factors
affected the transportation behavior of the NaCl solution in the nanochannel, including
height, length, temperature and concentration of the NaCl solution. For all simulations, the
volume of the NaCl solution reservoir was kept the same. The detailed model information
for all models is given in Supplementary Material Table S2.

Different channel heights ranging from 5 to 12 Å were considered first. For comparison
purposes, the simulated system had the same size with the same 1M NaCl solution reservoir,
and the temperature was kept at 300 K. As compared in Figure 5a, a monolayer of solution
was formed when the channel height was reduced to 5 Å, similar to that observed in the
graphene nanochannel. With increasing channel height, more solution entered the channel,
and molecules in the top and bottom layers exhibited certain square lattices (Figure 5b).
The location trajectory of a randomly selected water molecule suggests the upper and lower
water layer exchanged molecules during the whole simulation. Due to the formation of
water layers, a higher density of water molecules was observed adjacent to the nanochannel
boundary, as shown in Figure 5c. Here, the total number of water molecules (Nw) within
the nanochannel were counted along the height direction after the simulation was complete
(i.e., after 1300 ps).

According to Figure 6a, the water flux increased from 0.515 to 3.148 g/cm2·d·GPa
when the channel height increased from 5 to 12 Å, suggesting strong dependency of water
permeability on channel height (the transportation process for the channel height of 12 Å
is shown in Supplementary Material Video S3). Along with increasing water flux (Q),
the ion retention rate (Rt) decreased. Specifically, a sharp reduction of Rt was observed
when the channel height was between 5 and 10 Å. With increasing channel height, Rt
reached a saturated magnitude above 80%, suggesting excellent ion retention capacity of
the diamond channel. All examined samples showed the existence of transition pressure
similar to that observed in Figure 4d (see the representative results from the structure with
a channel height of 10.2 Å in Supplementary Material Figure S2). As expected, Pt

n decreased
with channel height (Figure 6b). However, when channel height was larger than ~8 Å,
Pt

n became less dependent on channel height, though its magnitude was still as high as
5.8 GPa (for H = 12 Å). It was expected that further increasing the channel height would
further suppress Pt

n, due to the reduced influence from the channel walls [64,65]. By varying
the channel length from 30 to 60 Å (keeping a constant channel height of 10.2 Å), it was
found that channel length exerted insignificant impact on water flux and ion retention rate
(Figure 6c). Similarly, the transition pressure fluctuated around 5.7 GPa (Figure 6d) when



Nanomaterials 2022, 12, 1785 7 of 13

the channel length increased. These results indicate that channel length exerts ignorable
influence on the permeability of the diamond channel.
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(a) Atomic configuration of the solution in the channel. Only part of the channel is visualized; (b) The
water structure inside the channel; (c) Distribution of water molecules in the nanochannel; and
(d) Location trajectory of a selected water molecule during the simulation for a channel height of
10.2 Å.

It is of great interest to probe into how temperature influences transportation behavior,
as it determines the kinetic energy of water molecules or ions. For such a purpose, we
adopted the diamond nanochannel with a height of 10.2 Å under different temperatures.
According to the atomic configurations, layered water molecules were observed in all
examined temperatures, and strong exchange of water molecules between the upper and
bottom layers was observed (see Supplementary Material Figure S3). As shown in Figure 7a,
the water flux increased when temperature increased. Specially, Q increased remarkably
from 2.969 to 8.6 g/cm2·d·GPa when temperature increased from 300 to 350 K. It was found
that Q saturated to 8.8 g/cm2·d·GPa when temperature approached the boiling point of
water. In comparison, the ion retention rate fluctuated around 81% when the temperature
was less than 300 K, and a significant reduction was observed when temperature rose to
350 K. These observations are reasonable as water molecules possess higher kinetic energy
at higher temperature, and thus it is easier for them to get through the nanochannel, which
agrees with what was observed in functionalized graphene nanopores [39]. Meanwhile,
considering a constant cohesive energy of water (interactions between water molecules),
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increasing kinetic energy would make it easier for NaCl to flow. As evidenced in Figure 7b,
a continuous decrease of the transition temperature was observed, signifying an easier flow
stage could be triggered at a higher temperature.
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Another factor that influences the permeability and kinematic properties of the
nanochannel is the content of salt ions. In the NaCl solution, the ions interact with their
surrounding water molecules, and a certain number of water molecules form a hydration
shell around the ions. Considering the nanochannel with a height of 6.8 Å (under 300 K),
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we thus conducted additional simulations by varying ion concentration from 0.5 to 2.0 M.
Surprisingly, the ion concentration was found to exert ignorable influence on water flux
(Figure 7c), whereas the ion retention rate exhibited a strong linear decreasing relationship
with ion concentration. In other words, more ions presented in the solution would promote
ion transportation through the diamond nanochannel. It was expected that once NaCl
ions entered the nanochannel, they would still interact with water molecules inside the
channel and re-attract surrounding water molecules to form a new hydration shell. Such a
hydration shell would adversely influence the flow of the solution within the nanochannel.
As such, increasing the ion concentration was anticipated to increase the transition pressure,
which was affirmed from the simulation, as shown in Figure 7d.

3.3. Functionalized Diamond Nanochannel

Before concluding, we also investigated how the permeability of the nanochannel
could be tuned by surface functionalization. For illustration, we adopted methyl groups
(-CH3) to replace hydrogen atoms. The hydrogen atoms were randomly selected by our
in-house code, and functionalization for adjacent C atoms were avoided to maintain a
low energy configuration, and the functionalization percentage was defined as the ratio
between the quantity of methyl groups and the original quantity of hydrogen atoms in the
diamond nanochannel. Before functionalization, the channel height was 10.2 Å. The model
information is summarized in Supplementary Material Table S3. As shown in Figure 8a,
-CH3 functional groups broke the smoothness of the interior surface of the nanochannel.
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Figure 8. Transportation within the methyl-functionalized diamond nanochannel. (a) Schematic
view of the methyl-functionalized diamond nanochannel; (b) Snapshot of solution transport within
the nanochannel with 26% surface functionalization; (c) The water flux and ion retention rate as a
function of the functionalization percentage; and (d) The transition nominal pressure as a function of
the functionalization percentage. In (c,d), notation PA and PE represent the parallel and perpendicular
alignment, respectively.

Due to the presence of functional groups, layered water molecules were not observed
in the nanochannel (Figure 8b). The resulting disturbance from the functional groups was
found to cause obvious reduction in terms of water flux (Figure 8c), which is consistent
with previous observations for nanochannels with smaller height. Despite that, the ion
retention rate was found to fluctuate around 80%, without clear correlation with surface
functionalization. Further, the transition nominal pressure evidently increased when the
functionalization percentage increased (Figure 8d). For example, Pt

n at 26% functional-
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ization (~7.5 GPa) was about 25% higher than that of the pristine channel. Note that
two samples, with the same 26% functionalization but different random patterns were
examined, from which totally the same water flux and ion retention rates were estimated.

Besides random functionalization, it was possible to prepare specific functionalization
patterns in experiments, which was expected to affect the permeability of the nanochannel.
Here, two additional simulations with 4% functionalization were carried out, where the
functional groups aligned parallel (x-axis) and perpendicular (y-axis) to the transportation
direction, respectively. Compared with the channel with randomly distributed functional
groups, the parallel alignment increased the water flux (Q ≈ 2.92 g/cm2·d·GPa) as the dis-
turbance induced by the functional groups was minimized. In comparison, regarding the
perpendicular alignment there was slight decrease in the water flux (Q ≈ 2.04 g/cm2·d·GPa).
The ion retention rate was nearly unchanged (~78%), while the transition nominal pressure
shared the same changing tendency with the water flow but the difference was marginal,
compared with that of the random counterpart (Figure 8d).

4. Conclusions

Based on atomistic simulations, this work investigated the permeability of hexago-
nal diamond nanochannels for NaCl solution. Compared with the multilayer graphene
nanochannel, with the same channel height, the diamond nanochannel exhibited stronger
permeability with an 84% increase in water flux, while ensuring an 88% ion retention
rate. The whole transportation process can be divided into three stages: the diffusion
stage, the transition stage and the flow stage. Increasing the channel height was found
to improve the water permeability of the diamond nanochannel with increased water
flux but reduced ion retention rate. In comparison, the channel length exerted ignorable
influence on the water permeability of the channel. Further simulations revealed that
temperatures below room temperature (~300 K), or approaching boiling point, exerted
insignificant impact on the permeability of the nanochannel. Between 300 and 350 K, a
remarkable increase in water flux was observed, together with a significant reduction in
ion retention rate. Increasing solution concentration was found to exert ignorable influence
on water permeability of the channel but reduced ion retention capacity and increased
transition nominal pressure. Additional investigations showed that the permeability of the
nanochannel can be suppressed by surface functionalization within the channel. Overall,
this work provides a comprehensive atomic insight into the transportation process of NaCl
solution in a diamond nanochannel, and the established understanding could be beneficial
for the design of advanced nanofluidic devices.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano12111785/s1, Figure S1: Water flow (per unit time per unit
area) as a function of pressure for the multilayer graphene and diamond nanochannel with a height
of 6.8 Å. The gradient of the profile represents the water flux. It is seen that the water flow increases
almost linearly when pressure exceeds 10 GPa, suggesting a stable water flux within the nanochannel.
Obviously, diamond nanochannel has a larger water flux compared with the graphene nanochannel;
Figure S2: Potential energy change (∆EPE) and displacement (D) of water molecules as a function
of pressure for the diamond nanochannel with a height of 10.2 Å. Crossing between the two linear
fitting lines identify the transition pressure when flow stage occurs; Figure S3: Trajectory of a selected
water molecule in a diamond nanochannel with a height of 10.2 Å; Table S1:Parameters of the
Lennard-Jones potential; Table S2: Summary of models with different channel heights, lengths,
temperatures and solution concentrations; Table S3: Summary of models with functional groups;
Video S1: Transportation of 1M NaCl solution in a multilayer graphene nanochannel with a height
of 6.8 Å; Video S2: Transportation of 1M NaCl solution in a diamond nanochannel with a height of
6.8 Å; Video S3: Transportation of 1M NaCl solution in a diamond nanochannel with a height of 12 Å.
Ref. [42] is cited in Supplementary Matreials.
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