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Abstract
Background: Many researchers use the double filtering procedure with fold change and t test to
identify differentially expressed genes, in the hope that the double filtering will provide extra
confidence in the results. Due to its simplicity, the double filtering procedure has been popular with
applied researchers despite the development of more sophisticated methods.

Results: This paper, for the first time to our knowledge, provides theoretical insight on the
drawback of the double filtering procedure. We show that fold change assumes all genes to have a
common variance while t statistic assumes gene-specific variances. The two statistics are based on
contradicting assumptions. Under the assumption that gene variances arise from a mixture of a
common variance and gene-specific variances, we develop the theoretically most powerful
likelihood ratio test statistic. We further demonstrate that the posterior inference based on a
Bayesian mixture model and the widely used significance analysis of microarrays (SAM) statistic are
better approximations to the likelihood ratio test than the double filtering procedure.

Conclusion: We demonstrate through hypothesis testing theory, simulation studies and real data
examples, that well constructed shrinkage testing methods, which can be united under the mixture
gene variance assumption, can considerably outperform the double filtering procedure.

Background
With the development of microarray technologies,
researchers now can measure the relative expressions of
tens of thousands of genes simultaneously. However, the
number of replicates per gene is usually small, far less
than the number of genes. Many statistical methods have
been developed to identify differentially expressed (DE)
genes. The use of fold change is among the first practice. It
can be inefficient and erroneous because of the additional
uncertainty induced by dividing two intensity values.
There are variants of Student's t test procedure that con-
duct a test on each individual gene and then correct for

multiple comparisons. The problem is, with a large
number of tests and a small number of replicates per gene,
the statistics are very unstable. For example, a large t sta-
tistic might arise because of an extremely small variance,
even with a minor difference in the expression.

The disadvantage of fold-change approach and t test has
been pointed out by a number of authors [1,2]. There are
approaches proposed to improve estimation of gene vari-
ances by borrowing strength across genes [1,3,4]. Despite
the flaw, fold change and t test are the most intuitive
approaches and they have been applied widely in practice.
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To control the error rate, many researchers use fold change
and t test together, hoping that the double filtering will
provide extra confidence in the test results. Specifically, a
gene is flagged as DE only if the p-value from t test is
smaller than a certain threshold and the fold change is
greater than a cutoff value. For example, in [5], 90 genes
were found to be DE with two cutoff values (p-value <
0.01 and fold change > 1.5). There are numerous exam-
ples in the literature that implement the double filtering
procedure with fold change and t statistic [6-9]. We argue,
however, that the double filtering procedure provides
higher confidence mainly because it produces a shorter
list of selected genes. Given the same number of genes
selected, a well constructed shrinkage test can significantly
outperform the double filtering method.

Fold change takes the ratio of a gene's average expression
levels under two conditions. It is usually calculated as the
difference on the log2 scale. Let xij be the log-transformed

expression measurement of the ith gene on the jth array
under the control (i = 1,�, n and j = 1,�, m0), and yik be

the log-transformed expression measurement of the ith
gene on the kth array under the treatment (k = 1,�m1). We

define  and .

Fold change is computed by

As for the traditional t test, it is usually calculated on the
log2 scale to adjust for the skewness in the original gene
expression measurements. The t statistic is then computed
by

where  is the pooled variance of xij and yik. Comparing

(1) and (2), it is obvious that fold change and t statistic are
based on two contradicting assumptions. The underlying
assumption of fold change is that all genes share a com-
mon variance (on the log2 scale), which is implied by the

omission of the variance component in (1). On the other

hand, the inclusion of  in (2) suggests that t test

assumes gene-specific variances. In order for a gene to be
flagged as DE, the double filtering procedure would
require the gene to have extreme test scores under the
common variance assumption as well as under the gene-
specific variance assumption. It is analogous to using the

intersection of the rejection regions defined by fold
change and t statistic.

Assuming a common variance for all the genes apparently
is an oversimplification. The assumption of gene-specific
variances, however, leads to unstable estimates due to
limited replicates from each gene. A more realistic
assumption might lie in between the two extremes, i.e.,
modeling gene variances by a mixture of two components,
one being a point mass at the common variance, another
being a continuous distribution for the gene-specific vari-
ances. Under this mixture variance assumption, a DE gene
could have a large fold change or a large t statistic, but not
necessarily both. Taking intersection of the rejection
regions flagged by fold change and t statistic, as is adopted
by the double filtering procedure, might not be the best
strategy under the mixture variance assumption.

The goal of the paper is not to propose a new testing pro-
cedure in microarray analysis, but to provide insight on
the drawback of the widely used double filtering proce-
dure with fold change and t test. We present a theoretically
most powerful likelihood ratio (LR) test under the mix-
ture variance assumption. We further demonstrate that
two shrinkage test statistics, one from the Bayesian model
[10] and the other from the significance analysis of micro-
arrays (SAM) test [1], can be united as approximations to
the LR test. This association explains why those shrinkage
methods can considerably outperform the double filter-
ing procedure. A simulation study and real microarray
data analyses are then presented to compare the shrinkage
tests and the double filtering procedure.

Methods
A Likelihood Ratio Test

For gene i, we use fi = pvfi1 + (1 - pv)fi2, a mixture of two

components fi1 and fi2, to denote the density under the

null hypothesis that the gene is not DE under two experi-
ment conditions. Density fi1 is defined under the gene-

specific variance assumption, fi2 is defined under the com-

mon variance assumption, and pv is the mixing probabil-

ity. Similarly, we use gi = pvgi1 + (1 - pv)gi2 to denote the

density under the alternative hypothesis, with gi1 and gi2

defined in a similar fashion as fi1 and fi2. For example, in

the context of testing DE genes, we can assume fi1 = N (μi,

), fi2 = N(μi, ), gi1 = N(μi + Δi, ), and gi2 = N(μi +

Δi, ), where  is the assumed common variance, 

is the gene-specific variance, μi is the mean expression

level under the control, and Δi is the difference in the

expression levels between two conditions. Under the null
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hypothesis H0 : Δi = 0, the likelihood ratio test statistic,

which is the most powerful among all test statistics, is

The Ri statistic is a weighted sum of two ratios gi1/fi1 and
gi2/fi2, with weight wi = pvfi1/[pvfi1 + (1 - pv)fi2]. Under the
normality assumption, it is easy to show that Ri = wih1(|ti|)
+ (1 - wi)h2(|fci|), where fci and ti are fold change and t sta-
tistic, as defined in (1) and (2). Both h1(·) and h2(·) are
monotonic increasing functions.

The rejection region of the LR test is defined by Ri >λR,
where λR is the threshold to attain a certain test size. In
order to reject H0, it requires that either |fci| is large, or |ti|
is large, or both. In this sense, the LR test rejection region
is more like a union of the rejection regions defined by
fold change and t statistic. On the other hand, the double
filtering procedure with fold change and t statistic would
require both |fci| and |ti| to be large. This practice is anal-
ogous to using the intersection of the two rejections
regions determined by |fci| and |ti|. Compared with the LR
test, the double filtering procedure will lose power. The
"loss of power" has two meanings. First, for a given false
discovery rate (FDR), the double filtering procedure pro-
duces a shorter list of identified genes for further investi-
gation. Second, for a given number of identified genes, the
list produced by the double filtering procedure has a
higher FDR. The double filtering procedure offers a false
sense of confidence by producing a shorter list.

The LR test statistic Ri requires one to know the true values

of parameters p, μi, , , and Δi, which are usually

unknown in reality. One strategy is to estimate Ri by ,

where the maximum likelihood estimates (MLE) of the
unknown parameters are plugged into (3). Unfortunately,
with a small number of replicates from each gene, the
MLE would be extremely unstable and lead to unsatisfac-
tory testing results.

A Bayesian model [10] was constructed under the mixture
variance assumption to detect DE genes. The inference is
made based on the marginal posterior probability of a

gene being DE, denoted by zi = P(Δi ≠ 0 | X, Y). Here X =

{xij} and Y = {yik} are the collection of gene expression

data under the two conditions. We will show that, like ,

zi is also an approximation to Ri. The difference between

 and zi is that the former plugs in the point estimates

(MLE) of unknown parameters, while the latter marginal-
izes the unknown parameters with respect to their poste-
rior distribution. In the Bayesian inference, the
uncertainty from various sources are accounted for in a
probabilistic fashion.

Similar to the Bayesian mixture model, some existing
methods also try to strike a balance between the two
extreme assumptions of a common variance and gene-
specific variances. The SAM statistic slightly modifies the
t-statistic by adding a constant to the estimated gene-spe-
cific standard deviation in the denominator. We will
present it as being motivated by a mixture model on the
variances (standard deviations). Furthermore, the SAM
statistic can be directly written as a weighted sum of t sta-
tistic and fold change. Thus both the Bayesian method
and the SAM method are approximations to the LR test
under the mixture variance assumption, and they can
achieve better performance than the double filtering pro-
cedure.

The Bayesian Mixture Model

Cao et al. [10] proposed a Bayesian mixture model to
identify DE genes, which has shown comparable perform-
ance to frequentist shrinkage methods [1,11]. With

parameters (μi, Δi, , , pv) defined similarly as in the

LR test, gene expression measurements xij and yij are mod-

eled by normal distributions with a mixture structure on
the variances,

A latent variable ri is used to model the expression status
of the ith gene,,

where ri = 0/1 indicates that gene i is non-DE/DE and it is

modeled by a Bernoulli distribution: ri | pr ~ Bernoulli(pr).

For  and , it is assumed that  and

 ~ IG(a0, b0). Here IG(a, b) denotes an inverse gamma

distribution with mean b/(a - 1). The other hyper-priors
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include, μi ~ N(0, ), pr ~ U(0, 1), and pv ~ U(0, 1). More

details can be found in [10].

We make inference based on zi = P(ri = 1 | X, Y) = P(Δi ≠ 0
| X, Y), the marginal posterior probability that gene i is
DE. A gene is flagged as DE if zi >λz, where λz is a certain
cutoff. We argue that the Bayesian rejection region defined
by zi >λz is an approximation to the LR test rejection region
defined by Ri >λR. First we have

Here P(μi, Δi, , , pv, pr | X, Y) is the joint posterior

distribution of (μi, Δi, , , pv, pr), marginalized with

respect to other random parameters (e.g., μj and , j ≠ i).

It is easy to show that

Given parameters (μi, Δi, , , pv, pr), P(ri = 1 | μi, Δi,

, , pv, pr, X, Y) is an increasing function of Ri. Reject-

ing H0 for Ri >λR is equivalent to rejecting for P(ri = 1 | λi,

Δi, , , pv, pr, X, Y) >λz, with λz = λR/[λR + (1 - pr)/pr].

Thus the two test statistics, P(ri = 1 | μi, Δi, , , pv, pr,

X, Y) and Ri, are equivalent. Expression (5) demonstrates

that zi is obtained from P(ri = 1 | μi, Δi, , , pv, pr, X,

Y) by integrating with respect to the unknown parameters
under the joint posterior distribution. If the integral does
not have a closed form, we can conduct numerical integra-
tion to calculate zi through the Gibbs sampling algorithm

[12,13]. The uncertainty from those unknown parameters
are accounted for in a probabilistic fashion. It is in this
sense that we consider zi a good approximation to the LR

test statistic Ri.

The SAM Test
The SAM statistic [1] is defined as

where si is the gene-specific standard deviation, and s0 is a

constant that minimizes the coefficient of variation.
Although it might not be the original intention of the
authors [1], a test statistic like di can be motivated by a

model with a mixture structure on gene standard devia-

tions. We begin with a simple case where xij ~ N(μi, )

and yik ~ N(μi + Δi, ), and the null hypothesis is H0 : Δi

= 0. Given δi, the LR test statistic is

We assume a mixture structure on gene standard devia-

tions, where δi = σi with probability pv and δi = σ0 with

probability 1 - pv. We can then approximate  by

Replacing σi with si and  with s0, we can see that di

and  only differ by a factor of 1/p, which does not

change the ordering of test statistics. The above derivation
suggests that the SAM statistic can also be considered an
approximation to the LR test statistic under the mixture
variance (standard deviation) assumption. We can also
write di as a weighted sum of ti and fci:

Recall that under the mixture variance assumption, the LR
test statistic is Ri = wih1(|fci|) + (1 - wi)h2(|ti|), where h1(·)
and h2(·) are both monotonic increasing functions. Both
di and Ri define rejection regions that are analogous to the
union of the rejection regions defined by t test and fold
change. In other words, the SAM procedure rejects H0 for
large |ti|, or large |fci|, or both. The SAM statistic is a better
approximation to the LR test statistic than the double fil-
tering procedure.
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As a side note, Cui et al. [11] proposed a shrunken t test
procedure based on a variance estimator that borrow
information across genes using the James-Stein-Lindley
shrinkage concept. This variance estimator shrinks indi-
vidual variances toward a common value, which concep-
tually serves the same purpose as the mixture variance
model. From this perspective, we also consider the
shrunken t statistic an approximation to the LR test statis-
tic.

Results and Discussion
Simulation Study
We conducted a simulation study to compare the double
filtering procedure to the shrinkage methods. The simula-
tion truth is specified as follows. We tested 1000 genes
with 100 genes being truly DE. Without loss of generality,
we set μi = 0. We further assumed

and

Three scenarios were considered. Scenario 1: 90% of the
genes with gene-specific variances and 10% of the genes
with a common variance, and 3 replicates per gene under
each condition. Scenario 2: same as Scenario 1, but with 6
replicates per gene under each condition. Scenario 3: all
the genes having a gene-specific variance, and 3 replicates
per gene under each condition. For each scenario we
repeated the simulation 1000 times.

For the Bayesian mixture model, we specified nonin-
formative priors so that the posterior inference is domi-

nated by information from data. We let  =  = 5.0

where 5.0 is sufficiently large for expression levels on the
logarithm scale. To specify the hyper-parameters for the
inverse gamma priors, first we set aσ = a0 = 2.0 so that the

inverse gamma priors have an infinite variance. Then we

set the prior means,  and , equal to the average

of the sample variances to solve for bσ and b0. Finally, we

chose ar = br = av = bv = 1, which corresponds to uniform

priors for pr and pv.

Five test statistics were compared: the marginal posterior
probability (zi) of a gene being DE based on the Bayesian
mixture model, the SAM statistic, the shrunken t statistic,
the t statistic, and the double filtering with t statistic and

fold change greater than 2. The first three graphs in Figure
1 plot the FDR versus the total number of selected genes
under the above three scenarios. The shrinkage methods
(the Bayesian model, the SAM test, and the shrunken t
test) have comparable performance. The double filtering
procedure performs better than the traditional t statistic,
but it is obviously outperformed by the three shrinkage
methods. We have tried different fold change cutoff values
for the double filtering procedure (e.g., setting the cutoff
at 1.5) and the results did not change materially. Given
the same number of selected genes, the shrinkage meth-
ods can identify more truly DE genes than the double fil-
tering procedure. Note that under the gene-specific
variance assumption (Scenario 3), the t test, which theo-
retically is the most powerful likelihood ratio test, still
performs the poorest. This result indicates the usefulness
of shrinkage in microarray studies, where only a small
number of replicates are available for each gene. In short,
the simulation study shows that for a given number of
selected genes, well constructed shrinkage methods can
outperform the double filtering procedure.

In Scenario 1 and 2 of the simulation study, the true vari-
ance distribution is specified as the mixture of a point
mass and an inverse gamma distribution, which might
lead to a result that is biased in favor of a shrinkage
method. Here we conduct another simulation study with
a "real" variance distribution, denoted as Scenario 4. Spe-
cifically, let xij (j = 1, ... , m0i) and yik (k = 1, ... , m1i) be the
observed expression levels from a real microarray study.

Define the residual vector ei =(ei1, ... , )' by

Then ei can be considered a set of random errors sampled
based on the true variance distribution. We simulate 1000
data sets according to the following steps. For iteration s (s
= 1, �, 1000) and gene i (i = 1, ... , n),

1. obtain a random permutation of (ei1, ... ,

), denoted by ;

2. generate  as described in the previous simula-

tion scenarios;

3. for j = 1, ... , m0i, compute  = , and for k = 1,

... , m1i, compute , where  is

the jth element of .
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Comparison of the FDR given the total number of selected genes under Scenario 1-6 in the simulation studyFigure 1
Comparison of the FDR given the total number of selected genes under Scenario 1-6 in the simulation study. 
The competing test statistics are the posterior probability based on the Bayesian model, the shrunken t statistic, the SAM sta-
tistic, the t statistic, and the double filtering procedure with t statistic and fold change.
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The real data comes from a microarray study comparing
the gene expressions of breast cancer tumors with BRCA1
mutations, BRCA2 mutations, and sporadic tumors [14].
The data set is available at http://research.nhgri.nih.gov/
microarray/NEJM_Supplement. Here we only consider
the BRCA1 group and the BRCA2 group. There are 3226
genes, with 7 arrays in the BRCA1 group and 8 arrays in
the BRCA2 group. We analyzed the data on the log2 scale.
Following Storey and Tibshirani [15], we eliminated
genes with aberrantly large expression values (>20),
which left us with measurements on n = 3169 genes. The
fourth graph in Figure 1 compares the different methods
under Scenario 4, where the residual vector ei was con-
structed based on the breast cancer data. We kept the same
replicate number in the experiment, with 7 replicates per
gene in one group and 8 replicates in the other group. The
relative performance of the five methods remains
unchanged as in the other scenarios.

In current microarray studies, the number of replicates per
gene can be easily 30 or more due to the low cost of array
and the easiness to collect patients. So we considered two
scenarios with a relatively large number of replicates. Sce-
nario 5: 90% of the genes with gene-specific variances and
10% of the genes with a common variance, and 30 repli-
cates per gene under each condition. Scenario 6: all the
genes having a gene-specific variance, and 30 replicates
per gene under each condition. In each of the two scenar-
ios, we assume there are 1000 genes with 100 genes being
truly DE. The two graphs in the bottom panel of Figure 1
plot the FDR versus the total number of selected genes for
the five test statistics under Scenario 5 and Scenario 6,
respectively. The comparison demonstrates that when the
replicate number is large, the performance of the tradi-
tional t test becomes comparable to the performance of
the shrinkage methods, thanks to the more reliable esti-
mate of gene variance component. More importantly, the
drawback of the double filtering procedure becomes more
obvious, which has substantially worse performance com-
pared to the other methods, including the t test.

Experimental Datasets
In this section we compared the shrinkage methods with
the double filtering procedure based on two microarray
datasets. The first is the Golden Spike data [16] where the
identities of truly DE genes are known. The Golden Spike
dataset includes two conditions, with 3 replicates per con-
dition. Each array has 14,010 probesets, among which
10,144 have non-spiked-in RNAs, 2,535 have equal con-
centrations of RNAs, and 1,331 are spiked-in at different
fold-change levels, ranging from 1.2 to 4-fold. Compared
with other spike datasets, the Golden Spike dataset has a
larger number of probsets that are known to be DE, mak-
ing it popular for comparing performance among differ-
ent methods. Irizarry et al. [17] pointed out that "the

feature intensities for genes spiked-in to be at 1:1 ratios
behave very differently from the features from non-
spiked-in genes". Following Opgen-Rhein and Strimmer
[18], we removed the 2,535 probe sets for spike-ins with
ratio 1:1 from the original data, leaving in total 11,475
genes and 1,331 known DE genes. Figure 2 plots the FDR
under each testing procedures versus the total number of
rejections. For the double filtering procedure, the fold
change cutoff was set at 1.5 because only 248 genes have
a fold change greater than 2.0. The figure indicates that the
shrinkage methods (Bayesian, SAM, and shrunken t) have
similar performance, and they outperform the double fil-
tering procedure and t test.

The second is the breast cancer dataset [14] described in
the simulation study. With the identities of truly DE genes
unknown, we estimated the FDR for the SAM test, the
shrunken t test, the t test, and the double filtering proce-
dure, through the permutation approach described in
[15]. For Bayesian methods, Newton et al. [19] proposed
to compute the Bayesian FDR, which is the posterior pro-
portion of false positives relative to the total number of
rejections. However, the Bayesian FDR is incomparable to
the permutation-based FDR estimate employed by fre-
quentist methods [20]. Cao and Zhang [21] developed a
generic approach to estimating the FDR for Bayesian
methods under the permutation-based framework. A
computationally efficient algorithm was developed to
approximate the null distribution of the Bayesian test sta-
tistic, the posterior probability. The approach can provide

Comparison of the FDR given the total number of selected genes in the analysis of Golden Spike dataFigure 2
Comparison of the FDR given the total number of 
selected genes in the analysis of Golden Spike data. 
The test statistics include the posterior probability based on 
the Bayesian model, the shrunken t statistic, the SAM statis-
tic, the t statistic, and the double filtering procedure with t 
statistic and fold change.
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an unbiased estimate of the true FDR. Constructed under
the same permutation-based framework, the resulting
FDR estimate allows a fair comparison between full Baye-
sian methods with other testing procedures. We adopted
the approach in [21] to estimate the FDR of the Bayesian
mixture model (4). Figure 3 plots the permutation-based
FDR estimates under each testing procedure versus the
total number of rejections. It shows that the shrinkage
methods can considerably outperform the double filter-
ing procedure.

Conclusion
It has been a common practice in microarray analysis to
use fold change and t statistic to double filter DE genes. In
this paper, we provided a close examination on the draw-
back of the double filtering procedure, where fold change
and t statistic are based on contradicting assumptions. We
further demonstrated that several shrinkage methods
(SAM, shrunken t, and a Bayesian mixture model) can be
united under the mixture gene variance assumption.
Based on the theoretical derivation, the simulation study,
and the real data analysis, we showed compelling evi-
dence that well constructed shrinkage methods can out-
perform the double filtering procedure in identifying DE
genes. With publicly available softwares, these methods
are as easy to implement as the double filtering procedure.

We acknowledge some researchers' argument that the
double filtering procedure might work well because it fil-
ters out the genes that show relatively small differences

between conditions, which are sometimes considered to
be less biologically meaningful. This argument, however,
is based on the criterion of so called "biological meaning-
fulness" instead of testing power. Although many biolo-
gists refer to fold change in terms of "biological
meaningfulness", there is in fact no clear cut-off for it, and
2-fold is often invoked merely based on convenience. In
addition, different normalization methods can differ
quite drastically in terms of the fold changes they produce.
So a particular cut-off in fold change could mean one
thing using one method and quite another using a differ-
ent method. Taken together, even if researchers decide to
employ the double filtering procedure based on the
rationale of "biological meaningfulness", it is still helpful
to understand the potential loss in power.
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