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Abstract: Color plays an important role in human life: without it life would be dull and
monochromatic. Printing color with distinct characteristics, like hue, brightness and saturation,
and high resolution, are the main characteristic of image sensing devices. A flexible design of color
filter is also desired for angle insensitivity and independence of direction of polarization of incident
light. Furthermore, it is important that the designed filter be compatible with the image sensing
devices in terms of technology and size. Therefore, color filter requires special care in its design,
operation and integration. In this paper, we present a comprehensive review of nanostructured color
filter designs described to date and evaluate them in terms of their performance.
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1. Introduction

The incoming electromagnetic waves of the visible spectrum (400–700 nm) are capable of
stimulating the photo-receptor cells of the human retina, which enables color perception. In image
sensing devices (cameras, scanners, printers, etc.), which replicate the eye operation, color recognition
plays an imperative part to store accurate color information at each pixel of the captured image.
The produced color quality via filters is subject to full wave half width maximum value, efficiency and
distinct location of transmission peak/reflection dip in the visible spectrum. Hence, all aforementioned
characteristics play role in positioning the output color on the CIE Map 1931 [1].

Typically, additive or subtractive color and Bayer filter [2], along with polymer-based filter
technologies, have been exploited for image sensing. Over the last three decades, synthetic dyes and
pigment-based colors [3] have been extensively used for decorating objects, printing ink, synthetic fibers
and identification [4–6]. Nevertheless, these filters have many disadvantages such as non-recyclability,
non-affordability, and cause environmental damage. Likewise, their performance as image sensors [7,8]
also has limitations such as inadequate resolution and fragility. However, recent progress in color
filter design, along with the evolution in optical physics [9,10] and fabrication technology [11–13],
has revolutionized color filtering process and replaced the conventional dry/pigment-based coloring,
due to its color tunability, durability, high resolution and environmental friendliness.

In the past Charged Coupled Devices (CCD) were mainly used for different image sensing devices
like cameras, microscopes and detectors in the field of life sciences, astronomy and optical microscopy.
However, in recent times, Complementary Metal Oxide Semiconductor (CMOS) based sensing devices
have out-dated their predecessors in performance by demonstrating low power consumption and
higher miniaturization capability.
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Today, nano-structural color filters are being designed on a nano-scale and are one of the leading
participants in the miniaturization race. The idea of nonstructural color filters is derived from examples
in nature, such as butterflies, peacocks, beetles and Pollia fruits [14–16]. In structural filters the working
principle is based on the light-matter interaction, where light interacts with the structures designed
at nanoscale, and allows color filtration via light diffraction, scattering, reflection, refraction and
transmission at resonant wavelength.

This review focuses on working principles of nanostructure color filters and absorbers based on
Fabry-Ṕerot (FP) cavity thin films, plasmonics, dielectric and liquid crystal technologies. The significant
work in these fields is evaluated in terms of color quality, spatial resolution, dependence of output on
viewing angle and light polarization, and the required fabrication steps. The details of the dynamic
color filters such as mechanically [17], chemically [18] or electrically tuned [19], etc., are beyond the
scope of this review. The reader is referred to [20–22] for review articles related to these areas.

2. Thin Films Color Filters

Figure 1a illustrates that a material discontinuity in the propagation path of light from refractive
index n1 to refractive index n2 allows light reflection, refraction and transmission and is dependent on
the incident angle θi.

Figure 1. Vector diagram for transmission and reflection in FP-cavity when light comes across (a) Single
and (b) Multiple material discontinuities.

The Fresnel equations for transmission (t) and reflection (r) at a material interface for s and p
polarization are given as follows:

ts =
2n1cosθi

n1cosθi + n2cosθt
, (1)

tp =
2n1cosθi

n2cosθi + n1cosθt
, (2)

rs =
n1cosθi + n2cosθt

n1cosθi + n2cosθt
, (3)

rp =
n2cosθi − n1cosθt

n2cosθi + n1cosθt
. (4)

Here, s and p subscripts indicate reflection r and transmission t in s and p polarization, respectively.
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In another case, where light strikes a stack of high refractive index layer n2 of thickness L
sandwiched between two layers with refractive indices n1 and n2 as shown in Figure 1b. This setup is
referred as Fabry Ṕerot (FP) interferometer and allows filtration depending on the FP cavity thickness
and refractive indices n1, n2, and n3. Here, rij indicates reflection coefficient at the interface between
region 1 and 2.

At FP resonance light gets trapped into the cavity in the form of standing waves and would
experience back and forth reflection between two boundaries. On the other hands, the rays propagating
in to the regions adjacent to the films will result in total reflection or transmission from the system.
Since these rays travel a different distance within the films, they may have destructive or constructive
interference. In such case, the intensity of the reflected and refracted waves, along with the refractive
index of material, depends on the cavity thickness L and results in filtering out the undesired
frequencies. Here L = mλ/2n , where m is an integer and λ is the wavelength in free space [23–25].

FP-based filtration is a multifaceted setup for manipulating the light propagation. It allows certain
frequencies to pass through it or can act as an anti reflective (AR) coating to reduce the light reflection
in a design, which may cause destructive interference. There have been numerous applications of
FP resonators in different science fields such as, clinical diagnosis [26,27], optical communication
[28,29] and sensing [30–32]. The application of Metal Insulator Metal (MIM)-based FP interferometers,
which exhibit color filtration by tuning cavity thickness, sandwiched between two metallic mirror
layers is still widely adopted because of its cost-effectiveness, simple design, few fabrication steps
[33–37], and easy integration. In this section, the research done to date on FP-based color filters is
discussed and reviewed.

A transmission based color filter was designed to filter additive colors (red, green and blue)
colors [38]. It comprised of silver (Ag) as metallic layers and silicon dioxide (SiO2) as dielectric.
The devices of different dielectric thicknesses h were fabricated by using Plasma Enhanced Chemical
Vapor Deposition (PECVD) [13] methodology. The device was further evaluated in terms of its
polarization sensitivity for oblique incidence, angular dependence, and positional dependence.
The minimum reported bandwidth was approximately 100 nm for green color, and the color intensity
was 60%. However, for the oblique light incidence the angular dependence of the relative transmission
was up to ≈12◦, and the device was insensitive.

Likewise, for the positional dependence the center wavelength showed 10% variation. The results
were further improved by using titanium oxide (TiO2) as a dielectric layer with a phase compensating
dielectric overlay; increasing the angle insensitivity up to 70◦. The design was modified further by
using an overlay on the top of the stack [12] (Figure 2A), which allowed dual mode color filtering as well
as phase compensation. The thickness of the TiO2 cavity allowed the sweeping of resonant frequency
across the visible regime. Moreover, the design was flexible enough to change color saturation by
varying the thickness of one of the Ag mirrors, with a slight change in transmission efficiency.

Zhangyang Li et al. [39] exhibited the performance of ultra-thin, large area, lithography-free
metallic films as super absorbers and additive color filters. The design comprised of an insulating film
(SiO2) sandwiched between two metallic films (Ag). The design behaved as a super absorber when
used in reflection mode with an optically thick layer at the transmission end, hence blocking all the
transmission through the device. The transmission and absorbance spectra were studied by varying
the thickness of dielectric, i.e., the Fabry-Perot cavity. The resonance wavelength swept across the
visible and near infrared regions. The plasmonic effect was not noticed and the power absorption was
a maximum at the metal-dielectric interface. In color filters the width of the metallic layers reduced,
and the device performance is examined by changing the width of the layer opposite to the light
impinging layer. The leaking mode from the cavity was observed due to the small width of the layer
at the transmitting end. Furthermore, the dependence of color filters on the angle of incidence and
modes of polarization of light source are also taken care of. It was observed that the device was more
sensitive to p polarized than s polarized mode and showed angle invariance up to 60◦. The results
showed 97% of absorption intensity for super absorbers with Full Width Half Maximum (FWHM) of
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8 nm. Likewise, transmission color filters achieved over 60% transmission across the visible region.
Although the aforementioned examples have exhibited outstanding results, they suffer from high
losses due to the presence of metal [12,40]. Hence, CMOS-compatible dielectric materials with a high
refractive index [41] can be helpful in reducing losses and low angle variance.

Figure 2. (A) Calculated and measured transmission and reflection spectra for the three fabricated
devices shows RGB in transmission and CMY in reflection mode. The CIE 1931 further provides the
coordinates of the produced results [12]. (B) Calculated and measured spectra along with the camera
images of broadband visible and near-infrared absorbers implemented with planar nanolayered stacks.
Reproduced with permission of [42]. Copyright American Chemical Society, 2020. (C) Demonstration
of angle invariance of up to 0 to 65◦ view angle for fabricated lossy medium-based optical cavity using
optical images. Reproduced with permission of [43]. Copyright John Wiley & Sons, 2014.

An ultra-thin design (i.e., less than a quarter wavelength of the light) was proposed where
an asymmetric FP cavity implies a highly absorbing germanium (Ge) on an optically thick gold
(Au) substrate [44]. The obtained results showed maximum absorbance (1− R) due to minimum
transmission into the substrate.

Since Ge has high loss and low refractive index when compared with Si, especially its amorphous
phase (a-Si) is preferred over it. Moreover, a high-refractive index allows angle invariance, therefore
research is inclined towards the material with high refractive indices. An angle robust reflective
spectrum filter with high color purity and ±65◦ angle invariance is demonstrated by exploiting strong
resonance effects in a FP optical cavity containing lossy media [43] (Figure 2C). It acquires remarkably
improved colour saturation by choosing a-Si, which has a lower complex dielectric constant. Due to its
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low absorption and high reflectivity, Ag was used as its metallic layer. The thinner metallic layer at the
top (18 nm) allowed the incident light to pass through the structure and simultaneously provide an
enhanced reflection from the resonance cavity; however, the bottom Ag is optically dense to block the
transmitted light. An organic layer, made from perylene tetracarboxylic bis-benzimidazole (PTCBI),
is used to confirm an even thin Ag film that minimizes the scattering.

A CMOS-compatible ultra-thin color filter containing a-Si deposited on an optically opaque thin
aluminium film was demonstrated as a subtractive color filter [45]. The reported angle insensitivity
is up to 60%. Similarly, a nano-resonantor comprising a-Si between two Ag layers showed angle
insensitivity up to 65◦ and low FWHM value of approximately 74 nm in reflection mode [43,46].
The wide angle flexible trans transmissive structural colors with high saturation and efficiency were
designed by exploiting multi-cavity resonances [46]. The design consists of a stack of alternating
Zinc sulphide (ZnS) as a dielectric layer and thin metal (Ag) films. The high refractive index of the
dielectric layer allowed 70◦ of angle invariance. The design was further coated with a thin ZnS layer
as an Anti-reflection (AR) from both the ends (i.e., top and bottom), which further enhanced the color
efficiency. The device fabrication used simple e-beam evaporation for layer deposition. In order to
avoid precise deposition of the thin metallic layer and AR coating the design was further improved by
employing a multi-layer semi-transparent structure for suppressing higher order FP-resonances [47].
The FP design is comprised of a transparent ZnS sandwiched between a thin Ag metallic layer and has
an overlay at the top for phase compensation. The cavity is designed to have 3rd order FP-resonance,
which is useful to produce good color quality. However, a 5th order resonance is suppressed by
employing a thin lossy material layer (Ge) in the center of the ZnS cavity. The angle invariance of 60◦

was reported with an FWHM value as low as 36 nm.
A near-unity absorption as high as 99.58% is reported by using chromium (Cr) as a metallic

mirror and SiO2 as a dielectric layer [48]. The results showed ±60◦ angle tolerance with polarization
independence. Similarly, an angle insensitivity of up to 50◦ was achieved [49] in reflection color
filtering with simple multilayer film deposition. It comprised of lossy a-Si material as a dielectric
sandwiched by a thin Cr film and a thick Ag layer. The Ag at the bottom of the stack allows lowest
material absorption and highest reflectivity in the visible regime. Likewise, Cr is used as a partial
reflection mirror and the absorptive layer. The upper TiO2 layer is used as an effective anti-reflection
layer to chrome film, and hence helps in improving the color saturation.

An asymmetric FP-based reflective color filter was demonstrated by [50]. It used lossless metal
nickel (Ni) thin film as an anti-reflection coating on the top of the cavity with a thick Al layer at the
base which allowed zero transmission. The dielectric consisted of lossless material SiO2. The width
of the spacer between Ni and Al allowed color absorption or reflection across the visible regime.
The reported color sensitivity invariance is up to 60◦ with spatial resolution up to 50,000 dpi. Although
[49,50] showed promising results, managing thin lossy metals requires special treatment. Recently,
a broadband light absorber was constructed with absorption > 95% in the visible region by utilizing
thermally evaporated Ag and Au layer [42] (Figure 2B), which exhibit refractive indices much different
from the bulk-state value [51]. Nevertheless, the angle invariance was high, i.e., up to 30◦.

The summary of all the reported work in terms of FP-cavity performance is given in Table 1.
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Table 1. Thin Films color filters.

Angle Invariance (◦) FWHM (nm) Mode (T/A/R) Efficiency (%) Ref

12 100 T 60 [38]
70 74 T and R NG [12]
60 8 T and A A = 97 & T = 60 [39]
60 NG R NG [44]
±65 74 R NG [43]
60 70 A NG [45]
65 100 R 80 [46]
70 NG T 70 [46]
60 36 T 54 [47]
±60 NA A 99.58 [48]
50 NG R NG [49]
60 NG R 90 [50]
30 NA A 95 [42]

Note: NG = Not given, NA = Not Applicable, A = Absorption, T = Transmission and R = Reflection.

3. Plasmons

A plasmon is a quantum of plasma oscillation. The emergence of plasmons dates back to the
Roman Empire’s 4th century AD; the Lycurgus Cup [52,53] is one of the famous examples of plasmons.
It contains gold nanoparticles on glass, and filters different (colors) wavelengths in reflection (green)
and transmission (red) mode.

Since their inception, plasmons have been implemented for a number of applications like light
emitting diodes (LED) [54,55], biosensors [56,57], laser ablation [58,59] solar cells [60–63], nanolasers
[64–66], Surface Enhanced Raman Spectroscopy (SERS) [67,68], waveguides [69–71] and lithography
[72,73].

3.1. Surface Plasmon Polaritons

Surface plasmons [74–80] are an oscillation of electron density with respect to fixed ions
localized at surfaces of metallic structures. The induction of surface charge is accompanied with
electromagnetic oscillations and is known as Surface Plasmon Polaritons (SPP), where polaritons refer
to the coupled oscillation of charged particles and electromagnetic waves. Likewise, SPP are capable
of travelling along the interface of two materials having negative and positive permittivity materials,
i.e., metal-dielectric interface. Moreover, Surface Plasmon Resonance (SPR) is the resonant excitation
of conduction electrons stimulated via incident electromagnetic waves at the metal-dielectric interface.

Figure 3 comprises of various ways of generating plasmons. As shown in Figure 3a,
SPRs generated at dielectric-metal interface do not have enough momentum (compared to light)
to propagate along the interface. Hence different ways are adopted to fulfill momentum matching
needs, such as prisms (Figure 3b), also referred as Otto configuration [76,77] and metallic gratings with
period Λ, which reflects and transmits light in different diffracting modes as shown in Figure 3c [76,81].
Similarly, from Figure 3d, by varying refractive indices and path for incident light and by introducing
a waveguide between the periodic grating and substrate, which leads to Guided Mode Resonances
(GMR) shown in Figure 3e. Furthermore, the localization of SPRs is achieved when light impinges on
Metallic Nanoparticle (MNP) on a dielectric substrate as shown in Figure 3f. Moreover, the results can
be enhanced by increasing the number of MNP in form of a lattice, which results in coupling all the
Localized Surface Plasmons (LSP) due to each MNP in the lattice. The effect of increase in number
of MNPs is demonstrated in Figure 3g. Lastly, Gap Surface Plasmon (GSP) can be generated in the
dielectric gap between a truncated and extended metallic layers as shown in Figure 3h.

In the subsequent sections, the physics behind different generating mechanism of plasmons along
with its notable reported works are discussed in details.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3. Generating Plasmons. (a) Dispersion relation of surface plasmons compared to light in
vacuum and in the dielectric medium. Incident light on a (b) glass prism with gold sputtered on one
of its faces, SPP propagates along the glass and Au interface (c) Diffraction grating with period Λ
(d) shows diffraction grating with varying refractive index and path for the incident light (e) represent
a GMR-based grating (f) The reaction of single nano-particle on dielectric to the incident light (g) shows
the reaction of lattice of nanoparticles to the incident angle and (h) GSP resonance, a special kind of
FP-cavity with thin dielectric film and one metallic truncated film on the top.

3.1.1. Otto Configuration

Figure 3b shows a basic setup of Otto configuration, where a prism consists of a gold (Au) layer
on one of its rectangular faces. When a coherent light wave impinges at the glass/metal (usually Au)



Nanomaterials 2020, 10, 1554 8 of 36

interface at an angle θi, greater than the critical angle θc(arcsin(
√

εm
εd
)), here εd and εm are dielectric

constants of glass and metal respectively, and satisfy εd > εm, and the light is totally reflected back
into the glass. However, the electric field propagating along x-direction (TM mode) with amplitude
decaying exponentially away from interface represents an evanescent wave. Likewise, the electric field
associated with SPPs is given as:

Ej = (Ej
x, 0, Ej

z)exp{i(ksppx−ωt)}exp(−αj |z|); (5)

where, j is m for metal and d for dielectric respectively. It is to be noted that the SPP can only be excited
with p polarized light, i.e., transverse magnetic (TM) mode propagating along the metal/dielectric
interface with amplitude decaying on both sides [82]. The SPP dispersion formula is given as:

kSPP =
ω

c

√
ε(ω)εm

ε(ω) + εm
; (6)

where, ε(ω) is the dielectric function of metal and αj in Equation (6) is given as:

αd =
ω

c
εm√

ε(ω) + εm
, (7)

and

αm =
ω

c
ε(ω)√

ε(ω) + εm
. (8)

It is to be noted here that Equation (6) is valid for the negative real part and the negligible
imaginary part of ε(ω). Hence metals like Au, Ag, etc. are suitable for generating SPPs in the
visible region.

Although the usage of a prism for generating SPRs at the metal-dielectric interface is an obstacle
in its miniaturization, it is used in biosensing devices due to its simple design and sensitivity to change
in the refractive index caused by adsorption or desorption of molecules on its surface. On the other
hand, grating-based SPRs have been extensively explored due to its miniaturization feasibility and
wide range of applications like biosensing [83–86], solar cells [87], spectral imaging [88] and color
filtering [89].

3.1.2. 1D Diffraction Grating

Grating-based SPRs allow coupling of incident light with SPP through grating, where resonance
conditions are met through diffraction of incident light.

When a plane wave of monochromatic light of wavelength λ incident at an angle θi on a
periodically corrugated material of periodicity Λ, the light is diffracted in forward (transmission) and
backward (reflection) directions as shown in Figure 3c. The dispersion relation for grating coupling
to overcome the momentum mismatch between the energy of impinging photon and of generated
electromagnetic waves is given as:

kSPP =
ω

c
√

εmsinθi±mG; (9)

where, m is the diffraction order and G = 2π
Λ is the reciprocal lattice with period Λ.

The 1D diffraction grating along a waveguide slab (a slab of material between two materials
with lower refractive indices form a slab waveguide) is known as a waveguide mode coupling.
The resonance conditions are met when the angle of diffracted mode of incident light matches the angle
of guided mode (Figure 3e). These wave are leaked through the gratings and the interference of leaky
waves and diffracted wave produces a filter response as shown in Figure 3e. Mathematically, the guided
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mode resonance condition is satisfied by the dispersion relation of the waveguide coupler and is given
as [82]:

mπ = Hc

√
(k2

0 × n2
h)− β2 − tan−1(

nh
nc1

)2ρ ×

√
β2 − k2

0 × n2
c1

(k2
0 × n2

h)− β2
− tan−1(

nh
nc2

)2ρ ×

√
β2 − k2

0 × n2
c2

(k2
0 × n2

h)− β2
; (10)

where, Hc is the core thickness; β is the propagation constant; nh, nc1 and nc2 are the refractive
indices of core, upper cladding and substrate, respectively; and k0 is the wave number in free space.
Furthermore, ρ is 1 and 0 for TM and TE mode respectively. The guided mode resonance occurs at
the phase matching between grating vector and the propagation constant for the guided mode of the
waveguide [90]. There are numerous reported designs where the waveguide coupler is exploited for
color filtration. Several of the outstanding ones are discussed in this section.

Kaplan et al. demonstrated a highly efficient waveguide coupler based color filter with tunable
transmission bandwidth [91]. It consisted of a waveguide layer (silicon nitride) between low refractive
indices layer, i.e., silicon dioxide (SiO2). The metallic grating was implemented on the buffer layer at
stack (buffer layer/waveguide layer/substrate) using Nano Imprint Lithography (NIL) [72,92].

The impinging source from the grating end was set at TM polarization with zero incidence angle.
The wavelength of the transmitted light was dependent on the grating period, while the bandwidth
could be adjusted by changing the buffer thickness, hence allowing color tunability by changing the
physical dimension of the device. The results were collected through experiments using two different
devices: one for red and the other for blue color generation. The experimental results were in good
agreement with the simulated results. Although the obtained results showed transmission as high as
90%, with tunable bandwidth, it was highly angle sensitive.

Similarly, an ultra-thin metal (Al)—dielectric (TiO2) GMR structure was studied [93]. An optical
thin layer of Al was patterned using e-beam lithography as a cladding on a dielectric guiding layer.
As a result, color filtration became possible due to the emergence of the incidence wave and the leaky
guided modes of the TiO2 layer. The results showed bandwidth 60, 70 and 90 nm for blue, green and
red respectively, with transmission efficiency up to 73%, but with angle variance. In another study,
the impact of core material at a low refractive index contrast was implemented using Al2O3 as a core
with ultra-thin Al grating [94]. This contrast allowed SPR to occur at Rayleigh anomaly wavelength
[95]. The results were quite promising with 80% efficiency and approximately 20 nm bandwidth.
The device was fabricated using a regular lift off process with the help of laser interference lithography.
However, the design exhibited angle sensitivity.

On the other hand, the angle sensitivity of 1D grating was made useful in a reflection-based
dielectric-based guided mode resonant color filter design with angle tunability for additive color filters.
It showed efficiencies of approximately 94%, 96% and 99% with green and red color filters, respectively.
The designed silicon nitride grating was patterned on a glass substrate using UV-laser interferometric
lithography. The reported pixel bandwidth was 12 nm [96]. Similarly, Koirala et al. [97] presented
a highly efficient polarization controlled structural color filter based on an ultra-thin 1D resonant
Al-based grating structure with silicon nitride as a guided layer. It was proposed that 0.5 duty cycle
(required to fulfill the guided mode resonant condition) allows transmission in TE and TM mode.

This is, as per our best knowledge, the first time where such a setup was used in transmission
mode. The same design was exploited by replacing Al gratings with hydrogenated amorphous
silicon (H:a-Si) grating in an all dielectric polarization-tailored trans-reflective structural multicolor
pixels design [98]. It showed 95% and 90% transmission efficiency in TM and TE mode, respectively
(Figure 4A,C); however, the angle tolerance improved to 35◦. Similar results were achieved by Al
sub-wavelength grating with slits filled with dielectric (SiO2) allowing enhanced EOT for TE mode [99]
by exploiting GMR, hence the SPRs are responsible for EOT in TM mode. The gratings are further
covered with a thin overlay of SiO2, which improved the device operation. Although color intensity
improved in TE, the increase in bandwidth resulted in low color saturation. Likewise, the device
remained angle sensitive.
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Figure 4. (A) Schematic of plasmonic nano-cavity along with its fabricated device is illustrated.
The charge distribution and Poynting vector direction is shown with the help of a simulator. The impact
of dimension of nanoslits on reflection spectra is further shown theoretically and experimentally and
results for CMY colors are produced [100]. (B) Scanning Electron Microscope (SEM) images of fabricated
multicolor pixel and their spectral transmission. Camera image of vivid color produced shows its
dependency on the grating period and angle of polarization (C) Verification of GMR for TE and TM
mode transmission spectra [98].

A highly transmissive plasmonic subtractive color filter was proposed in [101]. The desirable
results were achieved by exploiting the counter-intuitive phenomenon of Extraordinary Low
Transmission (ELT) [102]. An optically thin silver (Ag) film patterned in 1D nanogratings was fabricated
to achieve subtractive color. The transmission valley, with 60 to 70% efficiency, can be tuned across the
visible regime by varying the periodicity of the silver gratings. In addition, this design is capable of
filtering the subtractive color with only a few nanoslits, close to the optical diffraction limit (λ/2, i.e.,
200 to 350 nm).

The dependence of GMR based color filters on light incidence angle variance and direction
of polarization has been a matter of concern [91,103–106]. A symmetric two-dimensional grating
pattern, 2D version of [91], resolved the issues faced in the aforementioned examples. A polarization
independent bandpass filtering was made possible by the GMR between orthogonally diffractive
waves and both TE and TM mode [90]. The change in grating peak resulted in a change in center
frequency. The reported design exhibited arrow bandwidth of 13, 14 and 17 nm for blue, green and
red color. However, the efficiency remains constant at 85%. Moreover, the fabrication steps included
e-beam lithography and dry etching. Likewise the 2D version of [107] generated a wide polarization
controlled color gamut [108].

Ryan Wuo et al. [100] numerically and experimentally demonstrated localized resonance in
silver (Ag) nanoslits by light funneling (Figure 4A). Here the silver was conformally deposited on
the silica grating as shown. The design of the grating with certain period, width and periodicity
concentrated incident light into silica nano-grooves, which behave more like nano-resonators.
When the light is impinged on the device from the silica end, it induces charge polarization inside the
grooves. This charge induction changes the E-field of incident light, hence trapping it in the grooves.
The resonant wavelength is tuned across the visible regime by changing the width and depth of Metal
Insulator Metal Fabry-Perot (MIMFP) nano-grooves.
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The 1D diffraction-based color filters allow an undesirable angle sensitivity in the results.
Although fabrication of angle nano-resonators requires more fabrication steps and advanced
technology, it happens to be a better option in terms of its performance, e.g., the polarization angle and
angle insensitivity.

Recently, diffraction gratings have been studied as wave retarders [107]—capable of changing the
direction of light polarization. A 4-fold color filtering was achieved in the visible region by utilizing
Plasmonic Phase Retarder (PPR). It consisted of a periodic array of silver nanowires, which supported
Localized Surface Plasmon Resonances (LSPRs) that can induce strong phase shift for TM or TE mode
[109]. Hence, with the help of a colorless analysing polarizer, it produced four different colors from
one fabricated device.

The summary of the discussed examples is given in Table 2, where all the designs are
polarization dependable.

Table 2. 1D Diffraction-based color filters.

Angle Invariance (◦) FWHM (nm) Efficiency (%) Ref

0 30 90 [91]
0 60 73 [93]
0 20 80 [94]
0 12 99 [96]
0 NG 90 [107]

35 NG 95 [98]
0 100 70 [99]
0 17 85 [90]
±80 NG NG [100]

Note: NG = Not given.

3.2. Localized Surface Plasmonic Resonances

Localized Surface Plasmon Resonance (LSPR) involves the combined oscillation of MNP and the
associated oscillation of the electromagnetic field (Figure 3f). The resonance wavelength (λres) depends
on the shape, size, composition of MNPs, and the local optical environment of the particles. It generally
occurs in the visible to near IR spectra for NP of noble metals (Au, Cu, and Ag). Mathematically,
dependence of extinction optical (σext) on shape, density, dimensions and surrounding environment
of a spherical MNP is given as [110,111]:

σext(λ) =
24π2N3

Aεout
3
2 a3

λ ln (10)

[
εi(λ)

(εr(λ) + χεout)2 + εi
2

]
; (11)

where, NA is the areal density; a is the radius; and εout is the dielectric constant of the surrounding
medium of the nano-structure. Here, εm is assumed to be the positive real integer and is independent
of λ. It is to be noted that εi and εr are the imaginary and real components of the metal dielectric
function respectively. Additionally, χ gives the aspect ratio of the nanostructure.

The spectral bandwidth of Localized Surface Plasmon (LSP) is around 80∼100 nm FWHM,
which is far greater than the spectral bandwidth of the change in the reflectance dip of SPPs, i.e., 50 nm.
This increased spectral width can be reduced by increasing the number of nanoparticles.

The induced dipole moment p due to electromagnetic field (E) in a single metallic nanoparticle is
given as

p = αE0; (12)
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where, α is the polarizability and can be obtained using a quasistatic approach. By considering the
size of particles smaller than the light involved polarizability can be derived from Equation (12) as per
the following:

α = 4πa3 ε(ω)− 1
ε(ω) + 2

; (13)

where, a is the radius of nanoparticle, ε(ω) is the dielectric constant, and α is the measure of effect of
applied electric field on the particle. Hence, α is directly proportional to charge displacement within
the particle. The resonance occurs due to restoring Coulomb force inside the particles by satisfying
ε(ω) + 2 = 0 or ε(ω) = −2. Here the strength of the force determines the resonance frequency while
the damping determines resonance width [112–117].

William L Barnes [118] elucidated the effect of the shape of nanoparticles on the resonance
frequency in terms of polarizability. As per the author’s mathematical and theoretical explanation
polarizability depend on the composition of the particle as well as the environment. In addition, it also
depends on the net electric field inside the particle.

The quality factor of the resonance is the ratio of resonance wavelength and the width of resonance
and it has the highest value when Im(ε(ω) + 2) = 0. Since the dielectric medium of metal is a complex
value, therefore the denominator of Equation (13) cannot reduce to zero. Later, Wang and Shen [89]
proved with their quasi-static approximation that the quality factor actually depends on the dielectric
medium of the particle. Hence LSP has been a disappointment for different application where a high
Q factor is desired.

A significant improvement in Q factor arises when two or more than two nanoparticles are
brought close together. The interaction of the EM fields between nanoparticles results in coupled SP
modes [119] and field enhancement. Similarly, metallic nano-particles arranged in a lattice experience
surface lattice resonance (SLR) due to the coupling of LSP (Figure 3). It leads to significant narrowing of
the spectral bandwidth and results in high Q factor [120]. The position of resonance in a lattice depends
on the shape, size, incidence angle and the refractive index of the metal-dielectric layer [121–124].

The emergence of Extraordinary Optical Transmission (EOT) [9] due to coupling of surface
plasmons in a surface lattice has been a breakthrough. It has been widely used and its applications
include drug delivery [125], imaging [126,127], color filtering [128,129], high resolution display [130]
and high sensitive sensing [131,132]. Since the research in the field of plasmonics is expedited with
the discovery of new materials and design fabrication techniques [72,92,133], this review focuses on
and evaluates those developments. The periodic subwavelength nano-particles of any shape, material,
and sufficient number for LSPR, behaves in the same manner to incident light as electricity to atomic
crystals at the subatomic level. In this section, the reported work to date for photonic crystals is
discussed and evaluated in terms of its performance as a color filter. The section includes nano-porous
films, hybrid structures, metasurfaces and GSP-based designs studied so far.

3.2.1. Nanoholes

A porous metallic film on dielectric when excited by a white light source results in EOT and only
allows a light of certain wavelength (λres) to pass through it. The λres depends on the periodicity
and geometry dielectric constant of metal and dielectric respectively, and a lattice arrangement of
holes [134–140]. Similarly, the mode of operation, i.e., transmission [141] or reflection [142] of the
structure, also depends on the shape of the nanoparticles.

The localized field in nanoholes and nanoparticles is widely investigated [143]. It has been
reported that LSPR in nanoholes is dependent on the lattice periodicity; however, it is less affected
in a metasurfaces array. Similarly, the fabrication process of nanoholes on metal films is easier
as compared to metasurfaces. Nevertheless, an increase in resonance quality in nanoholes is quite
challenging [112,144–148]. Therefore, the application of a perforated metal film (usually bio-compatible,
i.e., Au/Ag) on the dielectric layer is limited to biosensing sensors [149–157]. On the other hand,
the application of subwavelength nanoholes is not limited to electromagnetic waves, it has been
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theoretically proven that various acoustic absorbers, under coherent conditions can be attained using
the effective deep-subwavelength holey rigid plate, such as steel [158].

A dielectric-based 2D subwavelength dielectric grating was proposed for Back Side Illuminating
(BIS) CMOS Image Sensor (CIS) technologies [159]. It consisted of a hexagonal nanohole array for
red and blue color, and a square nanohole array for green color production with a silicon spacer
between photodiode layer and grating. The device was fabricated with poly-Si materials prepared
by a-Si deposition followed by a high-temperature furnace annealing method [160,161]. The design
exhibited promising transmitted results, i.e., 60–80% efficiency with angle invariance up to ±20%.
The high transmission efficiency was achieved due to the high refractive index and low absorption
of a-Si which helped in enhancing the spectral features [162]. Besides, holes of different shapes have
also been explored, and have shown promising results, and has provided a flexible tuning mechanism.
For instance, a CMOS-compatible polarization-switchable array of asymmetric cross-shaped nanoholes
in an Al ultra-thin film was reported [163]. The mechanical-based optical filtering enabled a single
design to encode two information states, which could be decoded by changing the polarization angle
of incident white light. However, the maximum transmission efficiency of subtractive colors was
insufficient, i.e., 14% with incident angle variance.

The nanoholes with FP etalon have demonstrated efficient results. Chang et al. [164] demonstrated
an efficient structural color printing filter based on plasmonic metasurfaces with a thin MIM stack.
In order to avoid color crosstalk, holes on perforated Ag film were milled, through Focus Ion Beam
(FIB) [165], in a hexagonal array. The design was further covered with a thin transparent polymer layer,
PMMA. The change in λres due to overlay is covered by geometrical adjustments.The design showed
promising results and allowed pure perfect absorption resonances of approximately 90% with a high
Q factor. Furthermore, the design was angle insensitive up to approximately 70◦, accredited to the
angle robustness of the FP cavity. However, the usage of Ag in this design had introduced additional
fabrication steps like adhesion layer between glass and Ag and PMMA layers, to avoid Ag oxidation.
Recently, a transmission efficiency of 60% was exhibited by increasing the density of coaxial holes of
optimized size in a coaxial hexagonal lattice (with bigger holes), on a MIM stack of Al/glass/Al [166].
Although the design exhibited angle invariance of approximately 60◦, the color quality reduced with
the increase in number of the coaxial holes.

3.2.2. Nanohole-Nanodisk Hybrid Color Filters

Kumar et al. [167] with a nanohole-nanodisk hybrid structure, to our best knowledge, was the
first one who demonstrated a system that could achieve bright-field color prints with resolution up
to diffraction limit (i.e., 10,000 dpi). To obtain desirable results, the scattering strength of resonators
(nanoparticles) was increased by raising them above a metal back reflector (Ag/Au), hence the light
of certain wavelength was reflected back to the viewer‘s eye. A full palette of colors was obtained
by changing the diameter and gaps between the nanodisks without varying the periodicity of the
array. The dips in the reflected spectrum showed the presence of Fano resonance [168] that was the
outcome of a broad spectrum of nanoholes and nanodisks with sharp peaks of SPRs. This work
was further extended by using, aluminium instead of Ag. It paved the way towards a cost-effective
and stable structure, as compared to the short shelf life of Ag [169]. Its high-throughput lithography
approaches also gives it an edge over Au and Ag. Moreover, the range of printable plasmonic colors
was expanded from approximately 15 to more than 300 colors by spatially mixing and adjusting the
nano-scale spacing of the aluminium-based discrete nanostructures [170] (Figure 5a,b).

Recently, spatial resolution of approximately 141,000 dpi with a wide gamut and large angle
invariant was achieved by implementing circular nanohole-nano-disk hybrid nanostructure arrays
based on the uncoupled Localized Surface Plasmon Polaritons (LSPPs) [171] (Figure 5c). The λres

spanned across the visible regime by varying the diameter of the nanodisk-nanohole structure rather
than its periodicity. Hence a single nanodisk-nanohole could be operated as an individual pixel
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resulting in sub-diffraction limit resolution. The results included theoretical as well as experimental
results for subtractive colors.

An ultra-thin hexagonal nanodisk-nanohole hybrid structure array generated high gamut,
high color brightness and polarization independent subtractive colors with 77,000 dpi [172].
Here, the excitation of short range SPR [173] and LSPR contributed to the ELT effect for the
designed structure.

A structural design was demonstrated to generate structural color through triangular-latticed
square nanohole arrays in Al film with bottom Al nanodisks [174]. The design was fabricated using
e-beam lithography and metal deposition by adjusting the period and side length of nanohole arrays,
colors, across the entire visible regime, with tunable brightness, hue and saturation, and pixel density
of 12,700 dpi. However, the filtered colors were highly saturated.

An angle-insensitive of scratch-resistant hybrid disk-hole plasmonic based color filter was
demonstrated by utilizing the PMMA layer on a glass substrate [175]. For fabrication, NIL was
employed, where the silicon masters used for embossing were fabricated using EBL and subsequent
dry etching. Furthermore, the samples were made using hot embossing and metal evaporation.
Later, Al was deposited using electron-beam evaporation. The hybridization of plasmonic modes due
to nanodisks and nanohole array offered angle-insensitivity up to 60◦.

Figure 5. (a) schematic diagram of aluminium based nanohole-nanodisk hybrid structure.
(b) The impact of variation in diameter, periodicity and (spacing) diameter and periodicity on the color
image due to color toning and mixing is demonstrated experimentally. Reproduced with permission of
[170]. Copyright American Chemical Society, 2014. (c) Color printing resolution test pattern for LSPP
based nanostructures at the scale bar of (i) 200 nm, (ii) 1 µm and (iii) 500 nm [171].
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3.2.3. Metasurfaces

Metamaterials with subwavelength thickness, such as nanodisks, nano spheres, nanotubes and
thin films, are capable of manipulating the wave front of impinging light by changing its phase [176],
amplitude [177] or angle of polarization [178]. Its applications include: cloaking [179,180], polarization
manipulation [181–183], high resolution lenses [184,185] and perfect absorbers [186]. The performance
of metasurfaces as color filters have shown remarkable results; this section includes the reported work
in this field.

An ultra-thin Ag patch array on silica was demonstrated [187] (Figure 6B). The Ag was deposited
using magnetron sputtering followed by FIB. The λres is affected by change in patch dimensions,
hence it can be swept across the visible regime. The structure showed the angle sensitivity up to 60◦

in transmission and reflection modes. The angle insensitivity is credited to LSPR at nano patch array.
However, the transmission efficiency is up to 40%, and usage of Ag for CMOS devices has its own
disadvantages [188].

Figure 6. (A) Experimental and theoretical results of vivid colors produced due to Al nanorod as a
single nanorod and in hexagonal array [189]. (B) Schematic diagram of Ag nanopatch on glass substrate
with different periodicities allowing angle invariant (up to 60◦) additive and subtractive color filtration
in transmission and reflection respectively. The plot for simulated and experimental spectra with the
color image inset shows the obtained results. SEM gives a close look at the fabricated nanopatch array.
Reproduced with permission of [187]. Copyright John Wiley & Sons, 2016. (C) schematic diagram
of randomly distributed Ag nanodisks, the λres was swept by varying the diameter of the nanodisks.
The transmission spectra with color image in inset shows the color quality produced. Reproduced with
permission of [190]. Copyright The Optical Society, 2013. (D) Schematic diagram of thin Al nanopatch
array on a glass substrate, this design filters out white color into distinct subtractive colors by varying
the pitch of array. The color quality is evident in SEM and camera image of the fabricated filters.
The polarization independence is verified by plotting reflection spectra at different polarization angles.
Reproduced with permission of [191]. Copyright American Chemical Society, 2014.
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A 2D array of opaque, but physically thin Al nanopatch array on glass, demonstrated highly
efficient plasmonic subtractive color filtering by capitalizing on SP-mediated selective transmission
through it. Here, the transmission was suppressed by opaque nano-patches instead of ELT. The spectral
position of the transmission valley was governed by varying the periodicity of the nanopatches,
and realized a palette of subtractive colors [191] (Figure 6D).

A highly polarized angle-sensitive CMOS-compatible aluminium nanorods arranged in a
hexagonal lattice and excited via a prism produced vivid, high-contrast colors of 100:1 with the
footprint of 25 µm× 25 µm (Figure 6A). Here the far-field diffractive coupling is exploited to narrow
down the bandwidth down [189,192], and the physical dimensions of nanorod allowed additive color
tuning across the spectrum. However, the usage of a prism for excitation is a hurdle in its integration
and miniaturization.

An array of two dimensional randomly distributed silver nanodisks on a glass substrate with
improved angle insensitivity up to 60◦ for reflected color filters was demonstrated [190] (Figure 6C).
It was possible by defying hybridized LSPR and isolating the nano-disks. The uncoupled LSPR
allowed better angle sensitivity as compared to the coupled LSPR. The color was tuned by varying the
diameter of the nanodisks, while the minimum distance, to avoid LSPR coupling, between nanodisks
was kept up to 80 nm. A broad series of color filters with colors varying from yellow to cyan
shown were fabricated with the nano-disk diameter ranging from 66–166 nm. The circular shape
of the nanostructure allowed polarization insensitivity and showed good brightness and high color
contrast across the visible region. The angle insensitivity was further improved to 70◦ with randomly
distributed nanodisks and nanoholes fabricated with hydrogen silsesquioxane (HSQ) and Ag films on
silicon substrate [193]. The LSPR based color filters are further summarized in Table 3.

Table 3. LSPR-based color filters.

Nanohole

Angle Invariance (◦) FWHM (nm) Efficiency (%) Spatial Resolution (dpi) Ref

±20 NG 60–80 NG [159]
0 NG 14 NG [163]
70 55 98 NG [164]
60 145 60 NG [166]

Nanohole Hybrid

NG NG NG 100,000 [167]
±40 NG NG 141,000 [171]

0 NG 60 77000 [172]
0 NG NG 127,000 [174]
60 NG NG NG [175]

Meta surface

60 NG 40 100,000 [187]
±8 NG 75 100,000 [191]
60 NG NG 100,000 [190]

Gap Surface Plasmon

60 110 NG 100,000 [194]
60 NG NG 100,000 [195]

Note: NG = Not given.

3.2.4. Gap Surface Plasmons

A Gap Surface Plasmon (GSP) is a special kind of plasmon metasurface, where a subwavelength
dielectric spacer is sandwiched between an optical thick metal and metallic subwavelength particles
arranged in a periodic or quasi-periodic arrangement [196]. The subwavelength-thin dielectric spacer
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enhances the field in MIM and allows near-field coupling between the SPP of the two interfaces [197]
(Figure 3h).

The FP resonance condition for MIM with truncated upper metallic layer of width w is given
as [198,199]:

w
2π

λ
nGSP = mπ − φ. (14)

Here, nGSP is the effective refractive index of GSP, λ is the vacuum wavelength, φ is the unknown
phase change due to reflection at the nanodisk boundary and m is a positive integer account for
resonance mode. The applications of GSP resonators include: flat lenses [200,201], surface wave
couplers [202,203], holograms [204,205], beam-steerers [206,207] absorbers [208,209], polarization
controllers [210,211], and dynamically reconfigurable metasurfaces [206,212]. As per the focus of this
review, the reported work on GSPR-based color filters is discussed and reviewed in this section.

A plasmonic color filter with subwavelength resolution based on MIM configuration capable of
supporting GSP was demonstrated [194] to effectively reflect different colors at subwavelength scale
(Figure 7). Here an array of 340 nm period containing circular gap-plasmon resonators of Au/SiO2

and Au was fabricated with single-step electron beam lithography. Here λres is varied by varying
the diameter of the nanodisks and allows angle insensitivity up to 60◦ with polarization dependence.
Furthermore, the λres is immune to the presence of overlay, hence it allows chemical and mechanical
stability to the device.

Figure 7. (A) Schematic diagram of a circular gap plasmonic nano microscopic images of the highly
uniformed colors due to an array (B) Precise color printing on an optical microscopic image demonstrate
bright colors with high contrast, and demonstrate that even single pixel details are colored and
discernible. Reproduced with permission of [194]. Copyright American Chemical Society, 2014.

The performance of the aforementioned example was further improved by utilizing Al/Al2O3/Al
MIM stack in nanodisk GSP resonantors [213]. Here each nano-resonantor is treated as an individual
color element. Hence, the resultant color obtained is the effect of color absorption due to each of the
resonantors in an array. The change in the nanodisk diameter and array periodicity covered the entire
visible regime with saturated colors and dark colors at the optical diffraction limit. The presence of Al
makes it robust and reliable, discarding the need of overlay, which can be red shift λres in this case.
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4. Dielectric-Based Color Filter

As per scattering theory, all scattering bodies can be represented by effective magnetic and/or
electric polarizability densities. Light scattering by small particles is based upon the Mie solution of
the diffraction problems [25]. The scattered field of a single isolated dielectric sphere with radius ro

and relative refractive index n can be decomposed into a multipole series with the 2m-pole term of the
scattered electric field proportional to

am =
nψm(nx)ψ′m(x)− ψm(x)ψ′m(nx)
nψm(nx)ξ ′m(x)− ξm(x)ψ′m(nx)

; (15)

whereas, the 2m-pole term of the scattered magnetic field is proportional to

bm =
ψm(nx)ψ′m(x)− nψm(x)ψ′m(nx)
ψm(nx)ξ ′m(x)− nξm(x)ψ′m(nx)

; (16)

where, x = koro, and ko is the free-space wave number and ψm(x) and ξm(x) are Riccati-Bessel
functions. The primes indicate derivation with respect to the arguments. The scattering coefficient am

and bm are related to the electric and magnetic response of the sphere, respectively.
Here, the first and second highest wavelength resonances of dielectric spheres correspond to the

electric and magnetic dipoles [214]. The dielectric resonators [215,216] are capable of concentrating
electromagnetic energy in different modes with the increase in refractive index n, which results
in higher Q factor and allows sharp Mie resonances in small spherical particles with a large
permittivity [217]. Similarly, the magnetic response of dielectric resonators in reaction to the
magnetic component of external electromagnetic waves has significance in the implementation of
negative index metamaterials (NIM) with isotropic properties [218]. On the other hand, the metallic
nanoparticles mostly demonstrate anisotropic optical magnetic response and are prone to significant
ohmic losses which aggregate with the increase in frequency, hence making it unsuitable for lower
wavelength signals like blue color in the visible regime [219]. Due to a high Q-factor and low loss,
dielectric-based color filters with high permittivity material have been studied and demonstrated
extensively. This section includes extraordinary research work done in this field.

A full color printing with titanium oxide (TiO2) metasurfaces with trapezoid shaped
nanostructures arranged in square lattice was demonstrated [220]. High reflection peaks, along with
bright contrast, were obtained across the visible regime. The fabrication involved a typical lift-off
process. Taking advantage of the Fano resonances, the reflected color was also achieved from TiO2

metasurface with much smaller pixel sizes. Thus bright, high contrast and high-resolution structure
colors were generated (Figure 8A,B).
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Figure 8. (A) Schematic diagram of TiO2 based color filter, the reflection spectra shows dependence
of filter on the device dimensions (here the width of the bottom face w is varied from 200 to 250 nm).
(B) Color image printing is exhibited with the top view SEM image of the logo with transmission
and reflection colorful images under bright field microscope. Reproduced with permission of [220].
Copyright American Chemical Society, 2017. (C) Simulated and experimental results for additive colors
of all dielectric metasurfaces based on cross-shaped resonators. Reproduced with permission of [221].
Copyright American Chemical Society, 2017. (D) Schematic diagram of 2D lattice of a-Si:H nanodisks
on a glass substrate [222].

It has been notified that color saturation for higher desired wavelength is impaired due to the
presence of high order Mie resonances (quadruple mode) at lower wavelength [223,224]. This was
addressed by exploiting multi dielectric metasurfaces with SiO2, TiO2 and Si3N4 from top to bottom
on silica substrate [225]. The index matching between layers allow multi polar modes suppression
at non-resonant wavelength and results in extraordinary enhancement in the monochromaticity of
reflection spectra. It expanded unprecedentedly and acquired 171% sRGB space, 127% Adobe RGB
space and 57% CIE space.

Recently, it was proposed that application of Rayleigh anomalies at relatively short wavelength in
Si3N4 (nanopillars) metasurface on quartz substrates results in higher modes suppression. However,
the lateral angle of incidence was employed for producing vivid colors in transmission modes [226].
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A cross-shaped a-Si based 2D array of nano-resonators demonstrated by Vishal et al. [221] showed
polarization insensitive results with high quality and a wide color gamut (Figure 8C). High purity
colors were obtained by optimizing resonance properties, easily tunable through change in structural
parameters. The obtained resonant wavelength is further tuned by varying the aspect ratio of
nano-resonators. The obtained results showed polarization insensitive independent resonances with
high transmission efficiency. However, the issue of incidence angle could not be addressed.

All-dielectric polarization dependent reflection color pixels with a subwavelength resolution of
up to 85,000 dpi have been demonstrated [223]. Here the c-Si nano block resonators were arranged in a
square lattice allowing distinct vivid colors across the visible regime, by varying its physical geometry.
The results showed that these individual pixels could be distinguished easily in a chequered pattern,
and do not allow color mixing. However, an incidence angle insensitivity of only 20◦ was achieved.
The subwavelength resolution was further improved to 100,000 dpi by exploiting mono crystalline
Si nano-disks resonantors with metal mask on it [227]. This offered high resolution, by weakening
the interaction between two resonators to such an extent that even with a pixel containing a single
nano-resonator, the filtered color will not be mixed.

A substractive CMY color filter showed high efficiency and color quality with a-Si-Al hybrid
nanodisk metasurfaces on Si substrate [228]. The nanodisk supports MD resonance mode, and is
confined to the nanodisk due to Al nanodisk at the top. A near-zero reflection dip was reported
and swept across the visible regime by changing the diameter of the nanodisks. However, incidence
angle invariance of only 25◦ was reported. The results for yellow color could further be improved by
implementing a rectangular lattice as theoretically presented [229]. Ninety percent efficient reflective
color filters with hydrogenated a-Si nanodisks in a square lattice were realized by [222] (Figure 8D).
The wavelength-dependent filtering characteristics are governed by ED and MD resonance via Mie
Scattering. The vivid subtractive colors were tuned by varying structural parameters like the period
and radius of the nanodisks.

All dielectric-colored silicon-based metasurfaces (silicon nanopillars) etched on a glass substrate
with the period of 1 µm were theoretically and experimentally studied [230]. The farther apart
nanopillars defied the coupling and each nano-resonantor worked as an individual color filter,
where the response of ED and MD can be tuned by changing the aspect ratio of each nanoparticle.

Furthermore, an economical solution for broadband anti-reflection through Si surfaces textured by
laser-based method has been proposed [231]. The study showed that well-ordered Si Nanowires
(SiNWs) with high aspect ratios improves the performance in UV-visible-NIR range. Likewise,
decoration of Si with MNPs also reduced the optical reflection. The hybrid anti-reflection surfaces
demonstrated reflection below 1%.

All studied Mie Scattering based color filters made of high refractive index nanoresonantors are
summarized in Table 4.

Table 4. All Dielectric-based color filters.

Angle Invariance (◦) FWHM (nm) Efficiency (%) Spatial Resolution (dpi) Ref.

60 30 64 16,000 [220]
20 NG NG 85,000 [223]

NG NG 100 100,000 [227]
26 50–65 Near Zero (A) NG [228]
0 NG 90 NG [222]
0 NG NG 25,400 [230]

Note: NG = Not given.

5. Liquid Crystal-Based Plasmonic Color Filters

The active plasmonic color filters are the ones that can encode more than one color
state in it. These devices generally employ active mediums such as liquid crystal [232,233],
elastic polymer [234,235], chemical reduction/oxidation [236,237] and molecular machines [238,239].
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But liquid crystal, with the highest birefringence on the refractive index, low threshold on transition
among different states, and versatile driven methods to create transitions, stands out from all the
aforementioned kinds. Moreover, their large birefringence span across the visible regime and near
infrared [240], high throughput, compatibility with opto-electronic materials, and flexible control of
alignment of liquid crystals, i.e., via light, electricity and acoustic waves, makes it the best candidate.

In general, there are three phases of liquid crystals: 1, nematic; 2, smectic; and 3, cholesteric.
In the nematic state (Figure 9a) the molecules are obeying the translational order only, while in the
smectic phase there is translational as well as orientation order in all the molecules (Figure 9b,c).
In the cholesteric phase, a special kind of nematic phase, (Figure 9d) the phase of the liquid shows the
distribution of molecules at several planes that are perpendicular to the helical axis. The molecular
chirality governs the twist direction i.e., right-handed or left-handed.

(a) Nematic (b) Smectic A

(c) Smectic B (d) Cholestric

Figure 9. Phases of liquid crystals. (a) Nematic phase. (b) Smectic A phase. (c) Smectic B phase.
(d) Cholestric phase.

The most remarkable characteristic of liquid crystals is their anisotropic refractive index.
One refractive index corresponds to light polarized along the director of liquid crystals, while the other
is for light polarized perpendicular to the director. Hence, magnetic and electric field components will
propagate through the liquid crystal at different speeds, which results either in or out of phase at the
exit from the crystal. Furthermore, the polarization state of light will change at the exit due to optical
anisotropy. Likewise, the birefringence decreases with the decrease in temperature and ends up at the
isotropic phase [241,242].

Since the orientational order and birefringence can be tailored easily via electric, weak magnetic
and optical fields, it has been used in numerous applications such as Liquid Crystal Display (LCD)
for watches, television, cellphones, spatial light modulators for adaptive optics in real time optical
imaging, optical phase array for beam steering, and attenuators for telecommunications [243].
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In this section recent research examples of liquid crystal plasmonic-based color filters are studied
and reviewed. A highly efficient electrically tunable color filter with dichoric resonantors was achieved
by exploiting a LC-based polarization rotator [19] (Figure 10A). The variation in applied voltage rotated
the polarization in LC and affected the results from the dichoric resonators. The dichoric resonators
comprised of guided mode resonance through an Si3N4 dielectric layer and the diffraction due to 2D
rectangular Al-grating. The LC-based polarization rotator allowed electrical color tuning across the
visible regime with high efficiency up to and including narrow bandwidth.

Figure 10. Liquid crystal-based color filters. (A) Setup of electrically tunable color filter exploiting a
visible dichroic resonator with subwavelength metal-dielectric resonant structure in conjunction with a
LC-based polarization controller. Reproduced with permission of [19]. Copyright The Optical Society,
2013. (B) Schematic diagram of electrically tunable color filter exploiting TN-LC and rectangular lattice
of nanoholes on Al film to control the polarization of incident light, and (C) Optical photographs
of printed colors in TM and TE mode. Reproduced with permission of [244]. Copyright American
Chemical Society, 2017.

An Al-grating with a Twisted Nematic Liquid Crystal (TN-LC) integrating cell was studied for
dynamic color filtering [245]. The cell comprises of Al-grating metasurfaces, fabricated on Indium
Tin Oxide (ITO) glass, as a top layer. The bottom plate consists of ITO glass with spin-coated PMMA.
The TN-LC was injected via capillary action into the gap between the plates. The TN-LC allows change
in the polarization of incident light, while this change can be varied by varying voltage across the
plate, hence allowing electrical color tunabiltiy. The idea was further implemented in a an electrically
color switching LSPR by exploiting TN-LC [244] (Figure 10B,C).

Here, one of the polarizing plates of TN-LC is replaced by Al-based rectangular nanohole array
film; however, an indium tin oxide (ITO) coated glass substrate was used as another electrode. The LC
layers formed between both substrates are mutually orthogonal to achieve the TN-LC configuration
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when light enters the display. Here the asymmetric nanohole array as an output filter allows two
different colors in TE and TM mode, and the change in polarization can be induced by applying
voltage across TN-LC.

6. Conclusions

Ideally, a color filter should have high color quality, a wide gamut, incident angle invariance,
high spatial resolution, CMOS compatibility and independence of angle of polarization along with
high throughput and cost-effective fabrication techniques. Realistically, a structural color filter with all
the above-mentioned qualities does not exist and the replacement of pigment-based color filters is not
materialised yet. However, there are examples studied in this review which are exemplary in their
own right. So, there is still a need for material exploration and new design technologies to investigate
improvements in present designs. This review is further summarized in Figure 11. It gives an overall
comparison of key performance indicators of discussed technologies for nanostructure color filters.

From this study, it is inferred that FP-based color filters with lossy materials allow high
angle invariance and polarization independence. Furthermore, the FP cavity fabrication requires
simple deposition methods and is cost-effective; however, dealing with thin lossy films (proved to
have lower losses than its counterparts Au, Ag, and Al) becomes tricky and requires special care.
Recently, new methodologies are being adopted to obtain suitable metallic refractive indices such as
using the evaporated form of Au/Ag, etc., which has shown efficient results and deserve to be further
investigated in the future. In terms of results, generally it has low color quality and limited color
gamut and spatial resolution.

Despite of usage of noble metals in the pioneering designs of plasmonic color filter, today Al is
preferred over Au, Cu and Ag. This preference is accredited to its compatibility with CIS devices,
durability and robustness. Likewise, it is the third most abundant material on earth and also has
recycling capabilities.

In general, 1D grating-based structures are prone to viewing angle sensitivity with reasonable
color quality. Similarly, it is to be noted that GMR-based color filters produce high quality colors
but usually with low spatial resolution. Although it does not require sophisticated fabrication steps,
it requires a higher number of gratings and results in a large footprint. Likewise, due to its asymmetric
geometry, it is strictly dependent on polarization, but it also makes it a good candidate for polarization
tunable color filters.

From LSPRs based structures it can be deduced that nanoholes due to their high angle variance,
low spatial resolution and limited color gamut are substituted with advanced structures. The first
nanohole-nanodisk hybrid structure employing Fano resonance has paved the way for spatial
resolution up to diffraction limit and been an epitome for designs where spatial resolution more
than or equal to diffraction limit are desired. Likewise, metasurfaces have shown better performances,
but still have lower angle invariance due to LSPRs, which can be further refined by employing novel
techniques. Lastly, GSP-based color filters also allowed high angle invariance and spatial resolution
with limited color gamut.

Moreover, the advancement in nano-fabrication technologies and simulation methodologies has
paved the way for precise and controlled plasmonic-based nanostructures fabrication. Hence, it makes
plasmonic-based color filters stand out among their counterparts with high research potential. However,
the strong dependence of λres on the device geometry requires a tight critical dimension control
especially in fabrication process of metasurfaces, GSP-based color filters and nanohole-nanodisk
hybrid structure.

All the studied dielectric-based color filters made of high refractive index (like a-Si,TiO2 and Si3N4

etc.) nano-resonators are studied. It has already sought its due attention because of its compatibility
with the CMOS technology. In general, dielectric-based color filters are highly angle sensitive,
but it offers high spatial resolution due to high refractive index contrast of nano-resonators and
its surroundings. In case of amorphous/crystalline silicon, it offers large gamut coverage, but the
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color absorption at lower wavelength make it unsuitable for blue colors. Although TiO2 based color
filters were demonstrated to avoid absorption for red color (at 650 nm), it invited higher order modes
at non-resonant wavelength. Lately, the performance of other dielectric materials Si3N4 based cubic
nanostructures showed praiseworthy performance by suppressing higher modes and enhancing
the monochromaticity of higher resonant wavelengths by employing Rayleigh anomalies at short
wavelength. Hence, pointing towards the research opportunities in this field

Last section of the review includes LC-based active plasmonic color filters, which allows color
tuning in plasmonic structures; this helps to move the λres across the visible regime without any
change in its dimensions. This technique has research potential. Therefore liquid crystal with
large birefringence, fast switching between states, and its implementation with efficient designs
like nanohole-nanodisk hybrid structures and dielectric metamaterials for color filtering, etc., is needs
to be explored further.

Figure 11. Key Performance Indicator charts for nanostructure color filters.
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Abbreviations

The following abbreviations are used in this manuscript:

AC Alternating Current
BSI Backside Illumination
CCD Charged coupled Device
CIE Commission internationale de l’éclairage
CIS CMOS Image Sensor
CMY Cyan Magenta Yellow
CMOS Complementary Metal Oxide Semiconductor
EBL Electron-Beam Lithography
ED Electric Dipole
ELT Extraordinary Low Transmission
EOT Extraordinary Transmission
FIB Focused Ion Beam
FWHM Full Width Half Maximum
GSR Gap Surface Plasmon
ITO Indium Titanium Oxide
LC Liquid Crystal
LCD Liquid Crystal Display
LSP Local Surface Plasmon
LSPP Local Surface Plasmon Polaritons
LSPR Local Surface Plasmon Resonance
MD Magnetic Dipole
MIMFP Metal-Insulator-Metal Fabry-Perot
ND Nano Disks
NIL Nanoimprint Lithography
PMMA Poly Methyl MethAcrylate
RGB Red Green Blue
SEM Scanning Electron Microscope
SERS Surface Enhanced Raman Spectroscopy
SLR Surface Lattice Resonance
SPR Surface Plasmon Resonance
sRGB standarad Red Green Blue
TN Twisted Nematic
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