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Calibration and Validation of a Mechanistic 
COVID-19 Model for Translational Quantitative 
Systems Pharmacology – A Proof-of-Concept 
Model Development for Remdesivir
Mohammadreza Samieegohar1, James L. Weaver1 , Kristina E. Howard1, Anik Chaturbedi1, John Mann1, 
Xiaomei Han1, Joel Zirkle1, Ghazal Arabidarrehdor1,2, Rodney Rouse1, Jeffry Florian1, David G. Strauss1  
and Zhihua Li1,*

With the ongoing global pandemic of coronavirus disease 2019 (COVID-19), there is an urgent need to accelerate 
the traditional drug development process. Many studies identified potential COVID-19 therapies based on promising 
nonclinical data. However, the poor translatability from nonclinical to clinical settings has led to failures of many of 
these drug candidates in the clinical phase. In this study, we propose a mechanism-based, quantitative framework 
to translate nonclinical findings to clinical outcome. Adopting a modularized approach, this framework includes 
an in silico disease model for COVID-19 (virus infection and human immune responses) and a pharmacological 
component for COVID-19 therapies. The disease model was able to reproduce important longitudinal clinical data 
for patients with mild and severe COVID-19, including viral titer, key immunological cytokines, antibody responses, 
and time courses of lymphopenia. Using remdesivir as a proof-of-concept example of model development for the 
pharmacological component, we developed a pharmacological model that describes the conversion of intravenously 
administered remdesivir as a prodrug to its active metabolite nucleoside triphosphate through intracellular 
metabolism and connected it to the COVID-19 disease model. After being calibrated with the placebo arm data, our 
model was independently and quantitatively able to predict the primary endpoint (time to recovery) of the remdesivir 
clinical study, Adaptive Covid-19 Clinical Trial (ACTT). Our work demonstrates the possibility of quantitatively 
predicting clinical outcome based on nonclinical data and mechanistic understanding of the disease and provides a 
modularized framework to aid in candidate drug selection and clinical trial design for COVID-19 therapeutics.
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE 
TOPIC?
 Currently, there is an increasing number of coronavirus dis-
ease 2019 (COVID-19) drug candidates demonstrating promis-
ing results in the nonclinical stage, but there is no mechanistic 
COVID-19 model that can translate these nonclinical findings 
into clinical outcomes in a quantitative (predicting the values of 
clinical end points) and independent (no clinical efficacy data 
available for model adjustment) manner.
WHAT QUESTION DID THIS STUDY ADDRESS?
 Is it possible to use a mechanistic model for predicting the 
clinical outcome of a COVID-19 therapeutic based on nonclin-
ical (in vitro) pharmacology data and our current knowledge of 
the underlying biology of the disease?
WHAT DOES THIS STUDY ADD TO OUR 
KNOWLEDGE?
 This study shows the possibility of using in silico models for 
translating nonclinical pharmacology data to clinical outcome 

by using remdesivir as a proof-of-concept example. It also pro-
vides a well-calibrated and validated, modularized model to 
perform similar nonclinical-clinical translations for other po-
tential COVID-19 therapies.
HOW MIGHT THIS CHANGE CLINICAL PHARMA-
COLOGY AND THERAPEUTICS?
 Given the time-consuming nature of clinical studies and the 
urgent need for treatments of COVID-19, the full mechanis-
tic model can play a key role in quickly identifying drug candi-
dates that not only showed promising nonclinical results, but 
also have the best chances of demonstrating clinical efficacy. 
It can also aid in the subsequent clinical trial design and dose 
selection by simulating the drug actions in a quantitative and 
mechanism-informed manner.
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In the first dozen years of the 21st century, there have been 2 
outbreaks of highly pathogenic coronaviruses, severe acute respi-
ratory syndrome coronavirus (SARS-CoV) in 20021 and middle 
east respiratory syndrome coronavirus (MERS-CoV) in 2012,2 
wherein spread of animal viruses to humans resulted in mild to 
fatal respiratory illness in humans. The year 2019 saw the initial 
outbreak of a new coronavirus, SARS-CoV-2, which subsequently 
spread rapidly across 7 continents3 and became a serious threat to 
all human beings around the world.

Similar to other coronaviruses, SARS-CoV-2 initiates the infec-
tion process by binding to the host cells via its viral spike protein 
and then fusing with the cell membrane and releasing viral RNA 
into the cell. After genome replication and transcription, newly 
translated structural proteins and replicated RNA genomes are as-
sembled in the endoplasmic reticulum-Golgi compartment, where 
new virus particles are formed and exit the host cell through exocy-
tosis to complete the growth cycle.4 The variability in initial viral 
load and the strength of host immune responses can lead to differ-
ences in inflammatory and immune responses and, consequently, 
different courses of the disease.5 Typically, more severe pneumonia 
in patients with coronavirus disease 2019 (COVID-19) is linked 
with higher initial viral load, more virus replication, massive in-
flammatory cell infiltration, and elevated pro-inflammatory cyto-
kine responses,6 leading to a known phenomenon called “cytokine 
release syndrome.”7 Despite greater knowledge and awareness of 
this disease since the outbreak, and widespread prevention and con-
trol policies set by most countries on the planet, the COVID-19 
pandemic continues throughout all areas of the world and has ac-
counted for more than 200 million confirmed cases and the deaths 
of 4.0 million people as of August, 2021.8 Therefore, there is an 
urgent need to speed up the traditional drug discovery process to 
develop effective therapeutic agents against COVID-19.

One way to accelerate the drug development process is to uti-
lize nonclinical (in vitro and/or in vivo) data for better clinical trial 
design and dosage selection.9 This translational science strategy 
is important for drug repurposing, where the effort is to identify 
COVID-19 therapies that have already been proven safe and ap-
proved to treat other diseases10 in humans. However, a major chal-
lenge is the translatability from nonclinical to clinical settings due 
to various factors, such as the lack of immune responses for in vitro 
assays and potential species differences for in vivo assays. Some 
drugs with promising nonclinical data have failed to show efficacy 
against COVID-19 in clinical studies, such as hydroxychloroquine 
and lopinavir.11 Up until now, despite a large number of studies 
having been done for potential therapeutics against SARS-CoV-2,4 
the antiviral drug remdesivir is the only approved treatment in the 
United States. In addition, the US Food and Drug Administration 
(FDA) has authorized emergency use of other drugs and biological 
products to treat or prevent COVID-19.12

Remdesivir can be intracellularly metabolized into its active 
form, nucleoside triphosphate analog (TP), that inhibits the RNA-
dependent RNA polymerase (RdRp) of SARS-CoV-2 in vitro,13 

and has been shown to improve time to recovery for patients 
with COVID-19 in the Adaptive COVID-19 Treatment Trial 
(ACTT).14 However, even with remdesivir, the reported in vitro 
SARS-CoV-2 inhibition potency (half-maximal effective concen-
trations (EC50s)) is highly inconsistent15 and it is unclear if these 
in vitro findings can be quantitatively translated to clinical efficacy. 
Indeed, to date, we are unaware of studies showing a quantitative 
prediction of COVID-19 clinical trial outcomes based on in vitro 
or other nonclinical data.

In this work, we propose a framework to bridge the gap between 
nonclinical and clinical end points by combining mechanistic un-
derstanding of pharmacokinetics (PKs)/pharmacodynamics and 
nonclinical data into a human disease model of COVID-19 with 
physiologically detailed immune responses. Through a stringent 
calibration/validation strategy, we show that it is possible to inde-
pendently predict the clinical outcome (time to recovery) of the 
remdesivir clinical trial (ACTT) through a model-informed drug 
development approach based, primarily, on in vitro data.

METHODS
Detailed methods can be found in the supplementary document and only 
essential procedures are described here.

COVID-19 model construction
The modular structure of the COVID-19 model is based on the human 
immune response model for influenza infection published previously16 
with a few additional components, such as IL-6 response, T cell apop-
tosis within lymph nodes, and antibody response, etc. The full structure 
of the model can be found in Figure 1. In order to illustrate the model 
clearly, we limited Figure 1 to showing only the essential processes and 
avoided showing the reaction details. Reaction formulations, reaction 
rates, parameters, and differential equations are listed in full detail in the 
supplementary document.

Pharmacological model
The pharmacological model includes two sequential parts, remdesivir 
compartmental PK model and remdesivir intracellular metabolism 
model. The compartmental PK model includes the central and periph-
eral compartments and is used to convert remdesivir intravenous dose to 
plasma concentration. Each compartment is considered to be well-mixed, 
with a uniform concentration throughout. Distribution, redistribution, 
and elimination taking place between the compartments follow first-
order kinetics and are characterized by their rate constants. By using a 
protein bindingvalue12.1%,17 total remdesivir plasma concentration is 
converted to free plasma concentration that is assumed to be equal to the 
extracellular remdesivir concentration of remdesivir in the lungs.18 The 
free fraction of extracellular remdesivir enters the cell through diffusion 
and can either be degraded or converted to the active ingredient nucleo-
side TP. It is of note, that the metabolism is a multistep process involving 
multiple intermediate metabolites.19 We lumped all these reaction steps 
into a single step to produce the final metabolite TP, as this is the active 
metabolite whose concentration was measured in vitro.15

Computational methods
All simulations are run in R version 4.0.2 (www.R-proje​ct.org) through 
the deSolve package (http://desol​ve.r-forge.r-proje​ct.org) so that model 
equations can be implemented in C to accelerate the simulation speed. 
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The FDA High Performance Computing cluster was used for large scale 
parallel computation for simulating virtual populations. Model calibra-
tion was conducted through covariance matrix-adapted evolution strat-
egy through the R package CMAES (https://CRAN.R-proje​ct.org/
packa​ge=cmaes). The full simulation code is also available in the GitHub 
repository https://github.com/FDA/Mecha​nisti​c-COVID​-19-Model).

RESULTS
Design of the overall COVID-19 model structure
Expanded based on the human immune response model for influ-
enza virus that we previously developed,16 our in silico COVID-19 
model (Figure 1) includes the disease model that represents the 
virus infection process as well as human immune responses, and 
a pharmacological model that represents the PKs of potential 
therapies. The disease model starts with the virus life cycle that 
includes three main steps: virus infection, virus replication in dif-
ferent subpopulations of lung epithelial cells, and virus release. 
The two immune response modules recapitulate the innate and 
adaptive immune responses in the lungs and lymphatic compart-
ments, respectively. In response to virus infection, the innate im-
mune system in the lung compartment produces interferon alpha 
(IFNα) in order to convert free (uninfected) epithelial cells to 
refractory epithelial cells20 that are resistant to virus infection 

and also promote the death of virally infected cells.21 In addi-
tion, cytokines are released that may lead to inflammation and 
damage of both healthy and infected tissues.22 Whereas many 
pro-inflammatory cytokines can be released, IL-6 was found to 
be the key cytokine that consistently shows statistically signif-
icant correlation with disease severity of COVID-19 (Table S1) 
and, hence, was used in our disease model to represent cytokine 
response to the virus infection. The immune response module (in 
the lymphatic compartment) captures various essential processes 
such as the activation and migration of antigen presenting cells 
from the lungs to draining lymph nodes, the conversion of naive T 
cells to mature helper (CD4+) and cytotoxic (CD8+) T cells, the 
migration of cytotoxic T cells from the lymph nodes to the lungs 
to attack infected cells, and the maturation of B cells for antibody 
(immunoglobulin G (IgG) and immunoglobulin M (IgM)) pro-
duction and release (Figure 1).

Calibration of the disease model
Clinical time course of virus titer in nasopharyngeal swab and 
plasma profiles of IFNα, lymphocytes, IL-6 and IgM and IgG an-
tibodies were used simultaneously for parameterizing the disease 
model (model calibration; Figure 2). Due to the different clinical 

Figure 1  Schematic diagram of the mechanistic in silico COVID-19 model. The in silico model includes two main submodels: (a) COVID-19 
disease model and (b) pharmacological model. The disease model consists of three submodules: virus life cycle, immune response module 
in lung, and immune response module in the lymphatic compartment. The pharmacological model describes the pharmacokinetics processes 
that translate drug dose to clinical exposure and then links it to the disease model. In this figure, remdesivir is shown as an example, whose 
pharmacological model is linked to the disease model at the point of virus replication due to remdesivir’s known effect of suppressing 
SARS-CoV-2 replication.38 Drugs with other mechanisms of action may have other connection points. For example, pharmacological models 
of inflammation suppressors (e.g., IL-6 antibody) can be linked to the disease model at the point of IL-6 production. Multiple pharmacological 
modules (submodels) could be added to simulate drug combinations. COVID-19, coronavirus disease 2019; EC50, half-maximal effective 
concentration; Epi, epithelial cell; IFNα, interferon alpha; IL-6, interleukin 6; IgG, immunoglobulin G; IgM, immunoglobulin M; SARS-CoV-2, 
severe acute respiratory syndrome coronavirus 2. This figure is a high-level summary of essential processes connected by sequential 
arrows, with solid lines ending in filled circles representing cell death induced by immune responses (for example cytotoxic T cells killing 
infected epithelial cells). More details about reaction interconnections, rates, parameters, and equations are provided in the Supplementary 
Document. [Colour figure can be viewed at wileyonlinelibrary.com]
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outcome of patients with severe vs. mild symptoms,23,24 and in-
herent heterogeneity of the disease, we estimated two (sub)pop-
ulations of parameters, one for patients with severe and another 
for mild disease.

Viral titer. The mean values of the viral load time course25 for 
patients with severe and mild disease were well-matched by the 
disease model (Figure 2a,b). As the initial viral loads (amount 
of virus entering the body at day 0) cannot be measured directly 

Figure 2  Disease model calibration. Left column is mild case. Right column is severe case. Points: clinical data; error bar: clinical variability 
(1 times SD); black line: best fitting curve. Gray band: predicted population behavior (90% confidence interval). Y axes have the same scale for 
each row and X axes have same scale and are shared in each column.
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in clinical studies,26 they are usually treated as an unknown 
quantity and estimated along with other parameters.27,28 
Interestingly, our disease model estimated that, on average, 
patients with severe disease had a higher initial viral load 
compared with the patients with mild disease (mean value: 
99890 (copy num/mL) vs. 8,926 (copy num/mL)). This is 
consistent with the notion that the initial viral load is one factor 
that contributes to subsequent disease severity.29 It is important 
to note that, on the individual level, some simulated patients 
had relatively low initial virus load but subsequently developed 
into a more severe disease status (Figure S1), suggesting that 
other factors (e.g., degree of immune response) also play a role 
in determining the disease severity.

Interferon alpha. Clinical data reveal that patients with COVID-19 
with low IFNα responses are associated with mechanical 
ventilation and poorer health outcomes.30 Consistent with this, 
our disease model, being calibrated with clinical data,31 illustrates 
that the simulated patients in the mild disease population have 
higher IFNα levels than those in the severe disease population 
(Figure 2c,d). Moreover, it has been reported that SARS-CoV-2 
can delay the response of the innate immune system, resulting 
in right-shifted (delayed) IFNα peak compared with the peak of 
virus, a crucial mechanism for the virus to evade early immune 
responses.32 Our simulations confirmed this pattern (Figure 2 
compare panel c to a). In contrast, the influenza infection model 
we previously developed showed the IFNα peak occurs before 
the virus titer peak after influenza virus infection, providing a 
plausible explanation to why SARS-CoV-2 can cause much more 
severe diseases than influenza (Figure S2).

Interleukin-6. In patients with COVID-19, a hyperinflammatory 
state known as cytokine storm is associated with the disease 
severity and IL-6, a common component of cytokine storm, is 
a well-documented predictor of clinical severity.33 Figure 2e,f 
demonstrate that, consistent with the reported IL-6 clinical time 
course,34 both patients with mild and severe simulated disease 
have an elevated IL-6 level, with patients with severe disease peak 
the IL-6 level reaching about 3-fold higher levels than patients 
with mild disease.

Lymphopenia. Based on longitudinal analysis of peripheral 
lymphocytes after SARS-CoV-2 infection,34 the development of 
lymphopenia in patients with COVID-19 was mainly related to 
the significantly decreased absolute counts of T cells in peripheral 
blood. Although the exact mechanisms behind SARS-CoV-2 
induced lymphopenia are elusive, possible mechanisms35 include 
(direct or indirect) induction of apoptosis of T cells and enhanced 
lymphocyte redistribution (migration of lymphocytes from 
peripheral blood to the lungs or lymphoid organs). Accordingly, 
our model implements the mechanism of virus-dependent death 
of T cells in the lymph node and migration of cytotoxic T cells 
to the lungs. We used the T cell percentage decrease in the lymph 
node to represent the overall degree of lymphopenia and were 
able to replicate clinical data showing a more significant degree of 
lymphopenia in patients with severe vs. mild disease (Figure 2g,h).

IgG and IgM. IgG and IgM clinical time courses36 were used to 
represent the antibody response in the human body after SARS-
CoV-2 infection. IgM and IgG appear earlier, and their titers are 
significantly higher in patients with severe disease compared with 
patients with mild disease. Our disease model was able to capture 
this trend (Figure 2i–l).

Calibration of remdesivir PK model
Next, we complemented the COVID-19 disease model with a 
pharmacological model to evaluate clinical efficacy of COVID-19 
therapies. As a proof-of-concept example, we selected remdesivir, 
one of the first therapies approved by the FDA for COVID-19. 
Due to the complex PKs of remdesivir,37 the pharmacological 
model includes two sequential components (Figure 3): remdesivir 
compartmental PK model and remdesivir intracellular metabo-
lism model.

A two-compartment PK model was used to convert remdesivir 
intravenous (i.v.) dose to plasma concentration. By assuming a drug 
free plasma concentration of remdesivir in equilibrium with the tis-
sue (extracellular) concentration,18 the compartmental PK model 
is linked to the intracellular metabolism model, which describes the 
diffusion of remdesivir across the cell membrane and conversion of 
the parent drug remdesivir to its active metabolite nucleoside TP 
inside the cell. The compartmental PK model was parameterized 
by fitting to published38 plasma profiles of remdesivir under differ-
ent i.v. infusion schemes (Figure 4a). The intracellular metabolism 
model was developed by fitting to the time course of intracellular 

Figure 3  Full pharmacological model. Pharmacokinetic (PK) model 
includes the central and peripheral compartments used to convert 
remdesivir (RMD) intravenous infusion dose to total plasma 
concentration. A scaling factor of 0.1217 is used to convert total 
plasma RMD to free plasma RMD. An intracellular metabolism 
model converts extracellular free remdesivir to intracellular active 
metabolite (triphosphate).
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TP concentrations15 after incubating 1 μM remdesivir with human 
airway epithelial (HAE) cultures in vitro (Figure 4b). Because the 
human lung TP time course data are not available (and unlikely to 
be obtainable), we used the full remdesivir pharmacological model 
(including the compartment PK model and intracellular metab-
olism model) to predict TP concentrations in a monkey’s lungs 
following a single i.v. (slow bolus) dose.39 Our model predicted a 
similar trend as monkey experimental data, where after initial i.v. 
infusion and plasma distribution, remdesivir diffused from the ex-
tracellular compartment into the intracellular compartment and 
was converted to the active metabolite TP, leading to a fast increase 
of intracellular TP concentration, followed by a gradual decrease of 
TP due to intracellular degradation (Figure S3).

Calculation of in vitro SARS-CoV-2 inhibition potency of 
remdesivir’s active metabolite
Because remdesivir needs to be converted to its active metabolite 
TP in vivo to inhibit SARS-CoV-2 replication,19,40 it is conceiv-
able that the in vitro virus inhibition potency (EC50) measured 
for the parent drug remdesivir, as generally reported in litera-
ture,13,41,42 may not reflect the drug’s in vivo potency. Indeed, it 
has been speculated that the vastly different SARS-CoV-2 EC50 
for remdesivir as measured in different in vitro cell cultures (Vero 
E6, Calu3 2B4, and HAE Cultures) may be due to various tis-
sues’ different capabilities of converting remdesivir to TP inside 
the cell.15 We hypothesized that, if the potency was calculated 
based on intracellular concentrations of TP, the EC50s may better 
reflect the characteristic potency of the drug and be more consis-
tent among different cell cultures. To test this hypothesis, we con-
structed intracellular metabolism models for three cell cultures 
(Vero E6, Calu3 2B4, and HAE),15 and then used the predicted 
intracellular TP concentrations, instead of the nominal extracel-
lular remdesivir concentrations, to recalculate the virus inhibition 
potency (Supplemental Methods, Figure S4). The resulting 
EC50 values (Table 1) are indeed much closer among different cell 

cultures, suggesting the tissue-dependent intracellular metabo-
lism capability may explain up to 90% of the apparent variability 
in SARS-CoV-2 inhibition potency among different cells/tissues 
in vitro. Because HAE cultures are widely considered the in vitro 
cell culture that is closest to in vivo human lung environment,43 
we used the EC50 calculated by HAE intracellular TP concentra-
tion (0.01 μM, with a Hill coefficient 0.64, see Supplementary 
Methods for calculation) as the in vivo inhibition potency for the 
model (Figure 1).

Clinical endpoint calibration
Next, we calibrated the model to reproduce primary clinical end 
points used by clinical trials testing COVID-19 therapeutics. We 
selected time-dependent recovery percentage, which was used as 
the primary end point by a double-blind, randomized, placebo-
controlled trial of i.v. remdesivir in adults hospitalized with 
COVID-19 (ACTT).14 Importantly, only the placebo arm’s data 
were used to calibrate the model to reproduce the disease progres-
sion profiles in patients with severe and mild disease. The remde-
sivir arm’s data were left aside for independent validation of the 
full model (see the next section about model validation).

Because the remdesivir trial (ACTT) defined recovery as hospital 
discharge or hospitalization without requiring supplemental oxy-
gen or ongoing medical care, we investigated what pathophysiolog-
ical conditions could differentiate hospitalized vs. non-hospitalized 
patients with COVID-19. Interestingly, quantitative computed 
tomography scan and 3D reconstruction of the lungs in patients 
with COVID-19 revealed that the mean lesion percent relative 
to the whole lung volume is ~ 4–7% in non-severe or early-stage 
disease patient groups.44,45 Accordingly, we operationally defined 
those patients whose lung epithelial cell damage percent (as pre-
dicted by the disease model) was reduced below 5% (relative to the 
total number of lung epithelial cells in the model) as “recovered” 
patients. We calibrated the simulated patient populations so that 
initially (at day 0 in Figure 5) both severe and mild disease patient 
populations have no patient in the “recovered” status (all simulated 

Figure 4  (a) Calibrating of the pharmacokinetic (PK) model. Fitting remdesivir plasma concentration after 2 hours of intravenous administration 
of 6 different single loading doses (3, 10, 30, 75, 150, and 225 mg). Black line: best fitted curve. Gray band: predicted population, points 
with error bars: clinical data.38 (b) Intracellular nucleoside triphosphate (TP) concentration following in vitro incubation with the parent drug 
remdesivir. Black points: the intracellular TP concentration in primary human airway epithelial (HAE) cultures after incubating with 1 μM 
remdesivir. Black line: fitted curve based on intracellular metabolism model, gray band: predicted population.
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Table 1  In vitro EC50 variability across cell cultures for remdesivir vs. its active metabolite nucleoside TP

Remdesivir Nucleoside TP

Vero E6 Calu3 HAE Vero E6 Calu3 HAE

Plaque assay EC50 
(μM)

1.65 0.28 0.01 Plaque assay EC50 
(pmol/million cells)

1.46 0.46 0.1

Ratio 165x 28x 1x Ratio 14.6x 4.6x 1x

Genome copy EC50 
(μM)

1.49 0.6 NA Genome copy EC50 
(pmol/million cells)

1.17 1.24 NA

Ratio 2.48x 1x Ratio 0.94x 1x

Using plaque assays to measure efficacy, the largest cross-culture differences (EC50 fold change) is 165 times if using remdesivir concentrations to calculate 
EC50s, compared to 14.6 times if using triphosphate metabolites concentrations. Using genome copy assays, the cross-culture differences (EC50 in Vero E6 cells/
EC50s in Calu3) is 2.48 times if using remdesivir concentrations to calculate EC50s, compared with 0.94 times if using triphosphate metabolites concentrations.
Calu3, 2B4 human lung adenocarcinoma cells; EC50, half-maximal effective concentration; HAE, primary human airway epithelial cell culture; NA, not available; 
TP, triphosphate; Vero E6, African green monkey kidney cells.

Figure 5  Calibrating (a, b) and validating (c, d) the model for the primary endpoint (time to recovery) used in the remdesivir trial.14 For model 
calibration, placebo arm time-dependent percentage of recovered patients in the mild (a) and severe (b) disease groups were used to adjust 
the model parameters. For model validation, the calibrated model was used to independently predict remdesivir arm (RMD) data for mild 
(c) and severe (b) patients without any parameter adjustments. Of note in the Adaptive Covid-19 Clinical Trial (ACTT) study mild/moderate 
disease was defined by a SpO2 > 94% and respiratory rate < 24 breaths per minute without supplemental oxygen requirement, whereas severe 
disease was defined as meeting one of the following criteria: requiring invasive or noninvasive mechanical ventilation, requiring supplemental 
oxygen, an SpO2 ≤ 94% on room air, or tachypnea (respiratory rate ≥ 24 breaths per minute). These definitions are generally aligned with other 
studies14 and also aligned with our virtual populations of mild and severe disease. Black points: Kaplan–Meier estimation of clinical data. 
Error bar: 95% confidence interval of clinical data. Black line: simulated curve based on subjects in model population. Gray band: predicted 
uncertainty quantification. X axis: time (in days) since the start of the trial. Y axis: percentage of recovered patients. Day 0, is the day that 
subjects were admitted into the clinical trial. Table shows the median recovery day and 95% confidence interval.
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patients’ lung epithelial cell damage percentage > 5% initially; 
Figure 5a,b). As time goes by, there is a steady increase in percent-
age of patients in the “recovered” status, with the time-dependent 
recovery curve quantitively matching the clinically observed curve 
(Figure 5a,b). Importantly, such an increase of recovered patient 
percentage reflects the natural progression of the disease, (virus 
being eliminated by immune responses and tissue recovered from 
inflammation damage), but not the effects of remdesivir, as only the 
placebo arm’s data are being used for model calibration.

As expected, the increase of recovered patient percentage is 
faster in the mild disease patient population (median time to re-
covery 5 days in clinical data and 6 days in model simulation) vs. 
severe disease patient population (median time to recovery 18 days 
in both clinical data and model simulation). Of note, the ACTT 
study stratified patients into a moderate-to-mild stratum and 
a severe stratum, using definitions generally aligned with other 
studies,14 and hence also aligned with our virtual populations of 
patients with mild and severe disease.

In addition to the moderate-to-mild vs. severe stratum, the ACTT 
study also did a more granular stratification according to patients’ base-
line ordinal clinical score. We calibrated separate virtual populations 
to match the placebo arm recovery time from each stratum (Figure 
S8). When the baseline ordinal score is 4, 5, 6, and 7, the simulated 
median time to recovery is 6 (6 in clinical data), 10 (9 in clinical data), 
21 (20 in clinical data), and 26 (28 in clinical data) days, respectively.

Model validation by predicting remdesivir efficacy end point
Finally, the full model (with the pharmacological model for rem-
desivir and the disease model for COVID-19) was combined to 
predict the primary efficacy end point (time-to-recovery) of the 
remdesivir trial ACTT.14 Even though the placebo arm of this 
trial was used to calibrate the model (see the previous section about 
clinical end point calibration), the remdesivir arm data were never 
used during model calibration. We ran the full model by using the 
same dosing scheme as the remdesivir trial,14 where remdesivir 
was administered intravenously as a 200-mg loading dose on day 
1, followed by a 100-mg maintenance dose administered daily on 
days 2 through 10. Our predicted curve of time-dependent in-
crease of recovered patients quantitatively agrees with the clinical 
data in the remdesivir arm for both severe (median time to recov-
ery 11 days in both clinical data and model prediction) and mild 
populations (median time to recovery 5 days in clinical data and 
6 days in model prediction; Figure 5c,d). For the more granular 
stratification, the model was able to predict the time to recovery 
in the remdesivir group quantitatively as well (Figure S9). When 
the baseline ordinal score is 4, 5, 6, and 7, the predicted median 
time to recovery is 6 (5 in clinical data), 8 (7 in clinical data), 17 
(15 in clinical data), and 28 (29 in clinical data) days, respectively. 
It is worthwhile to reiterate that we did not adjust any parameters 
or model structures based on remdesivir arm data, and hence the 
model validation is completely independent.

DISCUSSION
We have developed a mechanistic in silico COVID-19 model 
aimed at predicting clinical outcomes based on nonclinical data 
and shown through a proof-of-concept example that this model 

can independently and quantitatively translate nonclinical phar-
macology data into the clinical endpoint of time to recovery of the 
remdesivir clinical trial ACTT. Using a modularity concept, the 
whole model can be divided into smaller modules or submodels 
(virus life cycle, lung immune responses, lymph node immune re-
sponses, pharmacology, etc.) to facilitate model development and 
calibration. The individual modules can be reconnected to form 
model variants or reused in new models, such as to link other 
classes of COVID-19 therapeutics to the disease (sub)model for 
clinical outcome prediction, making this an attractive strategy for 
quantitative systems pharmacology modeling.

In the disease model part, viral life cycle and spread of the 
virus among cell populations are supplemented by incorporating 
the innate and adaptive immune response to the viral kinetics 
of SARS-CoV-2 in the lung and lymphatic compartments. The 
disease model parameters were calibrated to reproduce key char-
acteristics of longitudinal clinical data from patients with mild 
and severe COVID-19. Although there is no universal defini-
tion for patients with mild vs. severe COVID-19, most clini-
cal studies14,46,47 separated these 2 subpopulations due to their 
different clinical presentations, with the need for supplemental 
oxygen therapy as one of the most prominent distinguishing fac-
tors.48,49 Despite the simplifications made in the model, such as 
using IL-6 as a surrogate for all pro-inflammatory cytokines and 
lumping or ignoring complex immune responses (e.g., antigen 
cross-presentation and immune memory), the disease model cap-
tures typical clinical responses to mild and severe SARS-CoV-2 
infections. The inclusion of human immune responses and simul-
taneous fitting to a series of interacting clinical variables (viral 
titer, cytokines, antibodies, lymphocytes reduction, etc.) are key 
differences between our approach and some other work mod-
eling viral kinetics.50,51 These models use viral titers as the only 
clinical output to track disease progression, and usually assume 
viral titers will not decline until all target cells are consumed. 
This contrasts with the recognized effects of immune systems on 
both virus clearance32,35 and (with overactive immune response) 
disease deterioration.7 As an illustrative example, our model was 
able to show that, for some patients, disease severity is not posi-
tively correlated with the initial viral load (Figure S1), which has 
also been reported clinically.52

Among the many drugs being researched, we have focused on 
remdesivir, the only approved COVID-19 therapy by the FDA, 
because of the availability of comprehensive information in dif-
ferent phases of studies (in vitro, in vivo, and human clinical trial 
data). The substantial difference of in vitro EC50s across cell cul-
tures15 between remdesivir as a prodrug and its active metabolite 
nucleoside TP led us to design a pharmacological model to cap-
ture the transition pathway from the prodrug to active metabolite 
TP inside cells. We found that the dosing scheme used in ACTT 
achieved a predicted lung intracellular TP concentration fluctuat-
ing between ~ 0.07 and ~ 0.35 μM for an average patient during 
maintenance dosing (data not shown), resulting in an in vivo inhi-
bition percentage between 77% and 90%. This is consistent with 
the observed remdesivir efficacy in ACTT, and also raises an inter-
esting question whether alternative dosing schemes would decrease 
the time-to-recovery even further. One limitation of our current 
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study is that PK drug–drug-interactions is not considered, as some 
participants in ACTT received hydroxychloroquine, which was 
shown in in vitro studies to have the potential of affecting PKs of 
remdesivir.53 However, sensitivity analyses performed by ACTT 
suggested that this may not affect the efficacy of remdesivir in a 
clinical setting.14

One hallmark of our modeling framework is to use (sub)pop-
ulations, instead of single “average” patients, to represent the 
disease status of patients with mild and severe COVID-19, re-
spectively. This helps to capture the heterogeneity within and 
between the 2 subpopulations. The mild and severe subpopu-
lations are calibrated to reproduce the clinical time courses of 
various biomarkers (virus titer, plasma IL-6, etc.) from differ-
ent studies,25,31,34,36 making them useful to simulate the base-
line disease progression for COVID-19 (e.g., forming the basis 
to mimic the placebo group in a clinical study for a specific 
COVID-19 treatment), although parameters may have to be re-
evaluated for different variants. In addition, the model’s capa-
bility of predicting efficacy end points from the remdesivir trial 
suggests it might have credibility to predict other clinical scenar-
ios for remdesivir, such as other dosing routes, alternative dosing 
schemes, etc. On the other hand, whether such credibility can be 
generalized to predicting clinical outcomes of other COVID-19 
treatments awaits further investigation.

In summary, the mechanistic prediction framework presented 
in this work is the first proof-of-concept model development ex-
ample to illustrate that it is possible to quantitatively predict clin-
ical outcomes based on nonclinical (in vitro) data for COVID-19 
therapies. This paves the way for quickly selecting candidate 
drugs that have shown promising results in the early nonclinical 
stages of drug discovery and can facilitate the design of clinical 
studies accordingly. The modular design of the model also makes 
it possible to simulate drug combination effects based on mono-
therapy data, without the need to systematically recalibrate the 
disease model. Such a mechanism-based, model-informed drug 
development tool may potentially play an important role in our 
urgent pursuit of safe and effective COVID-19 therapies.

SUPPORTING INFORMATION
Supplementary information accompanies this paper on the Clinical 
Pharmacology & Therapeutics website (www.cpt-journal.com).
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