
fphar-09-00078 March 24, 2018 Time: 14:23 # 1

REVIEW
published: 26 March 2018

doi: 10.3389/fphar.2018.00078

Edited by:
Claudio Bucolo,

Università degli Studi di Catania, Italy

Reviewed by:
Corrado Tringali,

Università degli Studi di Catania, Italy
David Auñón-Calles,

SEPROX BIOTECH, Spain

*Correspondence:
Beata Olas

beata.olas@biol.uni.lodz.pl

Specialty section:
This article was submitted to

Pharmaceutical Medicine
and Outcomes Research,

a section of the journal
Frontiers in Pharmacology

Received: 14 October 2017
Accepted: 23 January 2018
Published: 26 March 2018

Citation:
Olas B (2018) Berry Phenolic

Antioxidants – Implications for Human
Health? Front. Pharmacol. 9:78.
doi: 10.3389/fphar.2018.00078

Berry Phenolic Antioxidants –
Implications for Human Health?
Beata Olas*

Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland

Antioxidants present in the diet may have a significant effect on the prophylaxis and
progression of various diseases associated with oxidative stress. Berries contain a range
of chemical compounds with antioxidant properties, including phenolic compounds.
The aim of this review article is to provide an overview of the current knowledge of
such phenolic antioxidants, and to discuss whether these compounds may always be
natural gifts for human health, based on both in vitro and in vivo studies. It describes the
antioxidant properties of fresh berries (including aronia berries, grapes, blueberries, sea
buckthorn berries, strawberries and other berries) and their various products, especially
juices and wines. Some papers report that these phenolic compounds may sometimes
behave like prooxidants, and sometimes demonstrate both antioxidant and prooxidant
activity, while others note they do not behave the same way in vitro and in vivo. However,
no unwanted or toxic effects (i.e., chemical, hematological or urinary effect) have been
associated with the consumption of berries or berry juices or other extracts, especially
aronia berries and aronia products in vivo, and in vitro, which may suggest that the
phenolic antioxidants found in berries are natural gifts for human health. However, the
phenolic compound content of berries and berry products is not always well described,
and further studies are required to determine the therapeutic doses of different berry
products for use in future clinical studies. Moreover, further experiments are needed to
understand the beneficial effects reported so far from the mechanistic point of view.
Therefore, greater attention should be paid to the development of well-controlled and
high-quality clinical studies in this area.
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INTRODUCTION

Natural phenolic compounds are found in many foods, including vegetables, fruits, tea, coffee,
chocolate, wine, honey, and oil (Kulling and Rawel, 2008; Szajdek and Borowska, 2008; Chong
et al., 2010; Chrubasik et al., 2010; Christaki, 2012; Kutlesa and Mrsic, 2016; Gomes-Rochette et al.,
2016).

Recent years have seen increased consumption of berries, and fruit in general. Research suggests
that this increased intake of fruits and berries may be associated with a reduced incidence of
disorders induced by reactive oxygen species (ROS), including cardiovascular disorders, cancer
and inflammatory processes (Gomes-Rochette et al., 2016). Berries and their products (i.e., berry
juice and jam) are very often recognized as “superfoods.” They possess high concentrations of
phenolic compounds, which have been found in in vitro and in vivo studies to possess a range
of biological activities, including anticancer and antiplatelet activities, as well as antioxidant
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properties (Valcheva-Kuzmanova et al., 2006; Erlund et al., 2008;
Kulling and Rawel, 2008; Szajdek and Borowska, 2008; Chong
et al., 2010; Chrubasik et al., 2010; Christaki, 2012; Giampieri
et al., 2012, 2015; McEwen, 2014; Nile and Park, 2014; Del Bo
et al., 2015; Skrovankova et al., 2015; Wightman and Henberger,
2015; Kristo et al., 2016; Olas, 2016, 2017). However, these
compounds may not influence the levels of oxidative stress
biomarkers, and may even have prooxidative effects. In addition,
the precise biological activities of berry phenolics are dependent
on a range of factors including the class of phenolics, their
concentration, the type of berry and even the form consumed, be
it fresh berries, juice, wine, jam, oil or medicinal products. This
review article summarizes the current knowledge concerning
whether the phenolic compounds within berries may always have
a beneficial influence on human health as antioxidants, and to
what extent these compounds may sometimes act as prooxidants.
The source information for this paper is derived not only from
in vitro models, but also in vivo models.

THE BOTANICAL CLASSIFICATION OF
BERRIES

Although, according to botanical terminology, a berry is a
simple fruit with seeds and pulp produced from the ovary of
a single flower with a fleshy pericarp, the term “berry” is also
commonly used to refer in general to a small, pulpy and often
edible fruit. Blueberries may be categorized as berries under both
definitions, but grapes are berries only according to the botanical
definition. Moreover, while strawberries and blackberries are
typically referred to as berries, they are not officially categorized
as such (Hickey and King, 2001).

Berries belong to several families, although the two key
examples are the Rosaceae, including black chokeberry (Aronia
melanocarpa), strawberry (Fragaria ananassa), red raspberry
(Rubus ideaus), black raspberry (Rubus occidentalis), blackberry
(Rubus fruticosus) and cloudberry (Rubus chamaemorus), and
the Ericaceae, including cranberry (Vaccinium macrocarpon),
bilberry (Vaccinium myritillus), lowbush blueberry (Vaccinium
angustifolium), highbush blueberry (Vaccinium corymbosum).
Examples of berries from other families include blackcurrants
(Ribes nigrum; family: Grossulariaceae), sea buckthorn
(Elaaagnus rhamnoides (L.); family: Elaeagnaceae) and grapes
(Vitis; family: Vitaceae).

THE CHEMICAL COMPOSITION OF
BERRIES

A huge variety of phenolic compounds are produced by plants,
with 1000s recognized throughout the plant kingdom. They
can be found in various parts of the plant, but particularly the
fruits, leaves and seeds, where they are typically involved in the
defense against ultraviolet radiation and pathogens. Phenolics
possess one or more aromatic rings bearing one or more
hydroxyl groups. They occur in free and conjugated forms with
acids, sugars, or other water-soluble or fat-soluble compounds

(Szajdek and Borowska, 2008; Nile and Park, 2014; Del Bo et al.,
2015; Skrovankova et al., 2015).

For years, phenolic compounds were regarded as anti-
nutritional compounds, and in some cases as toxic and
mutagenic. Their anti-nutritional activities result from their
interactions with proteins, which reduce nutrient assimilation
by the inhibition of proteolytic, lipolytic and glycolytic enzymes.
Moreover, metal cations are often made unobtainable by
complexing with phenolic compounds in humans consuming
a plant-based diet. It is important to note that the toxicity of
phenolic compounds has not yet been fully recognized and was
ignored for years (Bisson et al., 2015).

Berries are not only a source of non-nutritive compounds,
including phenolics (Singh and Basu, 2102), but are also a
rich source of wide variety of nutritive compounds, including
sugars (glucose, fructose) and minerals (phosphorus, calcium,
iron, potassium, magnesium, manganese, sodium and copper)
(Kulling and Rawel, 2008; Szajdek and Borowska, 2008;
Giampieri et al., 2012; Del Bo et al., 2015; Malinowska and
Olas, 2016). In addition, iron and manganese are important
components of antioxidant enzymes. Berries contain a large
amount of the vitamins A, C and E, which act as antioxidants
and may reduce the inflammation process (Skrovankova et al.,
2015). Blackcurrants and sea buckthorn berries have particularly
high concentrations of vitamin C, ranging from 120 to 215 mg
per 100 g fruit for blackcurrants, and as high as 600 mg per 100 g
fruit for sea buckthorn berries (Olas, 2016; Malinowska and Olas,
2016). Furthermore, berries contain low concentrations of lipids
but high concentrations of dietary fiber, which has a nutritional
function and reduces the level of low density lipoprotein (LDL) in
serum. In addition, it is notable that sea buckthorn oil (extracted
from seeds and fruits) and grape seed oil are rich source of
fatty acids, unsaturated fatty acids in particular, which have
beneficial effects on cardiovascular diseases, neurodegenerative
diseases and cancer (Olas, 2016). All these compounds together
have a synergistic and multifunctional effect on human health.
The chemical composition of a particular berry depends on a
range of factors, such as cultivar and variety, plant nutrition,
time of harvest, growing location and environmental conditions
(Skrovankova et al., 2015).

THE CHEMICAL STRUCTURE OF
PHENOLIC COMPOUNDS WITH
ANTIOXIDANT PROPERTIES

Anthocyanins
Anthocyanins confer the blue, purple and red color of many
fruits, including berries. However, berry anthocyanins are not
only responsible for fruit color, but also may be used as natural
pigments for the food industry (He and Giusti, 2009; Lee et al.,
2015). In addition, anthocyanins are known to be one of the
most powerful natural antioxidants. Berries are one of the
richest sources of anthocyanins among all the fruits (He and
Giusti, 2009; You et al., 2011; Lee et al., 2015; Olivas-Aguirre
et al., 2016) and are found at the highest concentrations in
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the skins of berries. Anthocyanins consist of an aromatic ring
bonded to a heterocyclic ring containing oxygen, which is also
bonded by a carbon-carbon bond to a third aromatic ring.
They can be classified into six forms based on the presence of
hydroxyl and methoxyl substitutions on the B-ring: cyanidin,
malvidin, peonidin, petunidin, pelargonidin and delphinidin
(He and Giusti, 2009). The most common types of anthocyanins
present in various berries are given in Table 1.

An important property of anthocyanins is that they are able
to cross the blood-brain barrier (Andres-Lacueva et al., 2005;
Kalt et al., 2008). However, they also have low bioavailability
compared with other phenolic compounds (Manach et al., 2004,
2005; Talavera et al., 2006).

Lee et al. (2015) note that the total antioxidant capacity
of berries rich in distinct anthocyanins is derived from both
anthocyanin composition and the antioxidant capacity of
individual anthocyanins.

Other Phenolic Compounds
A wide range of other secondary compounds are also
available in different types of berries. Strawberries, blueberries
and chokeberries are rich sources of flavon-3-ols, while red
raspberries and cloudberries provide high levels of such tannins
as ellagitannins. In addition, berries are good sources of such
phenolic acids as ellagic acid, chlorogenic acid and gallic acid:
blueberry, for example, contains up to 2 g/kg FW of chlorogenic
acid (Romani et al., 2016). The absorbance rate varies depending
on the type of acid, with chlorogenic acid being poorly absorbed,
and gallic acid rapidly absorbed. Ellagic acid represents about
50% of the total phenolic compounds in cranberries and
raspberries (Nile and Park, 2014; Skrovankova et al., 2015). In
addition, both grapes and red currants are rich in resveratrol,
which belongs to the group of stilbenes.

Table 2 presents the total concentrations of phenolic
compounds, including anthocyanins, in various berries and berry
products. For example, the concentration of phenolic compounds
in aronia is about 2080 mg/100 g fruits, which is higher than
other berries (for blackberries is about 248 mg/100 g fruits and
for blueberries is about 525 mg/100 g fruits) (Lee et al., 2015).
Industrial berry products such as aronia berry juice have also a
high concentration of phenolic compounds (Table 2). However,
only a few commercial products derived from berries (e.g.,
Aronox R© aronia berry extract by Agropharm, Poland), have well-
documented chemical compositions and biological activities,
including antioxidant properties (Olas et al., 2008; Lee et al., 2015;
Daskalova et al., 2015) (Table 2). Aronia berries and aronia juice
are believed to possess the highest antioxidant capacity of all
studied berries and their juices (Table 3).

Other authors have reported that berry seeds may be a source
of phenolic compounds: grape seeds were found to contain
various phenolic acids including gallic acid, p-qumaric acid and
ferulic acid (Nassiri-Asl and Hosseinzadeh, 2016). Duba and
Fiori (2015) and Garavaglia et al. (2016) have also reported a
large amount of phenolic acids, flavonoids, tannins and stilbenes
in grape seed oil, with the main phenolic components being
epicatechins, catechins, procyanidins and resveratrol (Garavaglia
et al., 2016). The total amounts of phenolic compounds extracted

from grape seed oil by cold-pressing is about 2.9 mg/kg; this
amount includes small amounts of resveratrol (0.3 mg/kg),
catechin and epicatechin (1.3 mg/kg each) (Garavaglia et al.,
2016). Another source of phenolic compounds, including the
flavonoids rutin and quercetin, is sea buckthorn oil extracted
from the berry pulp and seeds (Olas, 2016). Many phenolic
compounds are found in the small seeds on the outside of
strawberries; their antioxidant value is about 14% of the entire
value of the fruit.

Similar bioactive compounds, including phenolic compounds,
are found in berries and berry leaves, i.e., fresh and dried leaves of
sea buckthorn have different anthocyanins and flavonoids, such
as gallocatechin and epicatechin (Christaki, 2012; Olas, 2016;
Ferlemi and Lamari, 2016). Berry leaves are one of the richest
sources of chlorogenic acid (Ferlemi and Lamari, 2016).

METABOLISM AND BIOAVAILABILITY OF
PHENOLIC COMPOUNDS

Berries are an integral part of the human diet, both as fresh
berries and as various products, such as jams, juices, wines and
berry extracts, which may act as functional foods. They also
have a pleasant taste and little calorific content. In addition,
both fresh berries and their products have high concentrations of
phenolic compounds: flavonoids such as anthocyanins, and non-
flavonoids such as stilbenes and phenolic acids. As berries are
very often consumed raw, these compounds are not deactivated
by cooking. About 8000 phenolic compounds are known to be
present in the modern human diet (Ogah et al., 2014; Lall et al.,
2015; Del Bo et al., 2015; Terahara, 2015; Kristo et al., 2016).

From the nutritional point of view, phenolic compounds are
xenobiotics, which are metabolized in the digestive system as in
a “normal dietary situation” (Gheribi, 2011; Bisson et al., 2015).
Phenolic compounds are metabolized to sulfated compounds
and methylated compounds, and are glucuronidated in the liver.
An important metabolite formed from phenolic compounds
following the consumption of fruits such as berries is hippuric
acid (Toromanovic et al., 2008; Del Bo et al., 2015; Santhakumar
et al., 2015).

The Recommended Daily Intake for phenolic compounds
remains unknown and given the range of various biological
effects occurring at different concentrations, it may well be
impossible to determine a uniform value (Gheribi, 2011).

Recently, various in vitro and in vivo experiments have
demonstrated that phenolic compounds have a range of beneficial
properties including anticancer, anti-platelet, anti-inflammatory
and antioxidant effects (Valcheva-Kuzmanova et al., 2006; Erlund
et al., 2008; Kulling and Rawel, 2008; Szajdek and Borowska,
2008; Chong et al., 2010; Chrubasik et al., 2010; Christaki, 2012;
Giampieri et al., 2012, 2015; McEwen, 2014; Nile and Park,
2014; Del Bo et al., 2015; Skrovankova et al., 2015; Wightman
and Henberger, 2015; Kristo et al., 2016; Olas, 2016, 2017;
Umeno et al., 2016). Not only does the concentration of phenolic
compounds have an effect on human health, but also their
metabolism and bioavailability (Yang et al., 2011; Wilczak et al.,
2013).
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TABLE 1 | Major types of anthocyanins, which are presented in various berries (Lee et al., 2015; Nayak et al., 2015; Wang et al., 2015; Kristo et al., 2016; Kšonžeková
et al., 2016; Samoticha et al., 2017; modified).

Berries Type of anthocyanins

Pelargonidin Cyanidin Delphinidin Peonidin Malvidin Petunidin

Aronia berries
(Aronia
melanocarpa)

+

(major – cyaniding
3-galactoside,
cyaniding
3-arabinoside; minor –
cyaniding 3-glucoside;
cyaniding 3-xyloside)

Bilberries
(Vaccinium
myritillus)

+

(major –
cyanidin-3-galactoside;
minor – cyanidin
glucoside; cyanidin
arabinoside)

+

(minor – delphinidin
arabinoside;
delphinodin
galactoside; delphinidin
glucoside)

+

(minor – peonidin
glucoside)

+

(minor – malvidin
galactoside; malvidin
arabinoside)

+

(minor – petunidin
glucoside)

Blackcurrants
(Ribes nigrum)

+

(major – cyaniding
3-rutinoside; minor –
cyanidin 3-glucoside)

+

(major – delphinidin
3-glucoside, delphinidin
3-rutinoside)

Blackberries
(Rubus
fruticosus)

+

(major –
cyanidin-3-glucoside;
minor –
cyanidin-3-rutinoside,
cyanidin-3-
dioxalylglucoside,
cyanidin-3-xyloside;
cyanidin-3-
malonylglucoside)

Blueberries
(Vaccinium
corymbosum)

+

(major – cyaniding
3-galactoside; minor –
cyaniding 3-glucoside,
cyaniding
3-arabinoside)

+

(major – delphinidin
3-galactoside,
delphinidin
3-arabinoside; minor –
delphinidin 3-glucoside)

+

(minor – peonidin
3-galactoside,
peonidin
3-arabinoside)

+

(major – malvidin
3-galactoside,
malvidin
3-arabinoside;
minor – malvidin
3-glucoside)

+

(major – petunidin
3-galactoside,
petunidin
3-arabinoside;
minor – petunidin
3-glucoside)

Cranberries
(Vaccinium
macrocarpon)

+

(major – cyanidin
3-galactoside, cyanidin
3-arabinoside)

+

(major – peonidin
3-galactoside,
peonidin
3-arabinoside)

Elderberries
(Sambucus
nigra)

+

(major – cyanidin-3-
sambubioside;
minor-cyanidin-3-
glucoside, cyanidin
3,5-diglucoside,
cyanidin-3-
sambubioside-5-
glucoside)

Grapes (Vitis) + + + + + +

Raspberries
(Rubus idaeus)

+

Strawberries
(Fragaria
annassa)

+

(major – pelargonidin-
3-glucoseide)

+

(minor –
cyanidin-3-glucoside)

Regular consumption of darker-colored berries, such as
blackberries, blueberries, strawberries, raspberries and aronia
berries, may provide a high intake of anthocyanin. For example,

anthocyanins constitute about 30% of all phenolic compounds
in blackcurrants and about 70% in blueberries. However, plasma
concentrations of anthocyanins are typically quite low due to
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TABLE 2 | The concentration of total phenolic compounds and anthocyanins in different berries and their products (Olas et al., 2008; Daskalova et al., 2015; Lee et al.,
2015).

Berries and their products Phenolic compounds Anthocyanins

Aronia (Aronia melanocarpa) berries 2080 mg/100 g fruits 240 mg/100 g fruits (frozen)
280 mg/100 g fruits (dried)

Aronia (Aronia melanocarpa) berry extract (Aronox R© by Agropharm, Poland) 309.6 mg/g of extract 110.7 mg/g of extract

Aronia (Aronia melanocarpa) berry juice (Vitanea Ltd., Plodvir, Bulgaria) 4772.2 mg/l 3529.1 mg/l

Bilberries (Vaccinium myritillus) 181–585 mg/100 g fruits

Blackberries (Rubus fruticosus) 248 mg/100 g fruits 949. 4 mg/100 g dw

Blueberries (Vaccinium corymbosum) 525 mg/100 g fruits 1562.2 mg/100 g dw

Blackcurrants (Ribes nigrum) 560 mg/100 fruits 1741.6 mg/100 g dw

Cranberries (Vaccinium macrocarpon) 120–315 mg/100 g fruits

Grape (Vitis) seed extract (by Bionorica, Germany) 500 mg/g of extract

Red wines 1000 – 4000 mg/l 2.8 mg/l

White wines about 250 mg/l

Raspberries (Rubus idaeus) 126 mg/100 g fruits

Sea buckthorn (Elaeagnus rhamnoides L.) berries 260 – 490 mg/100 g FW

Strawberries (Fragaria annassa) 225 mg/100 g fruits 60 – 80 g per 100 g FW

TABLE 3 | Antioxidant capacity [measured by oxygen radical absorbing capacity
(ORAC) or by Trolox equivalent capacity (TEAC)] of various fresh berries and berry
juice [Kulling and Rawel, 2008; modified].

Berries ORAC (µmol of Trolox equivalents/gram fresh weight)

Aronia berries 159.2 ± 1.0

Blackberries 55.7 ± 14.7

Blackcurrants 56.7 ± 13.5

Strawberries 20.6 ± 2.3

Cranberries 10.4 ± 1.9

Red grapes 7.4 ± 0.5

White grape 4.5 ± 1.9

Berry juices TEAC (µmol/ml)

Aronia juice 65 − 70

Blueberry juice 13.3 – 17.1

Cranberry juice 6.7 – 14.8

their poor absorbance profile (<1%) (Fang, 2014a,b, 2015). The
average total intake of these compounds is about 200 mg/day
and their concentration ranges from 10 to 50 nM in plasma
following the consumption of berries. In addition, human
experiments have found 0.1% of anthocyanin intake to be
excreted in urine. Fang (2014a,b) suggest that the apparent low
bioavailability of some anthocyanins may be due to extensive
presystemic metabolism rather than poor absorption. Xie et al.
(2016) also indicate that the anthocyanins in aronia extract,
constituting 34% of the total phenolic content, are extensively
metabolized.

Studies have shown that the bioavailability of phenolic
compounds differs from berry to berry, and this can also be
affected by the method of processing (Scalbert and Williamson,
2000; McGhie and Alton, 2007; Del Bo et al., 2012; Kuntz et al.,
2015). Food processing procedures, such as high-temperature
treatments, are recognized as one of the major factors responsible
for the destruction or modification of natural phytochemicals,
which may in turn affect the antioxidant properties of foods

(Nicoli et al., 1999; Nayak et al., 2015). However, this reduction
could be compensated for by the degradation of higher molecular
weight phenolic compounds to smaller ones with greater
antioxidant properties (Nayak et al., 2015).

In a study of the phenolic profiles of 26 berry samples and
their antioxidant activity, Kahkonen et al. (2001) report that the
choice of extraction method significantly affected both phenolic
composition and antioxidant property of the resulting product.
However, statistical analysis found no significant relationship
between the observed activity and the contents of individual
phenolic compounds.

Several factors, including the technological procedures used in
winemaking, can also qualitatively and quantitatively affect the
phenolic compound composition of wine (Garrido and Borges,
2013; Lingua et al., 2016). Phenolic compounds are transferred
from the grape into the wine during crushing, maceration and
fermentation. The majority of phenolic compounds in grapes are
present in the skin and seeds (Lingua et al., 2016). Lingua et al.
(2016) report a high correlation between phenolic composition
and antioxidant capacity, with anthocyanins offering the greatest
contribution to antioxidant capacity.

Berries are often consumed as fresh fruit, and in this form,
their antioxidant capacity is not reduced by any factors such
as heat or oxidation during processing (Patras et al., 2010;
Skrovankova et al., 2015). It is very important to retain the
beneficial properties of antioxidants in processed food products
(Nayak et al., 2015). In the last decade, some papers have
examined the influence of processing operations, such as drying
or dehydration, on phytochemicals in fruit, including those of
berries: for example, the flavonoid content of frozen aronia
berries is 12.2 mg/100 g fruit, and of dried aronia berries is
107 mg/100 g fruit. Recently, Oszmianski and Lachowicz (2016)
found the phenolics in dried aronia berry pomace and in juice
obtained from crushed berries to have higher activity than those
from the whole foods.

Freshly produced strawberry juices have higher anthocyanin
concentrations than those stored for 6 months at 4◦C and
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30◦C (Oszmianski and Wojdylo, 2009; Skrovankova et al., 2015).
Moreover, a number of phenolic compounds in clear strawberry
juices were found to be have been lost during processing
(Skrovankova et al., 2015). After heat processing and drying, the
total phenolic compound concentration is also less than 70%
(Rudy et al., 2015; Skrovankova et al., 2015). Interestingly, the
concentration of anthocyanins in raspberry juice may increase
about 2.5-fold after a week of storage at 20◦C (Kalt et al.,
1999; Skrovankova et al., 2015); however, in canned blackberries,
significant amounts of anthocyanins are leached into the brine
during processing and storage (Hager et al., 2008; Skrovankova
et al., 2015). Elsewhere, anthocyanin concentration was found to
decrease by about 30% in blueberries following thermal treatment
(Giovanelli et al., 2013; Skrovankova et al., 2015). However, a 7%
increase in anthocyanin concentration was found in blueberries
following blanching at 85◦C for 3 min (Giovanelli et al., 2012;
Skrovankova et al., 2015); in addition, a study of anthocyanin
absorption following the consumption of one portion (300 g)
of minimally processed blueberry puree obtained from blanched
or unblanched berries by Del Bo et al. (2012) found blanching
to have no significant effect on total anthocyanin content, but
in fact enhanced their absorption from minimally processed
purees.

In addition, the concentration of berry phenolic compounds
may change during berry development. The phenolics content
of strawberries is known to decrease significantly by about 90%
during ripening from green to red berries (Regonold et al., 2010;
Crecente-Campo et al., 2012; Skrovankova et al., 2015).

THE OXIDATIVE STRESS AND ITS
BIOMARKERS; THE ROLE OF BERRY
PHENOLIC COMPOUNDS IN THE
OXIDATIVE STRESS

In a healthy organism, the generation of reactive oxygen species is
balanced by the activities of antioxidants (Bartosz and Sadowska-
Bartosz, 2015). Increased ROS generation or diminished
antioxidant defense is referred to as oxidative stress, which may
participate in the development of various diseases, including
cancer, cardiovascular diseases and neurodegenerative disorders
(Bartosz and Sadowska-Bartosz, 2015). Oxidative stress is usually
a local event, one which may be indicated by different biomarkers,
including such markers of lipid oxidative modification as
malondialdehyde (MDA), conjugated dienes or F2-isoprostanes,
markers of protein modification including carbonylated proteins,
oxidation of thiol groups, protein fragmentation and nitrated
proteins, or markers of oxidative damage of nucleic acids (Bartosz
and Sadowska-Bartosz, 2015). These biomarkers not only have
diagnostic value, but they may be also useful indicators of the
need for antioxidant supplementation.

Various medicinal effects of berries against diseases associated
with oxidative stress have been attributed to their high phenolic
antioxidant content, especially anthocyanins and phenolic acids.
In addition, berries are recognized to have high levels of vitamins
A, C and E, which may act as antioxidants (Skrovankova et al.,

2015; Olas, 2016). Various authors have attributed the health
benefits of whole foods to complex mixtures of phytochemicals
(i.e., phenolics). Moreover, greater beneficial effects have been
associated with the antioxidants obtained from whole foods
than those obtained singly (Eberhardt et al., 2000; Nayak et al.,
2015).

A number of in vitro and in vivo studies have examined
the antioxidant activities of berries and their products,
especially berry juices (Table 4). They have examined inter
alia the inhibition of lipid peroxidation, inhibition of protein
carbonylation, inhibition of ROS generation, increase of total
antioxidant status and the increase of antioxidant enzyme
activity. The results of these studies are given in Table 4. It is
important to note that antioxidant effects were not only found in
in vitro models or in animals, but also in humans, where dietary
supplementation with a range of berry products, including berry
juices, reduces the levels of a number of biomarkers of oxidative
stress.

Previous studies have demonstrated that the consumption of
berries rich in antioxidant phenolic compounds results in an
increase in plasma total antioxidant status in humans (Wilson
and Bauer, 2009; Negi et al., 2013; Kardum et al., 2014; Del Bo
et al., 2015). The modulation of various antioxidant/prooxidant
status markers observed in healthy subjects demonstrates the
potential prophylactic actions of fresh berries and their products,
and underlines their importance as part of an optimal diet.
These benefits have also been observed in subjects with poor
health, including patients with diseases which are very often
correlated with oxidative stress, i.e., patients with cancer,
metabolic syndrome or cardiovascular diseases (Table 4). Zafra-
Stone et al. (2007) note that a combination of six berry extracts
(wild blueberry, wild bilberry, cranberry, elderberry, raspberry
seed and strawberry) exhibited significantly superior antioxidant
potential than the consumption of individual berries.

However, some papers note that phenolic compounds
may behave like prooxidants under conditions that favor
autooxidation, such as high pH and in the presence of high
concentrations of transition metal ions and oxygen molecules
(Cotoras et al., 2014). Moreover, while small phenolic compounds
(i.e., quercetin and gallic acid) are easily oxidized and possess
prooxidant properties, phenolic compounds of high molecular
weights (i.e., condensed and hydrolysable tannins) have little
or no prooxidant properties (Hagerman et al., 1998; Cotoras
et al., 2014). In addition, phenolic compounds such as vanillic
acid, ellagic acid, gallic acid and rutin have been reported to
possess dual antioxidant and prooxidant properties (Fukumoto
and Mazza, 2000). Cotoras et al. (2014) found that grape extracts
demonstrated antioxidant or prooxidant properties depending
on the method of extraction and the variety of the grape. It
is very important that the potential antioxidant function of a
plant extract with phenolic compounds in vivo cannot be safely
correlated from in vitro experiments, because they do not take
into account the metabolic transformations and interactions that
are known to affect the bioavailability and biological properties of
phenolic compounds (Veskouis et al., 2012).

Veskouis et al. (2012) report the presence of such dual
effects of a phenol-rich extract of grape pomace in in vitro
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TABLE 4 | The effect of different berries on the level of various biomarkers of oxidative stress.

Berries Different biomarkers of oxidative stress

In vitro experiments

Aronia
berries

Inhibition of ROS generation (antioxidant activity)
Model of hyperhomocysteinemia, human blood platelets, concentration of Aronox (containing phenolic compounds: 309.8 mg/g of extract): 2.5 – 10 µg/ml
(Malinowska et al., 2013)
Human blood platelets, healthy subjects, concentration of Aronox (containing phenolic compounds: 309.8 mg/g of extract): 5–50 µg/ml (Olas et al., 2008)
Human blood platelets, patients with cardiovascular risk factors, concentration of Aronox (containing phenolic compounds: 309.8 mg/g of extract):
1–100 µg/ml (Ryszawa et al., 2006)
Human blood platelets, healthy subjects, patients with invasive breast cancer (before/after surgery and after I – IV phase of chemotherapy) and patients with
benign breast diseases, concentration of Aronox (containing phenolic compounds: 309.8 mg/g of extract): 50 µg/ml (Kedzierska et al., 2009, 2012)
No effect on ROS generation (antioxidant/prooxidative properties - ?)
Human blood platelets, healthy subjects, concentration of Aronox (containing phenolic compounds: 309.8 mg/g of extract): 1–100 µg/ml (Ryszawa et al.,
2006)
Inhibition of protein carbonylation (antioxidant activity)
Human plasma, healthy subjects, patients with invasive breast cancer (before/after surgery and after I – IV phase of chemotherapy), concentration of Aronox
(containing phenolic compounds: 309.8 mg/g of extract): 50 µg/ml (Kȩdzierska et al., 2013b)
No effect on protein carbonylation (antioxidant/prooxidative properties - ?)
Human blood platelets, healthy subjects, patients with benign breast diseases, patients with invasive breast cancer, concentration of Aronox (containing
phenolic compounds: 309.8 mg/g of extract): 50 µg/ml (Kȩdzierska et al., 2010)
Inhibition of protein nitration (antioxidant activity)
Human plasma, healthy subjects, patients with invasive breast cancer (before/after surgery and after I – IV phase of chemotherapy), concentration of Aronox
(containing phenolic compounds: 309.8 mg/g of extract): 50 µg/ml (Kȩdzierska et al., 2013b)
Human blood platelets, healthy subjects, patients with benign breast diseases, patients with invasive breast cancer, concentration of Aronox (containing
phenolic compounds: 309.8 mg/g of extract): 50 µg/ml (Kȩdzierska et al., 2010)
Inhibition of lipid peroxidation (antioxidant activity)
Human plasma, healthy subjects, patients with invasive breast cancer (before/after surgery and after I – IV phase of chemotherapy), concentration of Aronox
(containing phenolic compounds: 309.8 mg/g of extract): 50 µg/ml (Kȩdzierska et al., 2013b)
Rat hepatocytes treated with carbon tetrachloride and tert-butyl hydroperoxide, aronia juice (phenolic compounds: 546.1 mg as GAE/100 ml): 5–100 µg/ml
(Kondeva-Burdina et al., 2015)
Increase of total antioxidant status (antioxidant activity)
Human plasma, healthy subjects, patients with invasive breast cancer (before/after surgery and after I – IV phase of chemotherapy), concentration of Aronox
(containing phenolic compounds: 309.8 mg/g of extract): 50 µg/ml (Kȩdzierska et al., 2013b)
Increase of thiols (antioxidant activity)
Human plasma, healthy subjects, patients with invasive breast cancer (before/after surgery and after I – IV phase of chemotherapy) and patients with benign
diseases, concentration of Aronox (containing phenolic compounds: 309.8 mg/g of extract): 50 µg/ml (Olas et al., 2010; Kȩdzierska et al., 2013a)
Rat hepatocytes treated with carbon tetrachloride and tert-butyl hydroperoxide, aronia juice (phenolic compounds: 546.1 mg as GAE/100 ml): 5–100 µg/ml
(Kondeva-Burdina et al., 2015)
Human blood platelets, healthy subjects, patients with benign breast diseases, patients with invasive breast cancer, concentration of Aronox (containing
phenolic compounds: 309.8 mg/g of extract): 50 µg/ml (Kȩdzierska et al., 2010)
Increase of activity of antioxidant enzymes (catalase, glutathione peroxidase, superoxide dismutase) (antioxidant activity)
Human blood platelets, healthy subjects, concentration of Aronox (containing phenolic compounds: 309.8 mg/g of extract): 5 – 100 µg/ml (Kȩdzierska
et al., 2011)

Grapes Inhibition of ROS generation (antioxidant activity)
Model of hyperhomocysteinemia in vitro, human blood platelets, concentration of the phenolic fraction of seed (containing phenolic compounds: 500 mg/g
of extract): 2.5 – 10 µg/ml (Malinowska et al., 2013)
Human blood platelets, healthy subjects, concentration of the phenolic fraction of seed (containing phenolic compounds: 500 mg/g of extract):
1.25 – 50 µg/ml (Olas et al., 2008, 2012)
Inhibition of lipid peroxidation (antioxidant activity)
Rat hepatocytes treated with adriomycin, extract of phenolic compounds from defatted milled grape seeds: 2.5 – 25 µg/ml (Valls-Belles et al., 2006)
Swine erythrocytes, extract from grape seeds (over 90% condensed tannins): 7.5 – 30 µg/ml (Olchowik et al., 2012)
Bovine spermatozoa, polyphenolic-rich grape pomace extract: 1–5 µg/ml (Saponidou et al., 2014)
Inhibition of protein carbonylation (antioxidant activity)
Rat hepatocytes treated with adriomycin, extract of phenolic compounds from defatted milled grape seeds: 2.5 – 25 µg/ml (Valls-Belles et al., 2006)
Increase of thiols (antioxidant activity)
Human blood platelets, healthy subjects, concentration of the phenolic fraction of seed (containing phenolic compounds: 500 mg/g of extract):
5 – 100 µg/ml (Kȩdzierska et al., 2011)
Rat hepatocytes treated with adriomycin, extract of phenolic compounds from defatted milled grape seeds: 2.5 – 25 µg/ml (Valls-Belles et al., 2006)
Swine erythrocytes, extract from grape seeds (over 90% condensed tannins): 7.5 – 30 µg/ml (Olas et al., 2012)
Increase of activity of antioxidant enzymes (catalase, glutathione peroxidase, superoxide dismutase) (antioxidant activity)
Human blood platelets, healthy subjects, concentration of the phenolic fraction of seed (containing phenolic compounds: 500 mg/g of extract):
5 – 100 µg/ml (Kȩdzierska et al., 2011)

(Continued)
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TABLE 4 | Continued

Berries Different biomarkers of oxidative stress

Increase of activity of antioxidant enzymes (catalase, glutathione peroxidase, superoxide dismutase) (antioxidant activity)
Human blood platelets, healthy subjects, concentration of the phenolic fraction of seed (containing phenolic compounds: 500 mg/g of extract):
5 – 100 µg/ml (Kȩdzierska et al., 2011)
Protective activity on DNA strand scission induced by hydroxyl and peroxyl radicals (antioxidant activity)
Bluescript-SH + plasmid DNA exposed to UV plus H2O2 or to UV plus H2O2 in the presence grape pomace extract (containing phenolic compounds
648 mg gallic acid/g extract): 100–1600 µg/ml (Veskouis et al., 2012)

Sea
buckthorn
berries

Inhibition of ROS generation (antioxidant activity)
Human blood platelets, healthy subjects, concentration of the phenolic fraction of berry (dominant compounds in this fraction – flavonoids:
214.04 mg/g): 0.5–50 µg/ml (Olas et al., 2016)
Inhibition of lipid peroxidation (antioxidant activity)
Human blood platelets and human plasma, healthy subjects, concentration of the phenolic fraction of berry (dominant compounds in this fraction –
flavonoids: 214.04 mg/g): 0.5–50 µg/ml (Olas et al., 2016)
Inhibition of protein carbonylation (antioxidant activity)
Human plasma, healthy subjects, concentration of the phenolic fraction of berry (dominant compounds in this fraction – flavonoids: 214.04 mg/g):
0.5–50 µg/ml (Olas et al., 2016)

In vivo experiments

Bilberries +
lingonberries
+ black
currants

Increase of total antioxidant status (antioxidant activity)
Human plasma, healthy subjects, mix of berries (bilberries, lingonberries and black currants; 80 g of each, in the short-term) or 100 g portion of
deep-frozen berries (bilberries, lingonberries and black currants) daily for 8 weeks (Marniemi et al., 2000)

Bilberries +
red grapes

Increase of activity of antioxidant enzymes (antioxidant activity)
human plasma and erythrocytes, healthy subjects, mixture of red grapes and bilberries (80:20), 300 ml mixture daily for 2 weeks (Kuntz et al., 2014)
Increase of total antioxidant status (antioxidant activity)
Human plasma, healthy subjects, mixture of red grapes and bilberries (80:20), 300 ml mixture daily for 2 weeks (Kuntz et al., 2014)
Inhibition of lipid peroxidation (antioxidant activity)
Human plasma and urine, healthy subjects, mixture of red grapes and bilberries (80:20), 300 ml mixture daily for 2 weeks (Kuntz et al., 2014)

Blackberries
+ black
currants +
sour cherries
+ aronia
berries + red
grapes

Decrease of oxidative DNA damages (antioxidant activity)
Human peripheral blood mononuclear cells, healthy subjects, mixed fruit juice (red grape (57%), blackberry juice (18%), sour cherry juice (9%), black
currant juice (9%), and aronia berry juice (7%), containing 1753 mg of phenolic compounds/l catechin equivalents and 197.9 mg of anthocyanins/l
cyaniding-3-glucoside equivalents), 700 ml juice daily for 9 weeks (Weisel et al., 2006)
Increase of thiols (antioxidant activity)
Human blood, healthy subjects, mixed fruit juice (red grape (57%), blackberry juice (18%), sour cherry juice (9%), black currant juice (9%), and aronia
berry juice (7%), containing 1753 mg of phenolic compounds/l catechin equivalents and 197.9 mg of anthocyanins/l cyaniding-3-glucoside equivalents),
700 ml juice daily for 9 weeks (Weisel et al., 2006)
No changes in lipid peroxidation (antioxidant/prooxidative properties - ?)
Human plasma and urine, healthy subjects, mixed fruit juice (red grape (57%), blackberry juice (18%), sour cherry juice (9%), black currant juice (9%),
and aronia berry juice (7%), containing 1753 mg of phenolic compounds/l catechin equivalents and 197.9 mg of anthocyanins/l cyaniding-3-glucoside
equivalents), 700 ml juice daily for 9 weeks (Weisel et al., 2006)

Aronia berries Inhibition of lipid peroxidation (antioxidant activity)
Rat hepatocytes, rats treated with N-nitrosodiethylamine (150 mg/kg) and carbon tetrachloride (2 ml/kg), aronia juice (10 ml/kg/day) for 4 weeks
(Kujawska et al., 2011)
Rat plasma, liver, rates treated with carbon tetrachloride, aronia juice (5, 10, and 20 ml/kg) daily for 2 – 4 days (Valcheva-Kuzmanova et al., 2004)
Increase of activity of antioxidant enzymes (antioxidant activity)
Rat hepatocytes, rats treated with N-nitrosodiethylamine (150 mg/kg), aronia juice (10 ml/kg/day) for 4 weeks (Kujawska et al., 2011)
Human hemolysates, men with blood cholesterol concentration: 205–250 mg/dl, 240 mg of anthocyanins (as Aronox) daily for 30 days (Kowalczyk
et al., 2005)
No change in activity of antioxidant enzymes (antioxidant/prooxidative properties - ?)
Rat hepatocytes, rats treated with carbon tetrachloride (2 ml/kg), aronia juice (10 ml/kg/day) for 4 weeks (Kujawska et al., 2011)
Inhibition of protein carbonylation (antioxidant activity)
Rat plasma, rats treated with N-nitrosodiethylamine (150 mg/kg) and carbon tetrachloride (2 ml/kg), aronia juice (10 ml/kg/day) for 4 weeks (Kujawska
et al., 2011)
Reduction of level of oxidized DNA (antioxidant activity)
Rat blood leukocytes, rats treated with N-nitrosodiethylamine (150 mg/kg), aronia juice (10 ml/kg/day) for 4 weeks (Kujawska et al., 2011)

Bayberries Inhibition of protein oxidation (antioxidant activity)
Human plasma, young adults with features of non-alcoholic fatty liver disease, 250 ml bayberries juice (containing 270.2 mg phenolic
compounds/100 ml and 83.5 mg anthocyanins/100 ml), twice daily for 4 weeks (Guo et al., 2014)

Bilberries No changes in total antioxidant status and the level of thiols (antioxidant/prooxidative properties - ?)
Human plasma, subjects at increased risk of cardiovascular disease, 330 ml bilberry juice daily for 4 weeks (Karlsen et al., 2010)

(Continued)
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TABLE 4 | Continued

Berries Different biomarkers of oxidative stress

Blackcurrants Inhibition of lipid peroxidation (antioxidant activity)
Human plasma, healthy subjects, 250 ml blackcurrant juice (containing 27.3 mg phenolic compounds/100 ml and 4 mg anthocyanins/100 ml) 4 times a
day for 6 weeks (Khan et al., 2014)

Blueberries Increase of total antioxidant status (antioxidant activity)
human plasma, healthy subjects, blueberries, 100 g freeze-dried berries with a high-fat meal (Mazza et al., 2002)
Inhibition of lipid peroxidation (antioxidant activity)
Human plasma, chronic smokers, fresh blueberries (250 g, daily), for 3 weeks (McAnulty et al., 2015)
Inhibition of lipid peroxidation (antioxidant activity)
Human plasma, obese men and women with metabolic syndrome, blueberries (50 g freeze-dried blueberries and about 350 g fresh blueberries) daily for
8 weeks (Basu et al., 2010)
Increase of activity of antioxidant enzymes (antioxidant activity)
Human plasma, postmenopausal women with pre- and stage 1-hypertnsion, 22 g freeze-dried blueberry powder (containing 844.6 mg phenolic
compounds) daily for 8 weeks (Johnson et al., 2015)
No changes in level of thiols (antioxidant/prooxidative properties - ?)
Human plasma, healthy smokers, frozen blueberries (300 g, containing 309 mg of anthocyanins, about 856 mg of phenolic acids, 30 mg of chlorogenic
acid), daily for week (Del Bo et al., 2016)
No changes in level of oxidized DNA (antioxidant/prooxidative properties - ?)
Human peripheral blood mononuclear cells, healthy smokers, frozen blueberries (300 g, containing 309 mg of anthocyanins, about 856 mg of phenolic
acids, 30 mg of chlorogenic acid), daily for week (Del Bo et al., 2016)

Cranberries Increase of total antioxidant status (antioxidant activity)
Human plasma, healthy subjects, cranberry juice (Vinson et al., 2008)
Increase of total antioxidant status (antioxidant activity)
Human plasma, healthy subjects, cranberry juice (7 ml/kg body weight per day), for 2 weeks (Reul et al., 2005)
Inhibition of lipid peroxidation (antioxidant activity)
Human plasma, healthy subjects, cranberry juice (7 ml/kg body weight per day), for 2 weeks (Reul et al., 2005)
Human plasma, patients with the metabolic syndrome, cranberry juice (0.7 l/day, containing 0.4 mg folic acid) for 60 days (Simao et al., 2013)
Inhibition of protein oxidation (antioxidant activity)
Human plasma, patients with the metabolic syndrome, cranberry juice (0.7 l/day, containing 0.4 mg folic acid) for 60 days (Simao et al., 2013)
No changes in total antioxidant status, lipid peroxidation, and activity of antioxidant enzymes (antioxidant/prooxidative properties - ?)
Human blood, plasma, red blood cells and urine, healthy subjects, cranberry juice (750 ml/day, containing about 1136 mg of phenolic compounds/l
GAE, about 2.8 mg of anthocyanins/l), for 2 weeks (Duthie et al., 2006)

Elderberries Increase of total antioxidant status (antioxidant activity)
Human plasma, healthy subject, elderberry juice (200, 300, or 400 ml, containing 361, 541, and 722 mg anthocyanins, respectively) daily for 2 weeks
(Netzel et al., 2005)
No changes in total antioxidant status (antioxidant/prooxidative properties - ?)
Human plasma, healthy subjects, elderberry juice (400 mg, containing 10% anthocyanins) daily for 2 weeks (Murkovic et al., 2004)

Grapes Inhibition of lipid peroxidation (antioxidant activity)
Rat liver, rat received irradiation as 8 Gy whole body irradiation, 100 g grape seed extract (total phenolic compounds – 573.5 mg GAE/g) daily for
1 week (Cetin et al., 2008)
rat lever and kidney, lead induced oxidative stress in rats, 400 mg hydroalcoholic extract/kg daily for 30 days (Lakshmi et al., 2013)
Cardiac tissues of rats, pancreas tissues of rats, rats were exposed to 5 Gy, grape seed extract (100 mg/kg body weight) daily for 2 weeks (Saada
et al., 2009)
Increase of total antioxidant status (antioxidant activity)
Rat plasma, pregnant rats, hydroethanolic red grapes extract, 3 × 30 mg/kg body weight daily for 2 weeks (Muresan et al., 2010)
Wistar rats plasma, a single dose of 300 mg kg−1 body weight of grape pomace extract (containing phenolic compounds 648 mg gallic acid/g extract)
(Veskouis et al., 2012)
Increase of activity of antioxidant enzymes (antioxidant activity)
Rat liver, rat received irradiation as 8 Gy whole body irradiation, 100 g grape seed extract (total phenolic compounds – 573.5 mg GAE/g) daily for
1 week (Cetin et al., 2008)
Rat lever and kidney, lead induced oxidative stress in rats, 400 mg hydroalcoholic extract/kg daily for 30 days (Lakshmi et al., 2013)
Cardiac tissues of rats, pancreas tissues of rats, rats were exposed to 5 Gy, grape seed extract (100 mg/kg body weight) daily for 2 weeks (Saada
et al., 2009)
Wistar rats, gastrocnemius muscle, heart, a single dose of 300 mg kg−1 body weight of grape pomace extract (containing phenolic compounds
648 mg gallic acid/g extract) (Veskouis et al., 2012)
Increase of lipid peroxidation
Wistar rats plasma, erythrocytes, gastrocnemius muscle, heart, liver, a single dose of 300 mg kg−1 body weight of grape pomace extract (containing
phenolic compounds 648 mg gallic acid/g extract) (Veskouis et al., 2012)
Increase of protein carbonylation
Wistar rats plasma, erythrocytes, heart, a single dose of 300 mg kg−1 body weight of grape pomace extract (containing phenolic compounds 648 mg
gallic acid/g extract) (Veskouis et al., 2012)
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Berries Different biomarkers of oxidative stress

Decrease of thiols (pro-oxidative properties)
Wistar rats erythrocytes, liver, a single dose of 300 mg kg−1 body weight of grape pomace extract (containing phenolic compounds 648 mg gallic
acid/g extract) (Veskouis et al., 2012)
No change in activity of catalase (antioxidant/prooxidative properties - ?)
Wistar rats erythrocytes, liver, a single dose of 300 mg kg−1 body weight of grape pomace extract (containing phenolic compounds 648 mg gallic
acid/g extract) (Veskouis et al., 2012)
No change in total antioxidant status (antioxidant/prooxidative properties - ?)
Wistar rats, gastrocnemius muscle, liver, a single dose of 300 mg kg−1 body weight of grape pomace extract (containing phenolic compounds
648 mg gallic acid/g extract) (Veskouis et al., 2012)
No change in protein carbonylation (antioxidant/prooxidative properties - ?)
Wistar rats, gastrocnemius muscle, liver, a single dose of 300 mg kg−1 body weight of grape pomace extract (containing phenolic compounds
648 mg gallic acid/g extract) (Veskouis et al., 2012)
No change in the level of thiols (antioxidant/prooxidative properties - ?)
Wistar rats, gastrocnemius muscle, heart, a single dose of 300 mg kg−1 body weight of grape pomace extract (containing phenolic compounds
648 mg gallic acid/g extract) (Veskouis et al., 2012)
Decrease of total antioxidant status (pro-oxidative properties)
Wistar rats, gastrocnemius muscle, a single dose of 300 mg kg−1 body weight of grape pomace extract (containing phenolic compounds 648 mg
gallic acid/g extract) (Veskouis et al., 2012)

Raspberries Inhibition of lipid peroxidation (antioxidant activity)
Human urine, Barrett’s esophagus patients, lyophilized raspberries [32 g (female) or 45 g (male)] daily (Kresty et al., 2006)
Increase of activity of antioxidant enzymes (antioxidant activity)
Human plasma, healthy subjects, 30 g of freeze-dried raspberries (total phenolic compounds – 1.05 g/100 g of freeze dried berries) daily for
4 weeks (Lee et al., 2011)
No changes in lipid peroxidation (antioxidant/prooxidative properties - ?)
Human plasma, healthy subjects, 30 g of freeze-dried raspberries (total phenolic compounds – 1.05 g/100 g of freeze dried berries) daily for
4 weeks (Lee et al., 2011)

Sea buckthorn
berries

Inhibition of lipid peroxidation (antioxidant activity)
Human plasma, healthy subjects, 300 ml sea buckthorn juice (containing 1182 mg flavonoids/l) daily for 8 weeks (Eccleston et al., 2002)

Strawberries Inhibition of lipid peroxidation (antioxidant activity)
Human plasma, women with metabolic syndrome, 2 cups of strawberry drink per day (each cup had 25 g of freeze-dried strawberry powder,
containing about 1000 mg of phenolic compounds) for 4 weeks (Basu et al., 2009)
Human plasma, hyperlipidemic subjects, fresh strawberries (454 g) daily for 4 weeks (Jenkins et al., 2008)
Rat gastric, 40 mg/day/kg body weight of strawberry crude extract for 10 days (Alavrez-Suarez et al., 2011)
Human plasma, subjects with type 2 diabetes, 2 cups of freeze-dried strawberry (50 g of freeze-dried strawberry is equivalent to 500 g of fresh
strawberries) daily for 6 weeks (Moazen et al., 2013)
Rat plasma and liver tissue, 25 g strawberries daily for 2 months (Giampieri et al., 2016)
Plasma, adults with abdominal adiposity and elevated serum lipids, freeze-dried strawberries (25 – 50 g/day) for 12 weeks (Basu et al., 2014)
Increase of activity of antioxidant enzymes (antioxidant activity)
Rat gastric, 40 mg/day/kg body weight of strawberry crude extract for 10 days (Alavrez-Suarez et al., 2011)
Rat plasma and liver tissue, 25 g strawberries daily for 2 months (Giampieri et al., 2016)
Increase of total antioxidant status (antioxidant activity)
Human plasma, subjects with type 2 diabetes, 2 cups of freeze-dried strawberry (50 g of freeze-dried strawberry is equivalent to 500 g of fresh
strawberries) daily for 6 weeks (Moazen et al., 2013)
Human plasma, healthy subjects, daily consumption of strawberries, for 2 weeks (Tulipani et al., 2014)

Wild
blueberries

Increase of total antioxidant status (antioxidant activity)
Human plasma, healthy subjects, wild blueberries, 100 g freeze-dried berries daily for 7 days with a high-fat meal (Kay and Holub, 2002)
Reduction of level of oxidized DNA (antioxidant activity)
Human blood mononuclear cells, subjects with risk factors for cardiovascular disease, wild blueberry powder drink (one portion (25 g) containing
0.4 g anthocyanins and 127.5 g chlorogenic acid), daily for 6 weeks (Riso et al., 2013)
No changes in total antioxidant status (antioxidant/prooxidative properties - ?)
Rat plasma, wild blueberry powder, daily for 4 or 8 weeks (Del Bo et al., 2010)

and in vivo models. This extract inhibited ROS production
and DNA damage stimulated by peroxyl and hydroxyl
radicals in vitro, but induced protein carbonylation, and
lipid peroxidation, and decreased the level of glutathione in vivo
(Table 4). Practical recommendations for the use of phenolic
antioxidant should involve the use of both in vitro and in vivo
experiments.

CONCLUSION

In recent years, a number of studies have examined the role of
phenolic compounds in berries as antioxidants protecting against
the most common diseases related to oxidative stress-driven
pathologies, such as cardiovascular diseases, inflammation,
cancer and neurodegenerative diseases. Berries and their
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products have been shown to play a beneficial role as antioxidants
in humans in both in vitro and in vivo models using
dietary supplementation with various berries (Del Bo et al.,
2015), and the most potent antioxidants commonly found
in berries may well be the anthocyanins. In contrast, a few
papers have demonstrated that the phenolic compounds also
have prooxidative activity, and berry extracts rich in phenolic
compounds do not behave the same way in in vitro and in vivo
models (Table 4).

However, no unwanted or toxic effects (i.e., chemical,
hematological or urinary effect) have been associated with
the consumption of berries or berry juices or other extracts,
especially aronia berries and aronia products in vivo, and
in vitro (Kulling and Rawel, 2008), which may suggest that
the phenolic antioxidants found in berries are natural gifts for
human health. However, the phenolic compound content of
berries and berry products is not always well described, and
further studies are required to determine the therapeutic doses

of different berry products for use in future clinical studies.
Moreover, further experiments are needed to understand the
beneficial effects reported so far from the mechanistic point
of view. Therefore, greater attention should be paid to the
development of well-controlled and high-quality clinical studies
in this area.
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