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Background:Despite remarkable success of immunotherapies with checkpoint blockade
antibodies targeting programmed cell death protein 1 (PD-1), the majority of patients with
non-small-cell lung cancer (NSCLC) have yet to receive durable benefits. We used the
metabolomic profiling of early on-treatment serum to explore predictors of clinical
outcomes of anti-PD-1 treatment in patients with advanced NSCLC.

Methods: We recruited 74 Chinese patients who had stage IIIB/IV NSCLC-proven tumor
progression and were treated with PD-1 inhibitor. The study was comprised of a discovery
cohort of patients treated with nivolumab and two validation cohorts of patients receiving
tislelizumab or nivolumab. Serum samples were collected 2–3 weeks after the first infusion
of PD-1 inhibitor. Metabolomic profiling of serum was performed using ultrahigh
performance lipid chromatograph-mass spectrometry. The serum metabolite
biomarkers were identified using an integral workflow of nontargeted metabolomic
data analysis.

Results: A serummetabolite panel consisting of hypoxanthine and histidine was identified
and validated as a predictor of response to PD-1 blockade treatment in patients with
advanced NSCLC. High levels of both hypoxanthine and histidine in early on-treatment
serum were associated with improved progression-free survival [hazard ratio (HR) � 0.078,
95% confidence interval (CI), 0.027–0.221, p < 0.001] and overall survival (HR � 0.124,
95% CI, 0.039–0.397, p < 0.001) in the discovery cohort. The serum metabolite panel
showed a high sensitivity and specificity in distinguishing responders and non-responders
in the validation cohorts 1 and 2, with an area under the receiver-operating characteristic
curve of 0.933 and 1.000, respectively. High levels of serum hypoxanthine and histidine
were correlated with improved progression-free survival in the validation cohort 1 (HR �
0.137, 95% CI, 0.040–0.467, p � 0.001) and in the validation cohort 2 (HR � 0.084, 95%
CI, 0.009–0.762, p � 0.028).

Conclusion: Our results revealed that hypoxanthine and histidine in early on-treatment
serum are predictive biomarkers of response to PD-1 blockade therapy in patients with
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advanced NSCLC. The serum biomarker panel would enable early identification of NSCLC
patients who may benefit from PD-1 blockade therapy.

Keywords: immune checkpoint inhibitors, non-small cell lung cancer, serum metabolomics, metabolite biomarker,
non-targeted metabolomics

INTRODUCTION

Non-small cell lung cancer (NSCLC) is the leading cause of cancer-
related mortality worldwide and generally has a poor prognosis
(Bray et al., 2018). During the past several years, major advances
have been made in cancer treatment through the use of immune
checkpoint inhibitors (ICIs) (Ribas and Wolchok, 2018). ICIs
targeting programmed cell death protein 1 (PD-1) or its ligand
PD-L1 have demonstrated improved clinical efficacy in both
second-line and first-line treatment of advanced NSCLC when
compared to conventional chemotherapy (Sui et al., 2018). At
present, two anti-PD-1 antibodies nivolumab and pembrolizumab
as well as several anti-PD-L1 antibodies have been approved by the
United States. Food andDrug Administration (FDA) for treatment
of multiple cancer types including NSCLC (Ribas and Wolchok,
2018). Recently, an anti-PD-1 antibody tislelizumab has been
approved in China for treatment of NSCLC and other cancers
(Liu and Wu, 2020). These PD-1/PD-L1 inhibitors block the
binding of PD-1 to its PD-L1 ligand and restore the capacity of
cytotoxic T cells to recognize and kill cancer cells. Current PD-1/
PD-L1 blockade therapies have shown durable disease control and
improved survival in patients with advanced NSCLC (Rangachari
and Costa, 2019). However, only subsets of patients are benefiting
from the anti-PD-1/PD-L1 therapies. For example, only 10–30% of
patients with NSCLC have objective tumor responses to treatment
with nivolumab (Borghaei et al., 2015; Topalian et al., 2019). The
mechanistic basis for the variation in response patterns remains
poorly explained. In addition, some patients experience severe
autoimmune adverse events (Friedman et al., 2016; Spain et al.,
2016). Given the distinct response patterns, combined with
potentially severe toxicity and high costs, there is an urgent
need to identify biomarkers that can predict which patients are
likely to benefit from PD-1/PD-L1 blockade therapies.

So far, PD-L1 expression, which is assayed by
immunohistochemistry (IHC) staining on tumor specimens, is the
most commonly used biomarker for selecting patients treated with
anti-PD-1/PD-L1 antibodies (Topalian et al., 2015). However, PD-L1
expression was not consistently associated with tumor responses and
patient survival. For example, only 44.8% of PD-L1-positive NSCLCs
are responsive to pembrolizumab in a first-line treatment (Garon
et al., 2015). A proportion of PD-L1-negative patients withNSCLC or
other cancers also benefits from anti-PD-1 therapy (Robert et al.,
2015). Several other biomarkers, which include tumor mutational
load, mismatch-repair deficiency, neoantigens, density of tumor-
infiltrating lymphocytes, and the diversity of gut microbiome,
have been reported to correlate with the clinical outcomes (Le
et al., 2015; Rizvi et al., 2015; Berghoff et al., 2016; McGranahan
et al., 2016; Jin et al., 2019). However, these proposed biomarkers are
not perfectly predictive. Moreover, most of them are based on tumor
assays, which require invasive sampling, and are not practical for

monitoring tumor response during treatment. Recently, circulating
blood biomarkers for prediction of immunotherapeutic responses
have attracted increasing attention because they can be minimally
invasively obtained from patients and trended over time (Li, Bullock,
et al., 2019).

Tumor-infiltrating immune cells typically experience
metabolic stress as a result of the dysregulated metabolic
activity of tumor cells, which can result in
immunosuppression and tumor immune evasion (Herbel et al.,
2016). Cumulative evidence indicates that combination of ICIs
with interventions targeting the metabolic circuits that impede
antitumour immunity may be a promising strategy to improve
clinical efficacy (Li, Wenes, et al., 2019). Metabolic biomarkers of
immunotherapeutic responses can not only guide the therapeutic
decisions but also lead to identification of novel metabolic targets
for combination therapies. Advances in mass spectrometry (MS)-
based metabolomics have allowed the discovery of new
biomarkers for cancer diagnosis and customized treatment
(Crutchfield et al., 2016). However, up to now, only a few
metabolomics studies have been performed to investigate the
changes in serum metabolites after anti-PD-1 treatment (Li H,
et al., 2019), the gut microbiota-derived metabolites in responsive
patients (Frankel et al., 2017), and the correlation between plasma
metabolites and T cell markers (Hatae et al., 2020). Metabolic
biomarkers that can reliably predict outcomes of anti-PD-1/PD-
L1 treatments remain to be uncovered.

In this study, by comprehensively profiling metabolites in
early on-treatment serum from a discovery cohort, we identified a
metabolite panel consisting of hypoxanthine and histidine as a
predictor of NSCLC response to PD-1 blockade, which was then
validated in independent patient cohorts. High levels of the serum
metabolite biomarkers were found to correlate with improved
survival of patients with NSCLC receiving PD-1 blockade
therapy.

MATERIALS AND METHODS

Patients
Patients of this study were recruited from Shanghai Chest
Hospital affiliated to Shanghai Jiao Tong University (Shanghai,
China). All the participants had histologically proven stage IIIB/
IV NSCLC (Table 1). Serum samples from a patient cohort
treated with nivolumab were used as a discovery set to
identify potential serum biomarkers of response to PD-1
blockade therapy. The potential metabolite biomarkers were
validated in a patient cohort receiving tislelizumab and
another cohort treated with nivolumab. The patients treated
with nivolumab had squamous or non-squamous cell
carcinoma and had received one to two prior systemic
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therapies and proved progression before PD-1 blockade therapy.
The patients receiving tislelizumab all had non-squamous cell
carcinoma, and tislelizumab was used as first-line therapy in
combination with chemotherapy. All the participants in this
study were followed up until disease progression or death.
Patients received nivolumab (240 mg) every 2 weeks, and
tislelizumab (200 mg) was administered every 3 weeks.
Peripheral blood samples were collected after administration
of nivolumab or tislelizumab. Disease severity was measured
by computed tomography or magnetic resonance imaging and
evaluated for therapeutic response using Response Evaluation
Criteria in Solid Tumors 1.1 (RECIST 1.1). Clinical response to
the treatment with nivolumab or tislelizumab was evaluated every
8 weeks and was confirmed by a subsequent assessment no less
than 4 weeks thereafter. Electronic medical charts were reviewed
independently by two investigators to assign clinical response
groups. Responders were defined by freedom from disease, stable
disease, or decreased tumor volume for more than 6 months, and
non-responders were defined by tumor growth or a clinical
benefit lasting 6 months or less (Hodi et al., 2018). Patients
gave their written informed consent to participate in the

research, which had received approval from the Ethics
Committee of Shanghai Chest Hospital. All the procedures
were conducted in accordance with the Declaration of Helsinki.

Sample Preparation
Serum was collected after centrifugation of peripheral blood at
1500 g for 10 min and immediately stored at −80°C. The samples
were thawed on ice. Then 100 μl of samples were mixed with 50 μl
of internal standard (6 μg/ml 2-chloro-L-phenylalanine in water)
and 350 μl of methanol. After vortex for 1 min, the samples were
centrifuged at 14,000 g for 15 min, and the supernatant was used
for LC-MS analysis. Quality control (QC) samples were prepared
by mixing aliquots of serum samples from a subset of the cohort
and using the same procedure as the samples studied.

Liquid Chromatography-Mass
Spectrometry Analysis
Metabolites were profiled using ultrahigh performance lipid
chromatography-mass spectrometry (UHPLC-MS). Samples
were injected onto a UHPLC system (Acquity, Waters)

TABLE 1 | Clinical characteristics of discovery and validation sets and efficacy of anti-PD-1 therapy.

Characteristicsa Discovery set (n = 43) Validation set 1 (n = 21) Validation set 2 (n = 10)

Age, year 63 (41–74) 60.4 (54–72) 64.5 (46–78)
Sex
Male 33 (77%) 14 (67%) 9 (90%)
Female 10 (23%) 7 (33%) 1 (10%)

Smoking status
Smoker 31 (72%) 11 (52%) 8 (80%)
Non-smoker 12 (28%) 10 (48%) 2 (20%)

Histology
Squamous 17 (40%) 0 7 (70%)
Non-squamous 26 (60%) 21 (100%) 3 (30%)

Disease stage
III 6 (14%) 1 (5%) 1 (10%)
IV 37 (86%) 20 (95%) 9 (90%)

Metastasis
Yes 37 (86%) 20 (95%) 9 (90%)
No 6 (14%) 1 (5%) 1 (10%)

Previous chemotherapy treatment
Cisplatin based 28 (62%) - 5 (36%)
Carboplatin based 12 (27%) - 6 (43%)
Others 3 (7%) - 3 (21%)
No previous treatment 0 - 0
Unknown 2 (4%) - 0

Radiotherapy
Yes 15 (35%) 4 (19%) 8 (80%)
No 27 (63%) 9 (43%) 2 (20%)
Unknown 1 (2%) 8 (38%) 0

Clinical benefit to PD-1 blockade
Durable clinical benefit 23 (53%) 13 (62%) 4 (40%)
No clinical benefit 20 (47%) 8 (38%) 6 (60%)

RECIST response to PD-1 blockade
Complete response 0 0 0
Stable disease 18 (42%) 6 (29%) 6 (60%)
Partial response 8 (19%) 13 (62%) 0
Progression disease 17 (39%) 2 (9%) 4 (40%)

Progression-free survival since PD-1 blockade, days 152 (24–645) 369 (42–770) 87 (27–429)
Overall survival since PD-1 blockade, days 573 (33–648) 596 (86–769) 366 (144–429)

aData are expressed as number (%) or median (range).
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coupled to a Q Exactive hybrid quadrupole-orbitrap mass
spectrometer (Thermo Fisher). The sample injection order was
randomized, and QC and blank samples (80%methanol in water)
were regularly injected throughout the run. The injection volume
was 10 μl. Metabolites were separated with a Luna NH2 column
(50 mm × 2 mm, 5 μm particle size, Phenomenex) (Yuan et al.,
2012). The column was maintained at 15°C with a solvent flow
rate of 0.3 ml/min. Solvent A was 20 mM ammonium acetate
adjusted to pH 9.0 with ammonium hydroxide, and solvent B was
acetonitrile. The gradient of B was as follows: 0 min, 85%; 3 min,
30%; 12 min, 2%; 15 min, 2%; 16 min, 85%; 23 min, 85% B. The
mass spectrometer was run in both electrospray ionization
positive (ESI+) and negative (ESI−) modes. The key parameters
were as follows: ionization voltage, +3.8 kV/−3.8 kV; sheath gas
pressure, 35 arbitrary units; capillary temperature, 320°C. The
mass spectrometer was run in full scan mode at an m/z 70–1000
scan range and 70,000 resolution. MS/MS spectra were acquired
with 15–35-eV collision energy.

Data Processing
Data processing was performed using an integral workflow of
nontargeted metabolomic data analysis (Dunn et al., 2011).
Briefly, data were processed by R package XCMS, followed by
quality checks and signal drift correction to generating a data
matrix that consisted of retention time, m/z value, and peak
intensity. The peak area of each metabolite was normalized to
sum of areas of all metabolites present in the sample, and then
unit-variance scaled before further statistical analysis
(Gorrochategui et al., 2016). The accurate mass and acquired
MS/MS spectra were used for metabolite identification by
matching with in-house spectral libraries and online databases
(mzCloud, MoNA, and HMDB) (Kind et al., 2018). Quantitation
of serum metabolites was performed by using a targeted analysis
and external calibration curves as reported previously (Roberts
et al., 2012).

Statistical Analysis
Multivariate statistical analysis of metabolomic data was
performed using the SIMCA software (Umetrics).
Unsupervised principal component analysis was conducted to
visualize grouping trends and the clustering of QC samples. A
supervised model of orthogonal partial least-squares-
discriminant analysis (OPLS-DA) was applied to identify the
metabolites contributing to class separation according to
corresponding variable importance in the projection (VIP).
The OPLS-DA parameters, R2Y and Q2, were used for
evaluating the goodness of the model fit. The risk of
overfitting of the OPLS-DA model was evaluated by
performing 200 permutation tests.

Univariate statistical analysis of marker metabolites was
performed using the Multi Experimental Viewer software
(http://www.tm4.org). A nonparametric Wilcoxon-Mann-
Whitney test was conducted, and a p value < 0.05 was
considered a priori to be statistically significant. The
metabolites with false discovery rate (FDR) values less than 0.
05 and VIP values greater than 1.0 were defined as putative
marker metabolites. The biomarker model was built by binary

logistic regression using forward stepwise method. To evaluate
the classification performance, receiver operating characteristic
(ROC) analysis was conducted and the area under the ROC curve
(AUC) was computed by using the MedCalc software (https://
www.medcalc.org/).

The Kaplan-Meier method was used to estimate progression-
free and overall survival, with the differences between the groups
calculated with the log-rank test. Hazard ratios (HRs) from
univariate Cox regression were used to determine the
association between marker metabolites and survival.
Multivariate Cox regression was conducted to adjust for
patient characteristics by using the SPSS software (SPSS Inc.).

RESULTS

Study Population
The characteristics of the study cohorts are summarized in
Table 1. To identify potential serum biomarkers of clinical
response to PD-1 blockade, we collected serum samples from
a discovery cohort of 43 patients with advanced NSCLC treated
with the anti-PD-1 antibody nivolumab. The potential
biomarkers were confirmed in two independent validation
sample sets. A validation cohort was comprised of 21 patients
with advanced NSCLC treated with another PD-1 inhibitor,
tislelizumab. Another cohort for biomarker validation includes
10 patients with NSCLC treated with nivolumab. Nivolumab-
treated patients had squamous or non-squamous cell carcinoma,
whereas all the patients receiving tislelizumab had non-squamous
cell carcinoma. The patients were treated with nivolumab as the
second-line or third-line therapy, whereas tislelizumab was used
in the first-line combination therapy of the patients. We defined
responsive and non-responsive patients based on the following
criteria (Hodi et al., 2018): patients with durable clinical benefit
(defined as no progression event or death within the first
6 months of PD-1 blockade) were classified as responders;
patients with no durable clinical benefit (progression event or
death within the first 6 months of PD-1 blockade) were classified
as non-responders. No significant difference was observed in age,
sex, disease history, disease stage, smoking history, and prior
treatments between responders and non-responders in
nivolumab- or tislelizumab-treated patients (Supplementary
Table S1).

Identification of Potential Metabolite
Biomarkers of Response to PD-1 Blockade
We collected serum samples from the discovery cohort 2 weeks
after the first infusion of nivolumab. Among the patients in the
discovery cohort (n � 43), 21 being evaluated as partial response
or stable disease were classified as responders, and 22 with disease
progression were classified as non-responders. By using ultrahigh
performance lipid chromatography-mass spectrometry
(UHPLC-MS), a total of 1,566 metabolite peaks were detected,
including 803 in the negative and 763 in the positive ionization
modes. The quality control samples are clustered in the score plot
of principal component analysis (PCA), indicating the good
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reproducibility of the metabolomics analysis (Figure 1A). The
PCA of the discovery set also demonstrated a tendency of
difference in metabolomic profiles between responders and
non-responders. For screening of potential marker metabolites,
orthogonal partial least squares discriminant analysis (OPLS-DA)
was applied. The OPLS-DA score plot of the discovery set
revealed a clear separation between responders and non-
responders without overfitting (Figure 1B). The validity of the
OPLS-DA model was confirmed using permutation tests
(Supplementary Figure S1). A subsequent univariate analysis
was performed, resulting in identification of 185 metabolite peaks

with a variable importance in the project (VIP) > 1.0, p < 0.05,
and a false discovery rate (FDR) < 0.05 as important variables
contributing to class separation.

Metabolite identification was performed by matching accurate
mass and tandem MS/MS spectra with in-house spectral libraries
and online databases and by confirmation with authentic
standards. Thus, six candidates of marker metabolites were
obtained, including cystine, threonine, histidine, 3-
oxotetradecanoic acid, 1,7-dimethyluric acid, and
hypoxanthine (Supplementary Table S2). Binary logistic
regression was performed to construct the best model using

FIGURE 1 | Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) of the data from the discovery set. (A) PCA
score plot. (B) OPLS-DA score plot. The cumulative R2Y and Q2Y of the OPLS-DA model are 0.92 and 0.67, respectively. R, responders; NR, non-responders; QC,
quality control.

FIGURE 2 | Serum levels of potential marker metabolites hypoxanthine (A) and histidine (B) at early on-treatment in responders and non-responders of the
discovery set and validation sets 1 and 2. The box plots depict the minimum and maximum values (whiskers), the upper and lower quartiles, and the median. Groups
were compared by Wilcoxon-Mann-Whitney test with Benjamini-Hochberg-based adjustment for multiple comparisons.
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the six metabolites (Supplementary Table S3). Therefore, the
combination of hypoxanthine and histidine was identified as the
best biomarker panel to distinguish responders and non-
responders to nivolumab treatment. Responders had
significantly higher levels of both marker metabolites in early
on-treatment serum than non-responders (p < 0.001 and p <
0.001, respectively) (Figure 2). By contrast, the PD-L1 expression
in pretreatment tumors was not significantly different (p � 0.116)
between responders and non-responders in the discovery cohort
(Supplementary Table S1). The receiver operating characteristic
(ROC) analysis showed that the metabolite panel performs better
than each metabolite in discrimination of responders and non-

responders (Figure 3). The area under the curve (AUC) for the
metabolite panel was 0.972 [95% confidence interval (CI),
0.869–0.999], with sensitivity of 95% and specificity of 86%.

High Marker Metabolite Levels Correlate
With Improved Patient Survival
The association between the marker metabolites and the clinical
outcome of nivolumab treatment was examined. Metabolite levels
were dichotomized into high and low categorical variables based
on the median value in the analyzed samples. We found that the
serum levels of hypoxanthine and histidine at early on-treatment

FIGURE 3 | Receiver operating characteristic (ROC) analysis of hypoxanthine and/or histidine in the discovery set and validation sets 1 and 2. Hyp, hypoxanthine;
His, histidine; AUC, area under the curve.

FIGURE 4 | Serum levels of metabolite biomarkers at early on-treatment associate with progression-free survival in the discovery set (A), validation set 1 (B), and
validation set 2 (C). Kaplan-Meier analysis for progression-free survival in NSCLC patients by serum levels of hypoxanthine and/or histidine. His, histidine; Hyp,
hypoxanthine; HR, hazard ratio.
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were significantly associated with progression-free survival (PFS)
[hazard ratio (HR) � 0.215, 95% CI, 0.102–0.449, p < 0.001; HR �
0.336, 95% CI, 0.166–0.679, p � 0.002, respectively] (Figure 4,
Supplementary Table S4). The combination of both metabolites
and the association with PFS demonstrated an additive effect (HR
� 0.078, 95% CI, 0.027–0.221, p < 0.001) (Figure 4,
Supplementary Table S4). The median PFS of patients with
high levels of one or both metabolites were 180 days (95% CI,
57–360 days) and 339 days (95% CI, 264–498 days), respectively,
whereas patients with low levels of both metabolites had a median
PFS of 51 days (95% CI, 27–57 days) (p < 0.001) (Figure 4). The
combination of both metabolites remained an independent factor
for PFS in the multivariate analysis (Supplementary Table S4).

The levels of serum hypoxanthine and histidine were also
significantly and independently correlated with overall survival
(OS) (HR � 0.124, 95% CI, 0.039–0.397, p < 0.001) (Figure 5,
Supplementary Table S5). Patients with high levels of both
metabolites had a longer overall survival (median OS of
589 days, 95% CI, 56–589 days) than did patients with low
levels of both metabolites (median OS of 297 days, 95% CI
93–354 days) (p < 0.001). Thus, hypoxanthine and histidine in
early on-treatment serum were identified as the potential
biomarkers predictive of clinical outcomes in patients with
NSCLC receiving PD-1 blockade therapy.

Validation of Serum Metabolite Biomarkers
Predictive of Response to PD-1 Blockade
The potential metabolite biomarkers were evaluated in two
independent validation sample sets. Serum samples were
collected from a validation cohort 3 weeks after the first
infusion of tislelizumab. This cohort consisted of 13

responders and eight non-responders (validation set 1)
(Table 1). We determined the absolution concentrations of
hypoxanthine and histidine in serum (Figure 2), and the
measurements were highly reproducible. The logistic
regression model of the metabolite panel for predicting
response to PD-1 blockade was constructed as follows: logit (p
� Responder) � 0.114 × (Hyp) + 0.079 × (His) − 19.548. In this
equation, (p � Responder) is the predicted probability of NSCLC
patients benefiting from PD-1 blockade therapy, (Hyp) and (His)
are the serum concentrations of hypoxanthine and histidine,
respectively, at early on-treatment. The cutoff value of (p �
Responder) was 0.798. By using this model, the AUC was
determined as 0.933 (95% CI, 0.734–0.996) for the validation
set 1, with sensitivity of 92% and specificity of 88%, which
indicates that the metabolite panel performed well in
distinguishing responders and non-responders (Figure 3). A
positive association between levels of the serum metabolite
panel and PFS was highly statistically significant and
independent (HR � 0.137, 95% CI, 0.040–0.467, p � 0.001)
(Figure 4, Supplementary Table S6). Patients with high levels
of hypoxanthine and histidine had a median PFS of 569 days
(95% CI, 360–750 days), whereas the median PFS for patients
with low levels of both metabolites was 126 days (95% CI,
42–256 days) (p < 0.001). Moreover, we found that high levels
of the serum metabolite panel were significantly associated with
improved overall survival of patient in the validation set 1 (p �
0.008) (Figure 6).

Another validation cohort was comprised of 10 patients with
NSCLC treated with nivolumab (validation set 2) (Table 1).
Serum samples were collected from these patients 2 weeks
after the first infusion of nivolumab. Similar to the results of
the discovery set and validation set 1, serum level of the two

FIGURE 5 | Kaplan-Meier estimates of overall survival by serum levels of hypoxanthine and/or histidine in the discovery set. His, histidine; Hyp, hypoxanthine; HR,
hazard ratio.
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marker metabolites had a high sensitivity and specificity in
discrimination of responders and non-responders of the
validation set 2 (Figure 3). Responders had significantly
higher levels of hypoxanthine and histidine in serum than
non-responders (p � 0.019 and p � 0.038, respectively)
(Figure 2), which were verified by the enzyme-based assays
(Supplementary Figure S2) (Liu et al., 2009; Sun et al., 2012).
We found that high levels of the serum metabolite panel were
correlated with improved PFS in the validation set 2 (HR � 0.084,
95% CI, 0.009–0.762, p � 0.028) (Figure 4, Supplementary Table
S6). Patients with high levels of the serum metabolite panel
outlived patients with low levels of both metabolites, although
the statistical significance cutoff was not met (p � 0.116)
(Figure 6). Thus, the results from the two independent
validation sets confirmed the serum metabolite panel as
predictive biomarkers of NSCLC response to PD-1 blockade
therapy.

DISCUSSION

Immunotherapies with checkpoint blockade antibodies targeting
PD-1, PD-L1, and cytotoxic T-lymphocyte antigen 4 (CTLA-4)
have remarkably improved the outcome of patients with
advanced NSCLC and other cancers (Ribas and Wolchok,
2018). However, a substantial number of patients do not
receive any clinical benefit, and robust predictors of
therapeutic response are currently lacking. Though several
tumor-derived and immune cell-derived biomarkers have been
proposed, the demonstrated biomarker profiles often overlap
between responders and non-responders and require invasive
sampling from patients (Zhang et al., 2019). In the present study,
we identified the serum metabolite biomarkers predictive of
response to anti-PD-1 treatment in patients with advanced
NSCLC based on metabolomic profiling using UHPLC-MS.
The metabolomic profile of early on-treatment serum was
found to be highly predictive of therapeutic responses, whereas
the pretreatment serum metabolome was influenced by the initial

states in patients including the treatments prior to PD-1 blockade,
thereby making it less suitable for use. Indeed, we failed to
identify reliable biomarkers from the pretreatment serum
metabolomic data of the discovery cohort possibly due to the
heterologous treatments prior to PD-1 blockade. Hypoxanthine
and histidine in early on-treatment serum were identified and
validated in independent patient cohorts as the predictive
biomarkers of clinical outcomes of PD-1 block therapy. To
our knowledge, this is the first report of the validated serum
metabolite biomarkers predictive of response to immune
checkpoint blockade therapies in lung cancer. This biomarker
panel would enable the identification of patients who may benefit
from continuing after the first administration of anti-PD-1
antibodies. Moreover, blood collection for these biomarkers is
minimally invasive compared with the collection of tumor tissues.
For clinical praxis, the nontargeted metabolomic approach can be
replaced by a targeted MS analysis or sensitive enzyme-based
assays specifically for the metabolite biomarkers, which could
simplify the process and reduce the measurement costs and thus
allow a more affordable, large-scale analysis (Cui et al., 2018).

The identified metabolite biomarkers, hypoxanthine and
histidine, have values beyond their ability to predict the
response to PD-1 blockade. They also offer novel insight into
mechanisms of therapeutic resistance and suggest metabolic
targets for interventions in combination with PD-1 blockade
to improve clinical efficacy. Hypoxanthine is a key
intermediate in adenosine metabolism, which can be
synthesized from adenosine through sequential activities of
adenosine deaminase (ADA) and purine nucleoside
phosphorylase (PNP) (Boison and Yegutkin, 2019). We found
that hypoxanthine levels were significantly higher in responders
than in non-responders, which suggests a role of the adenosine-
hypoxanthine metabolism in therapeutic resistance to PD-1
blockade. Previous studies have demonstrated that adenosine
is implicated in the suppression of T cell-mediated antitumor
responses, and the adenosine pathway has become an important
therapeutic target in cancer (Li X et al., 2019). Several clinical
trials have been initiated to test the efficacy of combined

FIGURE 6 | Kaplan-Meier estimates of overall survival by serum levels of hypoxanthine and histidine in the validation set 1 (A) and validation set 2 (B). His, histidine;
Hyp, hypoxanthine.
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adenosine pathway inhibitors with PD-1/PD-L1 blockade in
several cancers including NSCLC (Boison and Yegutkin, 2019).
So far, much effort has been made to target adenosine-producing
enzymes CD39 and CD73 and adenosine receptor A2AR for
enhancing antitumor immunity (Arab and Hadjati, 2019).
However, adenosine levels depend on the complex interplay
between several adenosine-producing and -degrading pathways
(Arab and Hadjati, 2019). Conversion of adenosine to
hypoxanthine via ADA and PNP represents a currently
underappreciated route that could regulate adenosine levels.
Our finding prompts the intriguing question of whether
increasing ADA and PNP activities for hypoxanthine synthesis
from adenosine could improve antitumor immunity. In fact,
ADA deficiency has been shown to result in tumor
progression, and ADA activity of T cells has been suggested as
an indicator of immune competence in patients with head and
neck squamous cell carcinoma (Theodoraki et al., 2018).

Cancer cells increase uptake of amino acids, thereby depleting
these resources for immune cells in the TME (Pavlova and
Thompson, 2016). The amino acid transport and metabolism
in T cells are also repressed by PD-1 ligation (Patsoukis et al.,
2015). Thus, increased availability of amino acids may support
the growth and function of T cells in the presence of PD-1
inhibitor. This may partially explain why responders had higher
levers of serum histidine than non-responders among the patients
receiving anti-PD-1 therapy. Moreover, high levels of histidine
can increase the production of histamine through the reaction
catalyzed by histidine decarboxylase (HDC). Histamine is an
inhibitor of NADPH oxidase (NOX2) and has been approved in
Europe in conjunction with interleukin-2 for relapse prevention
in patients with acute myeloid leukemia (Stadtmauer, 2002). A
recent study has shown that histamine targets myeloid-derived
suppressor cells and improves the anti-tumor efficacy of PD-1/
PD-L1 checkpoint blockade in mouse models (Grauers Wiktorin
et al., 2019). Thus, our finding raises the possibility that
supplementation of histamine/histidine and increasing HDC
activity might be attractive strategies to enhance immunotherapy.

In conclusion, we report that the identification of metabolite
biomarkers in early on-treatment serum constitutes a predictive
tool for selecting NSCLC patients who stand to gain clinical benefit
from anti-PD-1 therapy. Despite these provocative results, several
limitations exist with this study. The patient cohorts in the current
study were admittedly small and results need to be validated in
large cohorts. Although the validation set one was comprised of
patients receiving PD-1 inhibitor in combination with
chemotherapy, the metabolite biomarkers need to be validated
in more patient cohorts treated with combination therapy that is
becoming a promising treatment strategy for NSCLC (Dong et al.,
2019). Further studies are required to evaluate the serum
metabolite panel for predicting clinical outcome of anti-PD-1
therapy in other cancer types. Our findings also warrant follow-

up studies to check the ability of the serum metabolite biomarkers
to predict the response to drugs targeting other immune-related
proteins, such as PD-L1 and CTLA-4.
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