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Background: Psychiatric diagnosis is formulated by symptomatic classification;

disease-specific neurophysiological phenotyping could help with its fundamental

treatment. Here, we investigated brain phenotyping in patients with schizophrenia

(SZ) and major depressive disorder (MDD) by using electroencephalography (EEG)

and conducted machine-learning-based classification of the two diseases by using

EEG components.

Materials and Methods: We enrolled healthy controls (HCs) (n = 30) and patients with

SZ (n = 34) and MDD (n = 33). An auditory P300 (AP300) task was performed, and the

N1 and P3 components were extracted. Two-group classification was conducted using

linear discriminant analysis (LDA) and support vector machine (SVM) classifiers. Positive

and negative symptoms and depression and/or anxiety symptoms were evaluated.

Results: Considering both the results of statistical comparisons and machine

learning-based classifications, patients and HCs showed significant differences in

AP300, with SZ and MDD showing lower N1 and P3 than HCs. In the sum of amplitudes

and cortical sources, the findings for LDA with classification accuracy (SZ vs. HCs:

71.31%, MDD vs. HCs: 74.55%), sensitivity (SZ vs. HCs: 77.67%, MDD vs. HCs:

79.00%), and specificity (SZ vs. HCs: 64.00%, MDD vs. HCs: 69.67%) supported these

results. The SVM classifier showed reasonable scores between SZ and HCs and/or MDD

and HCs. The comparison between SZ and MDD showed low classification accuracy

(59.71%), sensitivity (65.08%), and specificity (54.83%).

Conclusions: Patients with SZ and MDD showed deficiencies in N1 and P3

components in the sum of amplitudes and cortical sources, indicating attentional

dysfunction in both early and late sensory/cognitive gating input. The LDA and SVM

classifiers in the AP300 are useful to distinguish patients with SZ and HCs and/or MDD

and HCs.
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depressive disorder
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INTRODUCTION

Although psychiatric diagnosis is based on phenomenological
distinction of overt features such as behavior, mood, and
thought, determination of the neuropathological mechanisms
with electroencephalography (EEG) remains challenging.
Among the neurophysiologic phenotypes determined using
EEG, there is no consistently recommended brain model for
schizophrenia (SZ) and major depressive disorder (MDD).
Previous EEG studies have focused on pathophysiological
distinctions and symptomatic relationships (1–3). The clinical
variations in SZ and MDD are very heterogeneous (4–
6). Beyond clinical diagnosis based on phenomenological
distinctions between SZ and MDD, the definition of EEG
endophenotypes using machine learning could provide
insights facilitating therapeutic breakthroughs for a variety
of pathologic phenotypes (7–10). Especially, classification
performance in psychiatric disorders was assured by applying
linear discriminant analysis (LDA) and support vector machine
(SVM) (11).

Auditory P300 (AP300) is a representative neurophysiological
indicator in patients with SZ and depression (12–15);
however, some studies provided inconsistent findings for
this indicator in depression (16). AP300 includes the N1
and P3 components, which represent the most negative
potential at around 100ms and the most positive potential at
around 300ms following the onset of an auditory stimulus,
respectively. Changes in P3 and N1 amplitudes in the midline
electrodes are commonly observed (17, 18). Furthermore,
the highest peak potential within defined time ranges for
each component shows large variations across individuals
because each component includes several neurobiological
attributes (19, 20). Alternatively, the width of amplitudes
within the defined time ranges can also indicate a pathological
state (21).

AP300 reflects cognitive processes in auditory responses as

well as working memory and attention process (22, 23). N1 has

been defined as the neural allocation for early sensory input

from the target stimulus (24, 25), and decreased N1 could reflect

abnormal early selective attention in SZ and mood disorder
(26–29). P3 is a major component of AP300 that is generated
by late positive potential from information processing, such as

an inputting rare event under ordinary situations (30, 31). N1
and P3 deficiencies are commonly observed in patients with SZ
(32, 33). Several studies have also reported delayed latencies and
decreased amplitudes of both N1 and P3 in patients with MDD
(13, 34–36).

Here, we compared AP300 between healthy controls (HCs)
and patients with SZ and MDD. To identify brain phenotypes
of SZ and depression, changes in the N1 and P3 components
were expressed in three dimensions, namely, peak with latency,
sum of amplitudes, and cortical sources, by using radar charts.
In addition, we applied machine learning techniques with linear
discriminant analysis (LDA) and support vector machine (SVM)
classifiers for each two-group classification.

MATERIALS AND METHODS

Participants
We enrolled 34 patients with SZ (13 men and 21 women),
33 patients with MDD (11 men and 22 women), and 30 HCs
(15 men and 15 women). The mean ages of the participants
with SZ and MDD and the HCs were 37.21 ± 14.94, 40.03
± 11.08, and 43.63 ± 12.80 years, respectively. The ages of
all participants ranged from 19 to 82 years (mean: 40.15 ±

13.19 years). Participants who had vision or hearing problems,
drug and/or alcohol abuse, traumatic brain injury, and a
lifetime history of neurological disorders were excluded. Healthy
participants with a lifetime history of psychiatric disorders were
also excluded. All participants were native Koreans diagnosed
using the MINI International Neuropsychiatric Interview of
the Diagnostic and Statistical Manual of Mental Disorders, 5th
Edition. The Positive and Negative Syndrome Scale (PANSS) (37)
was evaluated in patients with SZ, while the Hamilton Depression
and Anxiety rating scales (HAMD and HAMA) (38, 39) were
evaluated in patients with MDD. The Beck Depression Inventory
(BDI) was also evaluated in patients with MDD and HCs
(40). All symptomatic evaluations were performed by a trained
psychiatrist. Written informed consent was obtained from all
the participants. This study followed the relevant guidelines and
regulations of the Institutional Review Board of Seoul St. Mary’s
Hospital College of Medicine, The Catholic University of Korea
(approval number: KC09FZZZ0211).

EEG Measurements
All the participants were seated in a comfortable chair in a sound-
attenuated room. The EEG recording was performed using the
NeuroScan SynAmps amplifier (Compumedics USA, El Paso,
TX, USA) with a 62-channel head cap mounted with AgCl
electrodes according to the international extended 10–20 system
(FP1, FPz, FP2, AF3, AF4, F7, F5, F3, F1, Fz, F2, F4, F6, F8, FT7,
FC5, FC3, FC1, FCz, FC2, FC4, FC6, FT8, T7, C5, C3, C1, Cz, C2,
C4, C6, T8, TP7, CP5, CP3, CP1, CPz, CP2, CP4, CP6, TP8, P7,
P5, P3, P1, Pz, P2, P4, P6, P8, PO7, PO5, PO3, POz, PO4, PO6,
PO8, CB1, O1, Oz, O2, and CB2). Eye movements were detected
by electrooculography (EOG) sensors placed above and below
the left eye and the outer canthus of both eyes. Bandpass filters
ranged from 1 to 100Hz with a sampling rate of 1000Hz. The
reference and ground channels were located on both themastoids
and forehead, respectively. The impedance wasmaintained below
5 kΩ during the recording session.

AP300 Protocol and Analyses
AP300 with an auditory oddball task was conducted in the
response-contingent behavior paradigm comprising 200 stimuli
delivered using MDR-XB500 headphones (Sony, Tokyo, Japan)
at 85 dB SPL with 2,000-ms fixed inter-stimulus intervals. A
total of 160 standard tones of 1,000Hz and 40 target tones of
1,500Hz were presented randomly. The duration of the tone was
100ms, and the rise and fall times were 10ms. The STIM2 system
(Compumedics USA, El Paso, TX, USA) was used to synchronize
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the auditory stimuli and EEG signals. All participants were
instructed to press a button promptly when the target tones of
1,500Hz were presented. A fixation cross was displayed in the
middle of the screen during all recording sessions. Above 30-
artifact free and -accurate epochs were used in the analyses. Gross
artifacts were removed through visual inspection by a trained
evaluator who had no information about the origin of the data.
Artifacts related to eye blinks and/or movements were rejected in
accordance with established mathematical procedures by using
SCAN 4.5 and CURRY 8.0 software (41). Based on vertical EOG,
positive and negative components exceeding 300 µV from the
before- and after-onset stimuli (−100 to 300ms) were rejected.
The data were epoched from before-onset 100ms to after-onset
700ms on target stimuli. Pre-stimulus baseline correction was
applied, and artifacts exceeding ±100 µV were rejected for all
electrodes. The data were bandpass-filtered with a zero-phase
shift ranging from 1 to 55Hz. In the peak with latency, N1
was extracted between 50 and 150ms post-stimulus. P3 was
extracted between 250 and 500ms. The width of the amplitudes
was calculated by summation of all the amplitudes within the
defined time ranges.

Cortical Source Analyses and Regions of
Interest (ROIs)
Cortical source estimation was performed using standardized
low-resolution brain electromagnetic tomography (sLORETA)
software. Estimation of the EEG inverse problem was conducted
at the cortical source regions based on the 6,239 voxels (42). The
source densities of N1 and P3 were calculated using mean values
within the defined time ranges. ROIs in the cortical source level
were selected to examine changes in the default mode network
regions and cognitive control network (43, 44). The source
activities of ROIs were extracted from the mean voxel values
of the selected areas. The selected 14 regions were the left/right
superior frontal gyri (SFGs), left/right middle frontal gyri
(MFGs), left/right medial frontal gyri (MeFGs), left/right inferior
frontal gyri (IFGs), left/right superior temporal gyri (STGs),
left/right inferior parietal lobes (IPLs), and left/right precuneus.

Machine Learning Analyses
Features were selected based on three dimensions: peak with
latency (n= 12), sum of amplitudes (n= 7), and cortical sources
(n = 28). Dimension-based feature selection was applied. The
present study lacked a suitable sample size. Reducing dimension
should be performed when the sample sizes and features were
sufficiently large to secure acceptable classification performance
(45). The classification accuracy, sensitivity, and specificity were
evaluated using the 10-by-10-fold cross-validation technique
with LDA (46) and linear SVM classifiers (47). Analysis in
machine learning was conducted using MATLAB 2019 software
with add on toolbox the Bioinformatics and the Statistics and
Machine learning (Mathworks, Inc, USA).

Statistical Analyses
Descriptive statistics were analyzed using multivariate analysis of
variance (MANOVA), chi-square test, and t-test, as appropriate
(Table 1). Age, education, and accepted AP300 trials among the

TABLE 1 | Demographic data of the present study.

Variables SZ (n = 34)

(a)

MDD

(n = 33) (b)

HCs (n = 30)

(c)

Statistics

Age 37.21 (14.94) 40.03 (11.08) 43.63 (12.80) f = 1.930,

p = 0.151

Sex (m/f) 13/21 11/22 15/15 χ
2, p = 0.387

Education 13.21 (3.37) 13.70 (2.30) 15.27 (1.57) f = 5.553,

p = 0.008

a < c

Duration of illness

(Missing value)

29.09 (12.11)

(0)

37.29 (7.83)

(26)

- -

Positive 29.26 (6.23) - - -

Negative 19.97 (7.14) - - -

General 52.94 (8.66) - - -

Total 102.18

(15.08)

- - -

HAM-D - 20.15 (5.65) - -

HAM-A - 22.48 (7.77) - -

BDI - 28.06 (12.33) 9.33 (7.49) T = 7.357, p

< 0.001

AP300 accepted

trials

37.71 (2.51) 37.27 (2.83) 37.73 (2.78) F = 0.297,

p = 0.744

Drug

administration (n)

29 6 - -

Antipsychotics

Amisulpride 6 - - -

Aripiprazole 4 - - -

Blonanserin 1 - - -

Clozapine 1 - - -

Olanzapine 11 - - -

Paliperidone 5 - - -

Quetiapine 7 - - -

Risperidone 1 - - -

Antidepressants

Alprazolam - 1 - -

Lorazepam - 2 - -

Mirtazapine - 1 - -

Paroxetine - 1 - -

Sertraline - 1 - -

Venlafaxine - 3 - -

groups were compared using MANOVA. Differences in sex were
also examined using the chi-square test. BDI scores between
patients with MDD and HCs were compared using t-test. For
multivariate analysis with covariance, 49 variables of AP300 were
examined as dependent variables among all groups, with age,
sex, and education as covariates. Statistical significance was set
at p < 0.05, two-tailed. Main-effect comparison was performed
using the Bonferroni correction from the original p-values (48).
All statistical analyses were performed using IBM SPSS software
(version 20.0; IBM Corp., Armonk, NY, USA).

RESULTS

Descriptive statistics are presented in Table 1. We found no
significant differences in age (F = 1.930, p = 0.151) and sex
(χ2, p = 0.387) among the three groups. Level of education was
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significant between patients with SZ and HCs (SZ < HCs, F =

5.553, p = 0.008). The BDI scores significantly differed between
HCs and patients with MDD (t= 7.357, p < 0.001). The number
of accepted AP300 trials did not differ significantly among the
three groups (F= 0.297, p= 0.744).

The present study found significant differences in AP300
among HCs and patients with SZ and MDD [F(2, 91) = 1.704, p
= 0.006, η2 = 0.645]. In the assessment of the sum of amplitudes
of AP300 (Table 2 and Figure 1A), significant differences were
found among patients with SZ, MDD, and HCs (SZ < MDD <

HCs, N1-Fz, p< 0.001; SZ<MDD, SZ<HCs, N1-Cz, p= 0.005;
SZ<MDD, N1-Pz, p< 0.037; SZ<MDD, SZ<HC, Total value,
p= 0.014).

On evaluating the peak with latency of AP300 (Table 2 and
Figures 1B,C), differences were significant (SZ < HCs, N1-Fz-
Peak, p = 0.027; SZ < MDD, SZ < HCs, P3-Pz-Peak, p =

0.043). On evaluating the cortical source activities of AP300
(Table 2 and Figure 2), significant differences were found (SZ
< HCs, MDD < HCs, N1-R-IPL, p = 0.012; N1-L-Precuneus,
p = 0.004; N1-R- Precuneus, p < 0.001; P3-R-STG, p = 0.003;
P3-L-IPL, p < 0.001; P3-R-IPL, p < 0.001; P3-L-Precuneus, p
< 0.001; P3-R-Precuneus, p < 0.001). There were no significant
differences in the assessments of AP300 behavior. Meanwhile,
correlations between clinical symptoms and AP300 were not
significant (Figure 3).

The machine learning results with LDA and SVM are
presented in Table 3. The results of the two-group classification
are as follows:

Accuracy for sum of amplitudes: SZ vs. MDD, LDA, 59.71%,
SVM, 54.48%; SZ vs. HCs, LDA, 71.31%, SVM, 57.81%;
and MDD vs. HCs, LDA, 74.55%, SVM, 58.89%. Sensitivity

for sum of amplitudes: SZ vs. MDD, LDA, 65.08%, SVM,
56.18%; SZ vs. HCs, LDA, 77.67%; SVM, 56.77%; and MDD
vs. HCs, LDA, 79.00%, SVM, 57.58%. Specificity for sum of
amplitudes: SZ vs. MDD, LDA, 54.83%, SVM, 52.73%; SZ vs.
HCs, LDA, 64.00%, SVM, 59.00%; and MDD vs. HCs, LDA,
69.67%, SVM, 60.33%.
Accuracy for peak with latency: SZ vs. MDD, LDA, 55.75%,
SVM, 53.88%; SZ vs. HCs, LDA, 70.74%, SVM, 67.35%; and
MDD vs. HCs, LDA, 70.60%, SVM, 70.95%. Sensitivity for
peak with latency: SZ vs. MDD, LDA, 57.25%, SVM, 55.00%;
SZ vs. HCs, LDA, 69.42%; SVM, 70.00%; and MDD vs. HCs,
LDA, 75.17%, SVM, 72.12%. Specificity for peak with latency:
SZ vs. MDD, LDA, 55.00%, SVM, 52.73%; SZ vs. HCs, LDA,
72.33%; SVM, 64.33%; and MDD vs. HCs, LDA, 65.33%,
SVM, 69.67%.
Accuracy for cortical sources: SZ vs. MDD, LDA, 54.28%,
SVM, 54.78%; SZ vs. HCs, LDA, 65.41%, SVM, 71.88%; and
MDD vs. HCs, LDA, 55.50%, SVM, 65.87%. Sensitivity for
cortical sources: SZ vs. MDD, LDA, 58.25%, SVM, 66.77%;
SZ vs. HCs, LDA, 69.25%, SVM, 74.41%; and MDD vs. HCs,
LDA, 64.00%, SVM, 81.21%. Specificity for cortical sources:
SZ vs. MDD, LDA, 50.08%, SVM, 42.42%; SZ vs. HCs, LDA,
60.67%, SVM, 69.00%; and MDD vs. HCs, LDA, 46.67%,
SVM, 49.00%.

DISCUSSION

The present study demonstrated differences in AP300 between
HCs and patients with SZ and MDD. AP300 with N1 deficiency
in patients with SZ and MDD was predominantly found in the
sum of the amplitudes. Machine learning-based classification

TABLE 2 | Comparisons of AP300 between patients and HCs.

Variables SZ (n = 34) MDD (n = 33) HCs (n = 30) Statistics

(a) (b) (c) Pairwise

comparison

Original

p-value

Bonferroni corrected

p-value

Effect

size (η2)

Sum of amplitudes

N1-Fz 278.18 (131.35) 375.58 (137.70) 471.05 (159.07) a < b < c <0.001 <0.001 0.226

N1-Cz 334.39 (117.94) 449.97 (162.03) 490.52 (144.58) a < b, a < c <0.001 0.005 0.182

N1-Pz 294.24 (121.56) 421.81 (164.11) 354.74 (102.65) a < b 0.001 0.037 0.146

Total 2583.68 (1114.06) 3591.49 (1583.27) 3879.94 (1245.18) a < b, a < c <0.001 0.014 0.165

Peak(µV) with latency (ms)

N1-Fz-Peak 6.00 (2.50) 7.37 (2.26) 8.46 (2.65) a < c 0.001 0.027 0.152

P3-Pz-Peak 6.88 (3.33) 8.87 (3.72) 9.95 (3.52) a < b, a < c 0.001 0.043 0.143

Cortical sources

N1-Right IPL 0.41 (0.38) 0.39 (0.42) 0.82 (0.67) a < c, b < c <0.001 0.012 0.168

N1-Left Precuneus 0.89 (0.59) 0.91 (0.96) 1.67 (1.20) a < c, b < c <0.001 0.004 0.187

N1-Right Precuneus 0.80 (0.51) 0.88 (0.72) 1.51 (0.97) a < c, b < c <0.001 <0.001 0.223

P3-Right STG 0.86(0.52) 1.29 (0.87) 1.73 (0.88) a < c, b < c <0.001 0.003 0.194

P3-Left IPL 0.45(0.43) 0.50 (0.45) 1.12 (0.90) a < c, b < c <0.001 <0.001 0.245

P3-Right IPL 0.38(0.28) 0.35 (0.31) 0.97 (0.77) a < c, b < c <0.001 <0.001 0.250

P3-Left Precuneus 0.91(0.65) 1.14 (1.08) 2.66 (2.12) a < c, b < c <0.001 <0.001 0.276

P3-Right Precuneus 0.90(0.58) 1.09 (0.98) 2.38 (1.94) a < c, b < c <0.001 <0.001 0.244
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FIGURE 1 | AP300 with brain phenotyping. (A) is the radar chart with sum of amplitudes. (B) is the peak and latency. (C) illustrates topographical map of N1 and P3

between patients and healthy controls.

FIGURE 2 | Comparison of AP300 at cortical source level. Blue color indicates cortical source deactivations in patients, compared to healthy controls. The sLORETA

has a low-resolution anatomical distribution.

with LDA showed reasonable accuracy and sensitivity between
SZ and HCs and/or MDD and HCs. Considering the results
of both statistical comparisons and machine learning-based
classification, patients with SZ showed defective EEG phenotypes
inN1-Fz, N1-Cz, N1-Pz, and total value in the sum of amplitudes.
Patients with MDD showed an impaired EEG phenotype in

N1-Fz in the sum of amplitudes. In cortical sources, patients with
SZ and MDD showed decreased N1 and P3. The SVM classifier
showed reasonable sensitivity between SZ and HCs and/or MDD
and HCs.

The impaired N1 component in patients with SZ reflects early
sensory gating deficits, which lead to a dysfunctional process
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FIGURE 3 | Correlations between clinical symptoms and AP300. Correlations were not significant.

TABLE 3 | Classification using LDA and SVM.

Two sample classifications Accuracy (%) Sensitivity (%) Specificity (%) Number of features Selected features

LDA SVM LDA SVM LDA SVM

SZ vs. MDD 59.71 54.48 65.08 56.18 54.83 52.73 7 Sum of amplitudes

SZ vs. HCs 71.31 57.81 77.67 56.77 64.00 59.00

MDD vs. HCs 74.55 58.89 79.00 57.58 69.67 60.33

SZ vs. MDD 55.75 53.88 57.25 55.00 55.00 52.73 12 Peak with latency

SZ vs. HCs 70.74 67.35 69.42 70.00 72.33 64.33

MDD vs. HCs 70.60 70.95 75.17 72.12 65.33 69.67

SZ vs. MDD 54.28 54.78 58.25 66.77 50.08 42.42 28 Cortical sources

SZ vs. HCs 65.41 71.88 69.25 74.41 60.67 69.00

MDD vs. HCs 55.50 65.87 64.00 81.21 46.67 49.00

of attentional information (49). This impaired phenotype is
associated with aberrant neural plasticity in SZ patients showing
clinical high-risk factors (50). Patients with depression showed
delayed latency of N1 and a lower P3 amplitude (36). Deficits in
early sensory gating are related to maladaptive initial directions
of sensory information, resulting in delayed N1 latency and lower
amplitude (49). P3 is an index of the late sensory gating that
decodes whether the stimulus is significant or unnecessary (51).

The present study showed significant differences in N1 and
P3 between patients with SZ and those with MDD. Compared
to patients with MDD, patients with SZ had lower N1 and
P3 amplitudes. However, this difference lacked power because
classification with machine learning has low accuracy, sensitivity,
and specificity. Previous studies reported that high classification
performance was identified when sensor and source level EEG
features were used together (10). EEG microstate features
had higher classification performance than conventional EEG
features in patients with SZ (52). In MDD, EEG band frequency
features showed a good performance classifying patients and
healthy individuals (53). In the present study, the mean and
standard deviation in the EEG data could influence the results
in statistical comparison, while distributional similarity of the

used features between groups could have a possible effect on
the lacking power in classification with machine learning. In
addition, sociodemographic factors could influence the results.
Further studies are warranted in patients with several clinical
phenotypes and EEG features.

This study had a few limitations. First, the sample size
was small; thus, future studies with large sample sizes should
be conducted to verify the results. Second, several clinical
phenotypes, such as affective or mood-specific types and
psychosis with mood symptoms, need to be considered.
Nevertheless, determination of the neuropathological
mechanism via EEG phenotyping could provide useful
information for the fundamental treatment of psychiatric
disorders. This study identified that in sum of amplitude, a
neurophysiologic phenotype with an N1 deficit featured in
patients with MDD and SZ, indicating a dysfunctional process
of early sensory attentional information. Supporting this result
was that the LDA classifier showed reasonable accuracy and
sensitivity. In cortical sources, a phenotype with deficits in both
N1 and P3 was observed in patients with MDD and SZ, reflecting
maladaptive early and/or late sensory/cognitive gating inputs.
The SVM classifier with sensitivity showed reasonable scores.
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