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Background: Previous diabetes mellitus studies of cognitive impairments in the early
stages have focused on changes in brain structure and function, and more recently the
focus has shifted to the relationships between encephalic regions and diversification
of network topology. However, studies examining network topology in diabetic brain
function are still limited.

Methods: The study included 102 subjects; 55 type 2 diabetes mellitus (T2DM) patients
plus 47 healthy controls. All subjects were examined by resting-state functional magnetic
resonance imaging (rs-fMRI) scan. According to Automated Anatomical Labeling, the
brain was divided into 90 anatomical regions, and every region corresponds to a
brain network analysis node. The whole brain functional network was constructed
by thresholding the correlation matrices of the 90 brain regions, and the topological
properties of the network were computed based on graph theory. Then, the topological
properties of the network were compared between different groups by using a non-
parametric test. Finally, the associations between differences in topological properties
and the clinical indicators were analyzed.

Results: The brain functional networks of both T2DM patients and healthy controls
were found to possess small-world characteristics, i.e., normalized clustering coefficient
(γ) > 1, and normalized characteristic path length (λ) close to 1. No significant
differences were found in the small-world characteristics (σ). Second, the T2DM patient
group displayed significant differences in node properties in certain brain regions.
Correlative analytic results showed that the node degree of the right inferior temporal
gyrus (ITG) and the node efficiencies of the right ITG and superior temporal gyrus of
T2DM patients were positively correlated with body mass index.

Conclusion: The brain network of T2DM patients has the same small-world
characteristics as normal people, but the normalized clustering coefficient is higher
and the normalized characteristic path length is lower than that of the normal control
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group, indicating that the brain function network of the T2DM patients has changed.
The changes of node properties were mostly concentrated in frontal lobe, temporal lobe
and posterior cingulate gyrus. The abnormal changes in these indices in T2DM patients
might be explained as a compensatory behavior to reduce cognitive impairments, which
is achieved by mobilizing additional neural resources, such as the excessive activation
of the network and the efficient networking of multiple brain regions.

Keywords: type 2 diabetes mellitus, resting-state functional magnetic resonance imaging, graph theory,
functional network, small-world, topological properties

INTRODUCTION

Diabetes is a metabolic disease characterized by long-term
hyperglycemia, which may cause various complications such as
microvascular disease, retinopathy, kidney disease and peripheral
neuropathy. In severe cases, diabetes can be fatal. Statistics
produced by the International Diabetes Federation in 2015
indicated that the number of diabetes patients was about 415
million, and predicted that it would reach up to 642 million by
2040 (Ogurtsova et al., 2017). In China, the rate of diabetes cases
has approximately doubled in the last 10 years. The incidence of
diabetes in China is 11.6% and the number of diabetics is more
than 100 million, both of which are the highest in the world. Type
2 diabetes mellitus (T2DM) patients account for around 90% of
cases of diabetes mellitus (Holman et al., 2015), the morbidity of
which has been increasing over the years. Consequently, diabetes
has become one of the most critical health issues in China
(Ning, 2018).

Previous studies have shown that T2DM can result in various
cognitive deficits in the early stages of the disease, including
lapses in concentration, hypomnesis, visual impairment, and
declines in information processing speed and executive capacity
(McCrimmon et al., 2012). In extreme cases, these cognitive
deficits can develop into dementia. At present, the rapidly rising
incidence of diabetes and its associated cognitive impairments
has become a major issue. Although some progress has been
made with regard to determining the cognitive impairments
caused by T2DM, the underlying neuronal mechanisms of the
disorder are still not well understood.

Recently, resting-state functional magnetic resonance imaging
(rs-fMRI) has been used to study the underlying pathogenesis of
many kinds of central nervous system diseases, including those
which affect brain metabolism (Zhang L.J. et al., 2014; Zhou X.Q.
et al., 2014). As an emerging non-invasive diagnostic tool, rs-
fMRI can be applied to explore and distinguish impaired and
normal cognitive function in patients with diabetes mellitus.

The brain network analysis method based on graph theory
is mainly used to explore the potential mechanism of normal
human brain and various brain diseases, and it is found that
the brain function networks of normal people and brain diseases
patients have small-world characteristics (Supekar et al., 2009;
Zhang et al., 2011; Lei et al., 2015). He et al. (2007) successfully
built the first human brain structure network in 2007 and
found that it has small-world characteristics. They found that
the brain network topology of AD patients has changed (He

et al., 2008). They also confirmed the existence of stable small-
world characteristics by studying the brain structure network
of multiple sclerosis patients (He et al., 2009). Since then, this
method has been adopted in many researches (Zhang et al., 2011;
Suo et al., 2015; Xiao et al., 2015).

The graph theory-based network analysis has only been used
in patients with T2DM to investigate brain structure. Zhang
L.J. et al. (2014) discovered that the white matter network
topology (including the efficient of global properties and central
sulcus on right side cover) of T2DM patients is changed, and
this kind of abnormal network structure is associated with the
impairment of executive function observed in these patients. By
taking advantage of fiber tracer diffusion magnetic resonance
imaging and the method of graph theory, Reijmer et al. (2013)
and others found that both local and global network properties
of T2DM patients are changed. The abnormal network structure
was associated with the information processing speed of patients
and was independent of age, sex, education, white matter
hyperintensities, lacunar infarct and other factors. There have not
been any reports of the changes of brain gray matter functional
network topology properties in T2DM patients. Cui et al. (2015)
analyzed the differences in default mode network (DMN) of
T2DM patients, finding out that T2DM patients were associated
with impaired DMN function. With independent component
analysis (ICA) methods, Chen et al. (2015) found abnormal
functional connections between DMN, left frontal network and
sensorimotor network in T2DM patients, but found no abnormal
functional connections in other resting-state networks. With
the same methods, Xia et al. (2015) investigated whether the
attention network had changed in T2DM patients, and explored
the relationship between abnormal functional connection of
attention network and cognitive behavior.

The rs-fMRI brain network analysis method based on graph
theory has become one of the hotspots in the study of normal
human brain and neuropsychiatric diseases. It can explore the
functional connections between the whole brain and the local
brain regions, but it has not been widely used in the study of
diabetes. Understanding the abnormal patterns of the brain’s
functional network can help to find a new way to treat and
evaluate the diagnosis of diabetes.

In the present research, we compared the diversity of entire
brain functional network topology properties between T2DM
patients and healthy controls by adopting graph theory-based
brain network analysis together with rs-fMRI. We also explored
the relationship between the changes in brain functional network
topology properties and clinical variables and the neurocognitive
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scale, and discussed the influence of relative cognitive obstacles
and possible mechanism that it may have on patients. The results
of the present study will provide a theoretical basis for diabetic
pathophysiology and clinical presentation, and evidence for the
need for early treatment and prognostic evaluations.

MATERIALS AND METHODS

Subjects
The study subjects were selected from a total of 154 potential
participants: 91 patients with T2DM at Henan Provincial
People’s Hospital, and 63 healthy volunteers from the physical
examination center. Fifty two subjects were excluded from
the study, including 36 patients with T2DM (5 patients
with incomplete clinical data, 6 patients with excessive head
movement during fMRI scan and 25 patients who did not meet
the inclusion criteria), and 16 healthy controls (1 individual with
excessive head movement (translational movement > 1.5 mm
or rotation > 1.5) during fMRI scan and 15 subjects that failed
to meet the inclusion criteria). The remaining 102 subjects were
included in the study: 55 patients in the T2DM group and 47 in
the healthy control group. All subjects were right-handed, and
were informed of the specific content of the study and voluntarily
signed informed consent.

The inclusion criteria are as follows: (1) after oral glucose
tolerance test (OGTT) T2DM was diagnosed in accordance
with the diagnostic criteria published by the World Health
Organization in 1999 (American Diabetes Association, 2014); (2)
age 40–75, course of T2DM > 1 year. The exclusion criteria
were as follows: (1) functional insufficiency of heart, lung, liver
and kidney; (2) hyperthyroidism, hypothyroidism and other
systemic diseases; (3) infection, ketoacidosis, hyperosmolarity,
severe hypoglycemic coma or other urgent complication; (4)
anxiety, depression or other neuropsychiatric disease that affects
cognitive function; (5) cerebral hemorrhage, cerebral infarction,
cerebral trauma, vascular dementia or other disease or medical
history that incurs central nervous system injury; (6) recently
taken medication that is likely to affect cognitive function; (7)
drug taking or alcohol dependence; (8) failing to complete
required test items because of intolerance or other factors; (9)
MRI contraindication.

The inclusion criteria of healthy controls (Healthy Controls
Corresponding to Type 2 Diabetes Mellitus, T2HC) were
as follows: (1) age, gender, highest level of education and
handedness are matched to those of the T2DM patients; (2)
the OGTT result does not conform to the diagnostic criteria of
T2DM published by the World Health Organization in 1999; (3)
Montreal Cognitive Assessment Scale (MoCA) grade is normal.
The exclusion criteria are the same as described above.

Clinical and Cognitive Scale Test
Before fMRI scanning, the following clinical characteristics were
recorded: gender, age at diagnosis, diabetic course, MoCA, height,
weight, glycosylated hemoglobin (HbAlc), fasting blood glucose,
total cholesterol (TCHOL), glycerin trilaurate (TG), high density
lipoprotein (HDL), and low density lipoprotein (LDL). The

course of T2DM was defined as the time elapsed from when the
patient was diagnosed with T2DM to the time of fMRI scanning.
Height and weight were used to calculate body mass index (BMI)
of subjects: BMI = weight (kg)/height (m2). BMI< 18.5 is defined
as slim, BMI = 18.5–23.9 is normal, BMI ≥ 24 is overweight,
BMI = 24–26.9 is fat, BMI = 27–29.9 is corpulent, BMI ≥ 30 is
severely obese, BMI ≥ 40 is extremely obese.

The MoCA was used to evaluate the integral cognitive
function of all subjects, and the test was performed according
to standard procedures. The test was carried out in a quiet
environment. At the same time, subjects were expected to be
relaxed, conscious and non-contradictory. The test assessed 8
cognitive domains: visual space and executive function, attention,
memory, naming, abstract thinking, language, delayed recall
and orientation. The MoCA is commonly used to screen for
Mild Cognitive Impairment (MCI), for which it displays high
sensitivity (Hobson, 2015). The MoCA test result has a total score
of 30 points, with a final score ≥ 26 being considered normal.

Rs-fMRI Data Acquisition
Subjects were scanned under resting conditions using a 3.0T
superconducting magnetic resonance imaging system and a
Siemens 8-channel head coil. During scanning, subjects were
instructed to take the supine position, close their eyes but do not
sleep, and try to keep their body motionless. Head movement
was limited with a foam pad, and the subject’s hearing was
protected with foam earplugs or earphones. First, regular MRI
scanning was conducted to detect brain abnormalities, then echo
planar imaging (EPI) was used to collect resting-state brain
function. The scan parameters were as follows: TR = 2000 ms,
TE = 30 ms, seam thickness = 5 mm, FOV = 240 × 240 mm2,
matrix = 64 × 64, voxel size = 3.75 × 3.75 × 5 mm3, FA = 90◦,
acquisition 210 time points, the total scan time is 420 s. Subjects
were asked to close their eyes, relax and keep their head
motionless, and try to keep a clear head without much thinking
before the functional scanning. After the scan was complete, the
respondents were asked to cooperate, and those who did not
cooperate well were excluded from the study.

Data Preprocessing
Data preprocessing analysis was conducted in the MATLAB
2017a software environment by using the GRETNA graph-
based network analysis toolkit. First, data from the first 10
time points were removed to exclude the problem of magnetic
field uniformity, then time layer correction of rs-fMRI data
was performed, and moving 3 mm horizontally or rotating
in the direction of x, y, and z axis as standard strip head
dynamic data. The fMRI images were normalized after head-
movement correction by using the MNI-152 standard template
of brain anatomy of the Neurological Research Institute,
Montreal, Canada, by matching the structure and function
images of the subjects and resampling data (voxel size was
3 mm × 3 mm × 3 mm). Next, linear drift and low frequency
filter (frequency 0.01–0.08 Hz) were taken to correct the influence
of linear frequency drift and high-frequency physical noise;
doing Gaussian smoothing to normalized graph, it was treated
with 4 mm height and a half full width, smooth kernel size
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is 4 × 4 × 4. Finally, removal covariate included the impact
of 6 head parameters (3 translation parameters and 3 rotation
parameters), the whole mean signal, white matter, cerebrospinal
fluid signal, age and gender.

Network Construction
Node Definition
A network is composed of many nodes and the edges of the
connection between these nodes. In brain networks, nodes
represent brain regions and edges represent the degree of
statistical dependence of blood oxygenation level dependent
(BOLD) imaging between different brain regions. In the article,
brain is divided into 90 cortices and cortical interest areas.

Edge Definition
For every subject, we chose average time list of 90 brain regions,
then, calculated the correlation coefficient between the mean time
series value of the two brain regions (spread all brain regions,
such as the i-th brain area and the j-th brain area), which as the
functional connection metric between them. Last, obtained was a
90 × 90 correlation matrix, which is called a weighed functional
connection matrix. According to the predefined threshold (see
threshold selection below), we converted the weighed functional
connection matrix to a binary adjacency matrix. If the absolute
value of the correlation coefficient between any two brain regions
was less than the given threshold, it was recorded as 0, otherwise
it was recorded as 1.

Network Analysis
Threshold Selection
The number of sides of each brain network is different. To correct
for this difference, we applied the sparse threshold (S) range to
the relative matrix to ensure the brain network of every subject
contained the same number of sides. For every subject, S is
defined as the ratio between the actual number of edges and the
highest possible number of edges. Because there has not any exact
means to define the choice of single threshold at present, previous
brain network analysis study used the range of S to thresholding
every relative matrix repeatedly. The selection criteria should
meet the following two conditions: (1) the minimum of S should
meet average node degree in every thresholding network that
id 2log(N), and N is node number; (2) the maximum of node
should be satisfied with small-world characteristics scalar σ and
that is bigger than 1.1. After above process, it would produce
a range of S, that is pitch is 0.01 and S between 0.1 and
0.34. Network of this threshold range produced can guarantee
small-world characteristics estimation with sparse attribute and
minimal pseudo-side. The subsequent brain network analysis will
calculate the global network properties and node properties in the
order of each sparsity level.

Network Parameters
Global properties include: (1) small-world parameters, which
includes cluster coefficient, characteristic path length, normalized
cluster coefficient, normalized characteristic path length, and
small-world characteristics; (2) network efficiency, which
includes global efficiency, and component efficiency. Node

properties include: (1) node degree; (2) node efficiency; and (3)
the betweenness of node.

Statistical Analysis
Demographic and Clinical Data Statistical Analysis
Statistical analysis of the clinical data of the subjects included in
the study was performed by using the SPSS 22.0 software package.
The chi-squared test was used to compare the gender differences
between groups. The measurements of other variables (age,
BMI, course of disease, glycosylated hemoglobin, fasting blood
glucose, total cholesterol, triglyceride, high density lipoprotein,
low density lipoprotein and MoCA analog scale) were analyzed
by using two-sample t-tests. p < 0.05 was deemed to be
statistically significant.

Statistical Test of Network Properties Between
Groups
Because area under the curve (AUC) describes the topology
properties of brain network generally, and it can select single
threshold calculation independently, moreover, it is highly
sensitive about topology structure of brain disease abnormally. As
a result, AUC of every topology attribute was selected as statistical
sample (Suo et al., 2015). The AUC for a general metric Y can
be defined as the AUC for calculating the sparsity range from
S1 to Sn (the interval is ∆S) (Figure 1), and it’s formula can be
described as Lei et al. (2015):

YAUC
=

1
2

N−1∑
k=1

[
Y(Sk)+ Y(Sk−1)

]
•1S

To determine whether there are inter-group differences in
network properties, the non-parametric permutation test is used
to test the AUC of each network attribute in the two sets of
samples. It is divided into the following steps:

(1) Building the null hypothesis. It is assumed that there is no
difference between the means of the two statistical samples.

(2) Determining inspection level α, which is designated as 0.05.

FIGURE 1 | The calculation of area under the curve (AUC). S1 = 0.10,
Sn = 0.34, ∆S = 0.01.
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(3) Calculating test statistic of previous two groups’ samples.
(4) To determine whether the differences between groups

of network properties could occur accidentally, a sample
is selected at random without replacement from sample
observation (two samples get together) so as to regroup,
then replacement statistical tests of two samples, AUC after
stochastic grouping were computed.

(5) Setting the number of random packets, for example 10,000
times, repeat step 4 1,000 times, then get a empirical
exampling distribution of replacement statistical tests.

(6) Adopting 95% of every empirical exampling distribution as
critical value of null tail test of the null hypothesis. This kind
of mistakes is kept within 0.05, and calculating odds is p.

(7) With regard to the inspection level (significance level)
given by step 2, and according to the principle of small
probability, conclusion is drawn.

It is worthwhile to note that before taking statistical test, the
effects of age, sex and other parameters need to be removed
by multiple linear regression to ensure the differences between
groups of every network properties are caused by diseases. To
solve multiple comparative problems, use calibration methods
of false discovery rate (FDR) proposed by Benjamini-Hochberg,
which is to correct the p-value after difference between each
network attribute group.

Correlation Analysis Between Network Properties
and Clinical Parameters
After determining the differences in network properties between
the groups, we examined the relationship between these

TABLE 1 | Demographic data and clinical Features of type 2 diabetes mellitus
patients and the corresponding control group.

Characteristics Mean ± SD P-value

Type 2 diabetes
mellitus (n = 55)

Control group
(n = 47)

Gender
(male/female)

35/20 21/26 0.073

Age 53.31 ( ± 9.05) 53.34 ( ± 7.68) 0.919

Course of disease
(years)

8.87 ( ± 6.42) – 0.112

BMI 25.37 ( ± 2.85) 25.20 ( ± 2.80) 0.761

HbA1c 8.15 ( ± 1.78) – 0.001

GLU 9.59 ( ± 3.04) – 0.842

CHOL 4.42 ( ± 1.10) 4.81 ( ± 0.87) 0.054

TG 2.05 ( ± 2.41) 1.55 ( ± 0.82) 0.152

HDL 0.98 ( ± 0.24) 1.21 ( ± 0.33) 0.001

LDL 2.51 ( ± 0.90) 2.77 ( ± 0.64) 0.100

MoCA 25.36 ( ± 1.74) 27.79 ( ± 1.90) 0.001

All calculations were carried out in SPSS 22.0. Double-tailed chi-squared test
was used for gender variables. Other measurement variables were tested with
two-sample t-test. For all tests, p < 0.05 was considered statistically significant.
Values in bold indicate statistically significant differences. BMI, body mass index;
HbA1c, glycated hemoglobin; GLU, fasting blood glucose; CHOL, cholesterol; TG,
triglyceride; HDL, high-density lipoprotein; LDL, low-density lipoprotein; MoCA,
Montreal Cognitive Assessment score.

differences and the clinical parameters of T2DM, with the age and
gender as cointegration variables. Clinical parameters include
BMI, course of disease, glycated hemoglobin, fasting blood-
glucose, total cholesterol, triglyceride, high-density lipoprotein,
low-density lipoprotein, and MoCA score.

RESULTS

Demographic Data, Clinical Data, and
Cognitive Scale
The results of demographic data, clinical features and cognitive
scales of all subjects are shown in Table 1. The MoCA grade of
the T2DM group is greater than 26, which is seen as cognitive
dysfunction. There were no significant differences between the
T2DM and T2HC groups in gender, age, BMI, TCHOL, TG,
or LDL, but there were differences between the groups in HDL
and MoCA scores.

Small-World Brain Functional Network
In the given threshold range, compared with the random
network, the brain function networks of the two groups have
small-world characteristics, i.e., the normalized cluster coefficient
is >1, and the normalized feature path length is close to 1
(Figure 2). These results are consistent with previous studies of
small-world networks.

Comparison of Network Topology
Properties Between T2DM Patients
Group and Healthy Controls
There was at least one brain region with significant difference
in the comparison between record node properties groups
(after correlation of FDR, p < 0.05). Compared with T2HC,
T2DM patients displayed higher global properties (Eglob),
local attribute (Eloc) and cluster coefficient (Cp), and lower
characteristic path length Lp (Figure 3). There was no significant
difference between the groups in normalized cluster coefficient
(γ), normalized characteristic path length (λ) or small-world
characteristics (σ) (p> 0.05).

Compared with those of the T2HC control group, the
T2DM group displayed increased node degree in the following
brain regions: bilateral lenticular putamen and right inferior
temporal gyrus (ITG). The T2DM group displayed increased
node efficiency in the following brain regions: left central sulcus,
left insula, bilateral lenticular putamen and right ITG. The T2DM
group displayed increased betweenness of node in the following
brain region: right ITG (Table 2).

Correlation Analysis Between Abnormal
Network Topology Properties and
Clinical Parameters
The node degree, node efficiencies and the betweenness of node
of the right ITG of the T2DM group were positively correlated
with BMI (r = 0.3115, p = 0.0206; r = 0.3060, p = 0.0231;
r = 0.3175, p = 0.0182, Figure 4). There was no significant
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FIGURE 2 | Relationship between the small-world characteristics parameters of brain networks (normalized cluster coefficient and normalized characteristic path
length) and sparsity of the brain function network. (A) Normalized cluster coefficient (γ) is > 1, and (B) normalized characteristic path length is close to 1, which
shows that the brain functional networks in both groups have small-world characteristics. T2DM, type 2 diabetes mellitus patients; T2HC, matched healthy controls.

correlation between all global and other node properties and all
clinical indicators (p> 0.05).

DISCUSSION

This study examined the topological differences in brain function
networks of T2DM patients, based on graph theoretical analysis
of rs-fMRI data. The main results were as follows: (1) Global
properties: the brain function network of T2DM has small-
world characteristics as healthy controls. (2) Node properties:
compared with healthy controls, the T2DM group have notable
changes in insula, lenticular putamen, central sulcus, ITG and
other brain regions. (3) Related analysis: the node degree of
the right ITG, and the node efficiency of the right inferior and
superior temporal gyrus of the T2DM group are all positively
correlated with BMI. The excessive activation indices of the
T2DM group may be explained as a compensatory behavior,
which may reduce cognitive impairment by mobilizing additional
neural resources. These findings provide a new perspective of
how changes in brain functional topology properties may be
related to cognitive function.

Change of Global Properties
The human brain is a complex network in multiple space and
time scales with many important topology, which include small-
world characteristics, modular and highly connected networks of
the core brain areas (Sporns, 2011). Complex network usually
contains regular, small-world and stochastic networks, and these
networks are judged by cluster coefficient and characteristic
path length. The rule network has higher cluster coefficient and
longer characteristic path length, and the random network has
shorter characteristic path length and lower cluster coefficient.
However, the small-world lies between the rule and random
networks, which not only has rule network similar to highly
clustering coefficient, but also short feature path length similar

to a random network (Liang et al., 2010). The small-world
network is the best balance between global integration of brain
function activities and global specialization, which supports the
two most basic organizational principles of the human brain
(functional integration and separation of functions) (Rubinov
and Sporns, 2010). Small-world characteristics can keep the
network efficient, specific modular information and fast global
information transmission (He and Evans, 2010). Previous studies
showed that small-world characteristics exist in brain structures
and functional networks, and changes in topology properties
may lead to a variety of neuropsychiatric disorders, such as
Alzheimer’s disease (Supekar et al., 2008), depression (Zhang
et al., 2011), epilepsy (Liao et al., 2010), and post-traumatic stress
disorder (Lei et al., 2015). Although the topology properties of
these diseases display various changes, as a general rule, the more
the network topology properties deviate from small-world, the
more disordered the brain function is.

Cluster coefficient and characteristic path length can all
indicate that the process of transferring networks from small-
world networks to rule network or random networks. Zhang
found that the overall efficiency of the white matter network is
reduced in T2DM, and characteristic path length is increased, and
that the global properties and node efficiency of the central sulcus
are positively correlated with executive function (Zhang et al.,
2016); Reijmer found that global efficiency and cluster coefficient
are reduced, and characteristic path length is increased. The
abnormality of these structural networks is related to the slow
speed of information processing observed in patients (Reijmer
et al., 2013). These findings are essentially in agreement with the
results observed in the diabetic brain network by Wang et al.
(2016) by using the fMRI technique. In contrast to the results
of the aforementioned study, in the present study we found
that T2DM patients have higher normalized cluster coefficient
and lower characteristic path length, which are typical features
of a small-world network. Similar changes have been observed
in MCI. For example, Wang et al. (2014) found there was a
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FIGURE 3 | Topological differences in brain function networks between type 2 diabetes mellitus (T2DM) and matched healthy control (T2HC) groups. Compared with
the T2HC group, the global properties (Eglob), local attribute (Eloc), and cluster coefficient (Cp) of the T2DM group were higher, and the characteristic path length (Lp)
was lower. There were no significant differences between groups in normalized cluster coefficient (γ), normalized characteristic path length (λ), or small-world
characteristics (σ). The ordinate is the area under the curve (AUC) value for each attribute. Black asterisks indicate a significant difference between the two groups.

higher normalized cluster coefficient when sparsity threshold
was in the range 0.10–0.18, but normalized characteristic path
length was lower over the entire range of threshold. This means
that the cognitive impairments of the diabetics that participated
in the study were mild, and that they do not show the same
small-world characteristics as healthy controls. The increasing
of the cluster coefficient indicates that the local brain network
is enhanced in patients with diabetes mellitus. However, the
decrease of the characteristic pathway length indicates that the
ability for information transfer between remote regions of the
brain in patients with diabetes is enhanced. It is speculated that
the brain function of patients with diabetes mellitus may be
impaired in the early stages of cognitive impairment. Under
compensatory mechanisms, its ability for local information
and remote information processing is enhanced, showing the
information processing mechanism consistent with MCI; but

with the further development of diabetes (Wang et al., 2014).
The impairment in brain function is more severe than in T2DM
patients. Having lost the ability to compensate, its long-distance
information transmission ability drops.

This study also found that patients with diabetes mellitus
have higher global and local efficiency, which may mean that
the functional integration ability of the whole brain network
and the information processing ability of the local sub-networks
are enhanced, which is in accordance with the small-world
characteristics results. The changes of these network parameters
were much ascribe to metabolic disturbance of diabetics, needing
the whole brain network to compensation for the increase of the
overall integration efficiency. However, inconsistent results were
found in previous studies of diabetic brain network structure
(Reijmer et al., 2013; Zhang et al., 2016), and this difference may
stem from differences in subjects and modes. Although the trends
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TABLE 2 | Brain areas with significant differences in node centricity between the
Type 2 diabetes mellitus (T2DM) and matched healthy control (T2HC) groups.

Brain region P-value

Node
betweenness

Node degree Node
efficiency

T2HC < T2DM

Left rolandic
operculum

0.3123 0.0110 0.0026

Left insula 0.3203 0.0072 0.0022

Left putamen 0.4287 0.0014 0.0004

Right putamen 0.3673 0.0002 0.0002

Right inferior
temporal gyrus

0.0020 0.0016 0.0008

Values in bold indicate statistically significant differences (correlation of FDR,
expected threshold level α = 0.05). T2DM, type 2 diabetes mellitus; T2HC, matched
healthy controls.

of the changes in these network parameters are inconsistent, they
all illustrate the abnormality of the brain network efficiency in
patients with diabetes mellitus.

The changes in the global topological properties of these brain
networks indicate the abnormality of neural network structure
in diabetes mellitus. Given that the small-world characteristics
are not affected, the brain network is thus compensated with the
high efficiency by global integration and local separation after
cognitive function of diabetics is impaired, which makes this
characteristic more obvious than the normal person.

Change of Node Properties
Consistent with the increased network efficiency, we also found
the brain areas of the nodes in the patients with diabetes, the brain
regions involved in the patients included the superior frontal
gyrus, olfactory cortex, posterior cingulate gyrus, occipital gyrus
and superior temporal gyrus. In functional studies of diabetes, the
superior frontal gyrus was associated with cognitive impairment,
and T2DM patients showed worse executive and memory
skills in high working load memory tasks (Chen et al., 2014;

Zhang et al., 2015). In addition, a reduction in the brain surface
area of patients was also found in a previous study (Peng et al.,
2015). Findings in the temporal gyrus and ITG in patients with
diabetes mellitus are as follows: the cortex of cortical white matter
decreased and was related to memory defects (Yau et al., 2009);
the relationship between white matter damage and memory
loss is closely related (Zhang J. et al., 2014); the decrease of
functional activity is closely related to memory decline, and
occurs earlier than atrophy (Zhou X. et al., 2014); these findings
are consistent with the region of the advanced cognitive function.
The node properties of the right temporal gyrus and ITG were
positively correlated with BMI of T2DM patients, but obesity is a
crucial factor affecting many metabolic disorders in patients with
diabetes mellitus (Zhou and Xue, 2006). The results confirm that
the changes of brain network topology in patients with diabetes
have a relationship with obesity.

Previous studies have shown that the temporal and frontal
lobes are the main brain areas involved in the cognitive
impairment of diabetes. Evidence of structural and functional
abnormalities of the frontal-temporal brain region in patients
with diabetes mellitus is as follows: using diffusion tensor imaging
(DTI) technology, Yau et al. (2009, 2014) found that the gray
matter and white matter microscopic abnormalities of T2DM
patients were mainly located in the frontal and temporal lobes,
and participated in language memory disorders. Last et al. (2007)
used continuous arterial spin label imaging to reveal temporal
and frontal blood flow in T2DM patients. Using structural
MRI and PET techniques, García-Casares observed a reduction
in gray matter density and glucose metabolism in the fronto-
temporal brain regions in T2DM patients after controlling for
other vascular risk factors (Garcíacasares et al., 2014). Zhou
et al. used rs-fMRI technology to detect diffuse amplitude of
low frequency fluctuation (ALFF) changes in MCI patients
with diabetes, including in the temporal lobe and frontal lobe
(Zhou X. et al., 2014). These findings indicate that the fronto-
temporal brain region is associated with impairments in cognitive
functions such as information processing speed, memory and
emotion (Yau et al., 2009, 2014; Hsu et al., 2012). The posterior

FIGURE 4 | Scatter plots of brain region and clinical index node properties with statistically significant correlations. (A) Node degree of the right inferior temporal
gyrus of the type 2 diabetes mellitus (T2DM) group was positively correlated with body mass index (BMI); (B) Node efficiency of the right inferior temporal gyrus of
the T2DM group was positively correlated with BMI; (C) The betweenness of node of the right inferior temporal gyrus of the T2DM group was positively correlated
with BMI.
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cingulate gyrus, as the core node of the DMN, plays a key role
in the cognitive process, and it is used to predict the biological
markers of MCI converting to early Alzheimer’s disease. Recent
studies have shown a reduction in the value of the posterior
cingulate gyrus ALFF that is highly correlated to the MoCA
scale, besides, its dysfunction of the functional connection with
multiple brain is more indicative of the specific impairment of
memory function (Qin et al., 2016). Studies conducted by Cui
and others have also confirmed that the decrease of functional
connectivity in the posterior cingulate cortex in the DMN is
related to cognitive behavior (Cui et al., 2015). Therefore, it is
speculated that the node properties abnormality in the posterior
cingulate cortex is related to cognitive impairments in T2DM
patients, such as information processing speed, emotion, memory
and executive ability.

CONCLUSION

This study examined the brain network topology of T2DM
patients by using graph theory-based analysis of rs-fMRI, and
found that both global and node properties were changed.
Compared with healthy controls, the normalized cluster
coefficient and characteristic path length showed stronger small-
world characteristics, indicating that the impairment in cognitive
function is slight, and multiple brain regions make up an efficient
sub-network that compensates for the small-world characteristic
of the normal human brain. The changes of node properties
were most prominent in the temporal and frontal lobes, and
posterior cingulate gyrus, and the abnormality of node properties
in these brain areas is related to the changes of brain cognitive
function, which is a similar finding to those in previous studies.
Consequently, inferring the efficient integration of functional
networks of T2DM patients, sub-networks composed of multiple
brain regions compensate for their impairment of cognitive
function. Thus, the global properties and node properties
results are activated excessively. The main limitations of the
present study include: (1) This study used the AAL template
to divide the cerebrum into 90 brain regions (nodes), and
omits the epencephal. In previous brain network research,
there is no gold standard template for the division of brain
regions. (70 brain regions of automatic matching and non-
linear imaging anatomical marker mapping, 116 brain regions
including epencephal, 90 brain regions adopted by this study).
To avoid the influence of the varying node definitions of the
different brain atlas templates, future studies should establish and
use a unified standard template. (2) This study only examined
the MRI data of diabetic patients in the resting state, and did not
investigate the structural image data at the same time. The brain
is a complex network system with both anatomical and functional
connections. If a combination of brain function and structure of
patients can be analyzed, more powerful evidence for the changes

of the topological properties of the diabetic brain network will be
obtained. Future studies should combine multi-modal imaging
data to establish these relationships, and these will provide more
accurate interpretation of the neural mechanisms of patients
with diabetes mellitus. In short, the combination of fMRI and
graph theory for investigation of brain function in diabetes has
just begun. Future research will focus more on the complex
function and connection network properties of the patient’s brain
in the resting state, and will have potential significance for the
early treatment, control and management of the disease and
prevention of its complications. (3) Three diagnostic criteria
for T2DM patients were published by WHO in 1999. One of
them (OGTT) was used in this study, which may cause bias
in the research results. In future studies, the other two criteria
should be considered to improve the reliability of the results.
(4) In this study, age and gender were used as covariates when
performing correlation analysis between network properties and
clinical parameters, but the diagnosis was not used as covariates.
In future studies, clinical diagnostic parameters (such as BMI,
etc.) should be used as covariates, which may improve the
reliability of the results.
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