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Computational simulations are currently used to identify epidemic dynamics, to test potential prevention and intervention
strategies, and to study the effects of social behaviors on HIV transmission. The author describes an agent-based epidemic
simulation model of a network of individuals who participate in high-risk sexual practices, using number of partners, condom
usage, and relationship length to distinguish between high- and low-risk populations. Two new concepts—free links and fixed
links—are used to indicate tendencies among individuals who either have large numbers of short-term partners or stay in long-term
monogamous relationships. An attemptwasmade to reproduce epidemic curves of reportedHIV cases amongmale homosexuals in
Taiwan prior to using the agent-basedmodel to determine the effects of various policies on epidemic dynamics. Results suggest that
when suitable adjustments are made based on available social survey statistics, the model accurately simulates real-world behaviors
on a large scale.

1. Introduction

According to the World Health organization (WHO) [1],
more than 4.7 million people in Asian countries were HIV-
positive at the end of 2008, with 350,000 newly infected indi-
viduals and 330,000 AIDS-related deaths in that year alone.
While the 2008 AIDS-related mortality rate in South-East
and South Asia was approximately 12% lower than the 2004
peak, the number of deaths in 2008 was still more than three
times higher than that recorded in 2000. Between 2000 and
2009, the annual number of newly identified HIV-positive
Taiwanese people increased from 536 to 1,694 (Figure 1).
Since the peak number in 2005, the annual incidence rate
between 2006 and 2010 declined by between 5% and 34%
(average 14.9%). Homosexual activity (“men who have sex
with men” or MSM) is believed to be the primary mode of
HIV transmission in Taiwan today—57%of all cases recorded
in 2008 alone [2]. Developing an HIV simulation model to
understand HIV epidemic dynamics within male homosex-
ual communities in Taiwan is therefore considered important

for assessing the efficacies of HIV prevention efforts and
intervention strategies associated with MSM activities [3, 4].

Some researchers have noted that the topological (con-
nectivity) features of sexual networks exert considerable
influences on HIV epidemic dynamics [5–9]. These features
support analyses of the subtle details of HIV epidemic
dynamics that population-based simulation approaches do
not. Brailsford et al. [10], Paltiel et al. [11], and Peterson et
al. [12] have applied specific complex network models to
investigate HIV epidemic dynamics. Other researchers have
addressed topological features and statistical distributions
of sexual networks without focusing on individual social
behaviors that affect HIV epidemic dynamics (see, e.g.,
[13–19]).They also show a tendency to overlook the flexibility
offered by agent-based social simulation approaches.

An HIV epidemic simulation with the characteristics of
power-law degree distribution and small-world phenomena
for reproducing sexual networks was developed for this
project to assess the efficacies of specific HIV prevention
and intervention strategies in Taiwan associated with social
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Figure 1: Taiwan HIV epidemic curves from 2000 to 2010.

behaviors. A specific emphasis in this paper will be MSM
activity in saunas and bars in northern Taiwan, with agents
in the model capable of modifying their behaviors to the
degree that they affect all homosexuals residing in that part
of Taiwan. Following the lead of previous sexual network
studies [20–24], the proposed model focuses on scale-free
properties depicting small-world phenomena.We found that,
during one three-month period, the numbers of sex partners
of highly active homosexual males in the cities of Taipei
and Taichung followed a scale-free distribution on a log-
log-axis. One conclusion of the present study is that by
addressing specific individual behaviors and implementing
rules derived from social survey statistics, global observations
can be accurately identified by simulations without intro-
ducing unreasonably large numbers of societal rules, thus
reflecting small-world properties that are inherent to scale-
free networks.We also found that the clustering results can be
used to support analyses of factors such as drug and condom
usage.

2. Previous Sexual Network Studies

In terms of approach, epidemic simulations can be classified
as top-down or bottom-up [25]. Top-down simulations start
by specifying group or subpopulation characteristics and
behaviors andmodeling their relationships with other groups
[26]. One problem is that mathematical equations in top-
down epidemic simulations can quickly become so complex
that analytical representations of multivariate and complex
stochastic processes become exceptionally difficult tomanage
in terms of computation and stability. In contrast, bottom-up
epidemic simulations are based on a combination of an agent-
based model and an underlying social network, with nodes
representing agents and edges representing contacts between
them. Bottom-up epidemic simulations have been widely
used to explore social macrolevel phenomena by specifying
the microlevel characteristics and behaviors of individuals
and their contacts in well-defined social networks over
specific time periods [27–30]. The HIV epidemic simulation
described in this paper is in the second category.

The history of social network studies by sociologists
has produced numerous insights regarding specific social

contacts [31]. Typical top-down epidemic simulations such as
the compartmental models proposed by Kermack and McK-
endrick [32] assume random contacts among individuals,
especially in scenarios involving the airborne transmission
of infections. In numerical simulations of sexually trans-
mitted infections (STIs), randomness is deemphasized when
addressing sexual contact networks and mixing patterns
within populations, both considered important concepts in
modeling sexual contact within well-defined subgroups [33,
34]. Assortative sexual mixing implies concordance between
sex partners in terms of factors such as age, location of
residence, ethnicity, socioeconomic status, and sex partner
acquisition rate [35]. In contrast, disassortativemixing, which
implies discordance in sex partner characteristics, allows the
spread of STIs from groups with high STI prevalence (e.g.,
commercial sex workers) to members of other groups [36].

Wylie and Jolly’s [37] use of voluntarily given contact
information and tracing via clinical contacts in Manitoba,
Canada, is a rare example of a reconstructed real-world sexual
contact network. A total of 4,544 STI-positive individuals
were asked to identify their sexual partners—information
that in most cases is very difficult to obtain. According to
their data, sexual contact networks consist of numerous small
clusters. An important task for any researcher is to determine
cluster overlaps and to analyze how they support the spread
of HIV. Note that since informants such as those in the
Manitoba study are already infected, the data they offer are
often viewed as suspect, influenced by subjective biases, and
lacking in insightful detail [38].

Sexual networks are dynamic. Since connections evolve
at different rates over time, concurrent relationships within
networks must be considered [17]. Researchers have made
many attempts to developmodels that reflect various levels of
fidelity among partners, as well as transmission routes among
individuals in nonconcurrent relationships within specific
time frames. More active individuals exert greater influence
in terms of the spread of STIs within their networks. This
stresses the importance of model precision in representing
more sexually active subpopulations.

Some contemporary approaches to social network
research are based on topological properties found in real-
world human societies, including high degrees of local clus-
tering and small average distances between nodes. In these
models, STIs are passed between linked nodes that are few
in number but high in variance. This architecture is closely
associated with small-world networks [14, 15, 20–23], whose
nodes have strong connections with their closest neighbors
(thereby influencing local networks) and very few random
links connecting distant locations. An interesting property
of these networks is the dramatic decrease in average
distance between random nodes due to the small number of
long-distance links.

Complex networks with small-world characteristics can
be classified according to the node degree statistical dis-
tribution 𝑃(𝑘) [39]. Three network classes that have been
identified so far are single-scale, broadscale, and scale-free;
sexual networks belong to the scale-free category [14, 15,
20–23]. Most scale-free network nodes have few connec-
tions with their adjacent nodes, and only small numbers of
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nodes have large numbers of connections. A sexual network
exhibiting power-law degree distribution properties serves
as an example of how epidemics can spread quickly, with
scope and speed determined by link distribution rules. A
large number of nodes with multiple links significantly
increase the speed of a spreading epidemic on a large scale,
thus explaining why degree distribution is central to sexual
network model construction. Accordingly, a major challenge
in HIV simulation design and analysis is obtaining reliable
data.

3. HIV in Taiwanese Homosexuals

According to statistics from the Taiwan Center of Disease
Control (TCDC) [2] of the 6,850 known HIV-1-positive indi-
viduals living in Taiwan 2004, 488 were foreigners, 1,874 had
developed AIDS, and the male : female ratio was just below
14 : 1.This represents a 15% annual increase between 2004 and
2008—well above the United Nations criteria for a “serious
increase.” According to risk factor analysis results, 35.6% of
the increase could be attributed to heterosexual sex, 45%
to MSM activity involving either homosexuals or bisexuals,
6.2% to injecting drug use behaviors (primarily syringe-
sharing), and 12% to “other.” In other words, sexual behaviors
accounted for the large majority of HIV transmission routes
in Taiwan during this time period.

Gay Taiwanese men frequently find partners in saunas,
bars, and secluded parks. To investigate MSM-related HIV-
1 infections, in 2003 and 2004, the AIDS Prevention and
Research Center of National Yang-Ming University used
anonymous questionnaires to collect data on sexual contacts
among gay sauna customers [40]. As part of this project,
the center distributed information on sexually transmitted
diseases (STDs) to sauna businesses. Concerned about the
fact that an insufficient number of patrons would feel moti-
vated to join the study, the researchers also used a mix of
purposive and snowball sampling to increase the number
of participants. The primary goals of the two-year study
were to offer anonymous HIV-1 antibody and syphilis tests
and counseling and to investigate risk factors for specific
STDs among gay sauna customers. The researchers also used
epidemiologicalmethods to determineHIV-1 subtypes and to
analyze correlations between subtypes and risk factors. Data
were also collected on demographics, sexual behavior self-
cognition, and knowledge of risk factors associatedwithHIV-
1 and syphilis among men taking part in MSM behaviors in
saunas. Of the 1,101 men who participated, 1,000 turned in
usable questionnaires. For 40% of the participants it was their
first time to be tested forHIV-1. Chen et al.’s main conclusions
were the following. (a) MSM activity is a high-risk category
for HIV-1 and syphilis infections in Taiwan, and ongoing
research is required to monitor seroprevalence rates and to
investigate associated risk factors; (b) the rate of condom
usage within Taiwan’s male homosexual community is unac-
ceptably low, thus calling for intensive education efforts; and
(c) a positive correlation exists between nonmedical drug use
and HIV-1 infections, especially when drugs are used prior to
visits to gay saunas (see also [2, 41, 42]).
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Figure 2: Scale-free distribution of sex partners among highly active
homosexual males in Taipei/Taichung over three months (log-log
axis). The low scaling exponent value (𝜆 = 0.7662) indicates that
individuals in this population tend to have many sexual encounters
with different partners.

4. Simulation Model

In addition to saunas and bars, Chen et al.’s [40] questionnaire
addressed structural and behavioral aspects of the male
homosexual populations in Taipei and Taichung, Taiwan’s
two largest cities. Topics included frequencies of visiting
high-risk places, frequencies of change in sexual partners,
behaviors leading to new connections, relationship durations,
condom usage, and attitudes regarding HIV testing. Demo-
graphic data were deemphasized—no effort was made to
look for associations between HIV infection and age, marital
status, education level, or social behavior, since the study goal
was to determine risk for entire networks to reflect the HIV
epidemic among male homosexuals in Taiwan.

During model construction, high- and low-risk subpop-
ulations were distinguished according to number of partners,
condom usage, and a “faithfulness factor” indicating long-
term monogamy. The term free link was used to describe
situations in which a pair of agents has multiple partners and
fixed links to describe two agents in a long term, multiyear
fixed relationship. Topological features were incorporated
into the network to take advantage of small-world, scale-free,
and other complex network model properties. This required
distributing agent links in a manner that ensures power-law
degree distribution properties over a period of many years
[14, 15, 21–23].

Sample data on cumulative numbers of sex partners dur-
ing the preceding three months produced curves representa-
tive of a power-law pattern—specifically, with a low scaling
exponent of 0.7662 for the number-of-partners distribution
𝑘 ≥ 1 (Figure 2). Scale-free networks show a cumulative
power-law distribution decay in the form 𝑃(𝑘) ≈ 𝑘−𝜆1 , where
𝑘 denotes the distribution of number of partners and 𝜆

1

the
scaling exponent.

As stated above, the survey data only cover members of
the high-risk subpopulation; themajority of male homosexu-
als in the two target cities might express a similar pattern, but
with different scaling exponents and curve shapes. Since the
goal was to achieve a power-law degree distribution among
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Table 1: Simulation parameters for our proposed agent-based HIV epidemic model.

Attribute Data type Description
Population size Integer Total number of agents.
Alpha pop. size Integer
Beta pop. size Integer
Gamma pop. size Integer
Max contacts Integer Maximum number of sexual contacts for one agent in one month.
𝑝 Real
𝑞 Real
NC Integer Number of sexual contacts for one agent in one month.
Delta Integer Number of sexual contacts with fixed partners.
Epsilon Integer Number of sexual contacts with nonfixed partners.
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Figure 3: General distribution curves for the alpha, beta, and
gamma subpopulations.

all simulation agents over a long time period, a 𝑃𝑓 function
or class of functions representing an accurate distribution of
agent links was assumed. A plot of this function (generally
expressed as 𝑃(𝑘) ≈ 𝛼𝑘−𝜆2 + 𝑏) is shown in Figure 3.

Since individuals who have multiple sex partners are
more likely to express different behaviors than thosewith only
one partner, the curves can be divided into different sections
representing subpopulations with unique profiles. The popu-
lation in Figure 3 is divided into three clusters: alpha, inwhich
a large number of sex partners are correlated with high-risk
behaviors among a small number of individuals; beta, larger
than alpha and characterized by a sexually active population
expressing less extreme behaviors than alpha agents; and
gamma, the largest population segment, representing the rest
of the population. As suggested by the power-law pattern,
each gamma individual has only one sex partner. The beta
class was established because the gap between alpha and
gammapatternswas considered too large to reflect real-world
situations.

5. Design and Implementation of HIV
Simulation Model

The proposed model consists of multiple layers, with each
playing a role in describing and representing a specific

function or phenomenon. Layer definition determines the
roles of other layers in the simulation. Layers communi-
cate with each other to exchange information regarding
their computation results. Five layers were established for
this study: agent, agent behavior, links, contact frequency,
and epidemic. Layers can be categorized as belonging to an
agent-based model consisting of agents and agent behavior
layers, a social network model consisting of links and con-
tact frequency layers, or an epidemic model. As explained
above, a social network model has spatial, temporal, and
intrinsic properties that evolve over time. A mix of global
and individual behaviors was established to simulate agent
influences onwhole populations, but in amanner that reflects
intrinsic societal changes via behavioral changes among a
large number of individual agents. Societal global structure is
defined in the agent layer, spatial concepts are reflected in the
links layer, temporal concepts appear in the contact frequency
layer, and intrinsic changes aremodeled in the agent behavior
layer. Suites of simple epidemiological progress statuses were
added to the epidemic layer.

5.1. Agent Layer. The agent layer can be variously defined
in terms of population structure, agent pool (Table 1), or
individual agent characteristics (Table 2). In this study it
represents three sexual activity patterns. The minority of
extremely active agents (who play an important simulation
role due to their high-risk behaviors) are found in the layer
core. The second pattern consists of a number of sexually
active agents that is far from a majority but exceeds the
first pattern—that is, higher-than-average sexual activity, but
lower risk behaviors in terms of condom usage and rela-
tionship duration. The third pattern, consisting of the large
majority of relatively inactive individuals in a population,
represents a pool with infection potential, but at amuch lower
level of risk.

5.2. Agent Behavior Layer. This layer is defined as initial agent
behavior and environmental adaptation (Figure 4). The first
of two major behavioral changes that can be tested in an
HIV epidemic simulation is an increase in condom usage—
a parameter that serves as a moderating factor. However,
according to the data used in this study, there is no indication
of an overall increase in condom usage in Taiwan’s gay
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Agent behavior modification
Current agent state

New agent state

∙ Change in condom usage policy?

∙ Change in number of sexual contacts?

∙ Frequency?New event:
[HIV positive? drug usage?]

Figure 4: Layered agent behavior implementation.

Table 2: Agent attributes.

Attribute Data type Description
ID Integer Serial number identifying agent in model.
State Symbol Epidemiological progress status.
Timer Integer Number of months in each epidemiological progress state.
Type Symbol Subpopulation type.
Fixed partners Integer Number of an agent’s fixed partners.
Free partners Integer Number of an agent’s nonfixed partners.
Fixed links Integer array IDs of fixed partners.
Free links Integer array IDs of nonfixed partners.
Condom usage rate Real 1 = always use condom and 0 = never use condom.
Drug usage rate Real Rate of drug use.

community, despite research showing that condom usage
generally increases when agents aremade aware of their HIV-
positive statuses [40–42]. We assumed that (a) fixed link
couples in long-term monogamous relationships were much
less likely to use condoms than free link agents and (b) free
link agents would be more careful during sexual encounters
and more likely to insist that their partners use condoms.

The second behavioral change incorporated into simula-
tions was willingness to be tested for HIV. It is difficult to
track changes in testing behaviors due to the lack of statistical
data over the past 20 years. Still, this factor is important in
terms of behavioral decisions made by HIV-positive agents
who are aware of their status, including condom usage and
encouraging their peers and partners to be tested (Figure 4).

5.3. Links Layer. This layer reflects the spatial aspect of agent
connections and determines the importance of epidemic size.
Since new links support new contacts, they are considered
a key HIV propagation vector. As mentioned in an earlier
section, the majority of individuals in the model are involved
in fixed, long-term relationships that can be measured in
terms of years. Distinctions between free and fixed link
relationships are important because agents generally make
behavioral decisions based on context—frequency of visiting
high risk locations, frequency of change of sex partners,
relationship duration, condom usage, attitudes toward HIV
testing, and so on.These distinctions also reflect disease prop-
agation outside of high-risk subpopulations. Even though
low-risk populations mostly consist of long-term monog-
amous relationships, a small number of free links can act
as significant vectors for propagating the HIV virus. Once

the virus enters a gamma subpopulation, the spread of
the disease may be slow, but the overall number of infected
individuals can be large due to the population size. Precise
knowledge of the gamma population size is unnecessary;
it is assumed to be much larger than the alpha and beta
populations. However, screening alpha and beta populations
is very important because they represent the core of sexual
activity.

Fixed links are distributed among agents in the same
subpopulation, with most having at least one partner during
each simulation. Free links are distributed within and across
various subpopulations, with the number of potential links
for any agent dependent upon the population in question:
alpha agents have more free links than beta agents, and beta
agents havemore free links than gamma agents. According to
Liljeros et al. [21–23], the number of sexual contacts for any
individual follows a power-law curve. We therefore assumed
that any free link distribution of contacts over the lifetime
of a single agent in any population also reflects a power-law
pattern.

Assortative and disassortative population patterns reflect
mixes of free and fixed link agents. Statistically speaking, even
if an alpha population is small, an alpha agent is more likely
to have free links with other alpha agents, resulting in easily
identifiable assortative patterns. The same is true within beta
subpopulations and to a lesser degree between alpha and beta
subpopulations. Gammapopulations aremost likely to reflect
assortative patterns, although some disassortative patterns
are bound to appear due to size, despite the low probability
of any individual gamma agent having free links. Free links
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in any gamma subpopulation are statistically disassortative,
meaning that gamma agents with free links are very likely to
connect with alpha or beta agents with numerous free links.

5.4. Contact Frequency Layer. The contact frequency layer
reflects the temporal aspect of links between agents. Sexual
networks are considered dynamic in two ways.The first is the
number of new contacts established by an agent, with existing
links lost when new links are created. It is important to
understand the underlying mechanism, since creating a link
with a new agent can expose a large portion of the network
to HIV infection. The second aspect concerns existing link
activity. Since some links are more active than others, the
number of contacts with certain agents will be much larger
than with other agents. For example, a fixed link between
two gamma agents will show more activity than a free link
in the same population. Even in an alpha population, a free
link may only be activated once or twice. A trade-off exists
between the number of links an agent can maintain and link
duration: themore links an agent has, the weaker they are and
the shorter their lengths are. In contrast, maintaining long-
term fixed links may block the establishment of new links.

5.5. Epidemic Layer. The study goal was to model growth
in the number of HIV cases based on available data for a
sexual contact network consisting of homosexual males. An
epidemic model consisting of S (susceptible) and I (infected)
individuals was used to simulate epidemiological progress
resulting in status change, creating two infected subcategories
in the process: AIDS and HIV status (Figure 5). AIDS
individuals have the virus but do not yet have the antibodies
required for detection. Lack of certainty aboutHIV status can
influence behavioral decisions regarding sexual contacts and
condom usage. Infected agents are automatically added to
the HIV status subcategory after 6–12 weeks. Although HIV
can be detected as early as two weeks following infection, we
could not assume that all populations have access to state-of-
the-art testing facilities.

All uncontaminated agents have an S status prior to
virus exposure. Sexual contact between two S agents, with
or without condoms, is insufficient for changing the status
of either one; the same is true for sexual contact between
two infected or HIV-positive agents, but not for contact
between susceptible and infected or HIV-positive agents.
If a susceptible agent uses a condom, it will reduce the
probability of infection, but not by 100%. Furthermore,
unprotected sex between susceptible and infected agents does
not automatically result in new infections. As noted in Table 1,
𝑝 denotes the probability of status change following sexual
contact between susceptible and infected agents who use
condoms and 𝑞 denotes the probability of a susceptible agent
being contaminated by an infected agent during unprotected
anal intercourse.

5.6. System Implementation. Implementation of the proposed
five-layer simulation system entails communication between
components to execute layer functions. A component dia-
gram of the simulation framework is presented in Figure 6,

Susceptible

Infected

Infectious
Not detectable

Infectious
Detectable

Detected

Agent behavior
modification

AIDS symptoms

Retired

Not infected

HIV test HIV test

Death

HIV
contamination

process

Figure 5: HIV and AIDS status development diagram. Our simula-
tion is limited to HIV.

Observer

World

SchedulerAgent
behavior

Agent Rules

Figure 6: HIV epidemic simulation component diagram.

and descriptions of the various components are given in
Table 3. Agent layer and behavior are treated as two separate
components, with links, contact frequencies, and epidemic
layers managed according to the rules component, which
includes a power-law shaping rule. The total time complexity
of an experiment is O (Population Size ×Max Contacts).

We used the Borland C++ Builder’s visual component
library and event-driven programming model to develop the
user interface and input/output functions of the simulation
system. In addition to providing statistical reports and charts
based on HIV epidemic data, the system lets users observe
agent infection spreading scenarios in real time. Following
compilation and conversion into an executable application,
this system can be run on Windows using Dynamic Linked
Library files.
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Table 3: Properties and methods for each simulation component.

Component Properties Methods

Observer Higher in class hierarchy. Uses information from classes lower in the hierarchy
to create screen display.

World Two-dimensional lattice containing agents. Defines social network structure. Can be influenced
by agent behavior.

Scheduler Defines time in one-month units. Defines events that happen to each agent during each
time unit and ensures that rules are followed.

Rules
Rules applied to simulation pertaining to
contamination, HIV evolution, epidemiological
progress status, and so forth.

Communicates rules to schedulers and agents.

Agent One agent represents one human individual. Changes status according to epidemic model
parameters, capable of interacting with other agents.

Agent behavior Behavioral rules based on statistical data from surveys. Controls agent behaviors (e.g., number of contacts,
condom usage).

6. Simulation Results

Due to screening limitations, the number of reported cases
should not be viewed as an accurate representation of the
actual number of cases, meaning that reported curves may
not accurately reflect the evolution of the HIV epidemic over
a period of years. However, we did assume that the spike
in the number of reported cases in Taiwan during the time
period covered by this project reflects an increased awareness
and willingness to be tested and that a significant number
of individuals who have unknowingly carried the HIV virus
for a period of time are included in recent statistics. The
primary hypothesis is that testing a larger percentage of
the population will result in an increase in the number of
reported cases. In terms of epidemic simulation, agents who
test positive forHIV aremore likely to be cautious about their
sexual behavior, eventually slowing growth in the number of
simulated cases and reducing the number of reported cases.
This scenario must be considered when comparing reported
and simulated case numbers.

Data from Chen et al. [40], Lai [41], and Lai et al. [42]
were used to set the number of links, contact frequency, and
drug and condom usage parameters for the alpha and beta
populations. The parameters discussed in this section reflect
important changes in social behaviors over the past 20 years.
However, due to insufficient data on HIV infections among
Taiwanese homosexuals for the same period, we had to use
rough estimates for the evolution of changes in those behav-
iors.We did attempt to determine the plausibility of change in
agent behavior based on feedback from an earlier generation
of homosexuals. For example, we heard one comment that
a growing number of young gay men are openly declaring
their homosexuality, which may influence changes in alpha
and beta populations. Another important change is the sharp
increase in drug usage among young adults between the ages
of 20 and 30, meaning that researchers must address the
question of howdrug usage affects safe sex practices and other
behaviors. We will reviewmodels for estimating the effects of
these new factors in the following sections.

6.1. Dynamic Change in the Population. In the proposed
model, the overall population was divided into alpha, beta,
and gamma subpopulations. The alpha and beta clusters
increased in size based on the growing number of Taiwanese
men openly declaring their homosexuality during the past
20 years; however, the lack of hard data on this trend makes
it impossible to establish an accurate figure for simulation
purposes. Since the proposed model is based on recently
gathered information, such data are required in order to
achieve a close fit between a simulation and the actual
number of reported HIV cases.

In Figure 7, the curve labeled “No Increase” represents the
number of simulated HIV cases without considering alpha
and beta subpopulation increases. The curve clearly shows
fewer infections than the actual situation—the slope flattens
out over the long term, which is one result of saturation
in the number of infected agents in the most sexually
active subpopulations. One way to increase the number of
infected cases would be to increase the number of exchanges
between members of the alpha and beta subpopulations with
members of the gamma subpopulation, but doing so would
contradict the assumption of low levels of sexual activity for
gamma individuals with anyone but their fixed partners. An
alternative approach is to increase the number of alpha and
beta agents.

Model 1 in Figure 7 reflects the potential for significant
change in subpopulation size. While such changes are irregu-
lar, they can exert strong influences on individual behaviors—
note the number of male homosexuals who “came out”
in Western countries in the 1960s and 1970s. In model
1 we assumed three spikes in Taiwan during the past 20
years that resulted in significant increases in alpha and beta
subpopulations and respective increases in the numbers of
simulated HIV cases [43].

Model 2 reflects the assumption that growth in all
three subpopulations is the result of linear increases over
many years. While it is unlikely that this trend occurred in
homosexual communities, the assumption does underscore
the point that such growth generally emerges from gradual



8 Computational and Mathematical Methods in Medicine
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processes. The data indicate that simulations of dynamic
increases in alpha and beta subpopulations produced more
accurate results than simulations of static subpopulations. It
is very likely that modeling this dynamic is dependent on
cultural and spatial factors, thus making the model Taiwan-
specific.

6.2. Impact of Drugs. TCDC-sponsored research conducted
by Lai [41] and Lai et al. [42] confirms that nonmedicinal drug
usage exerts a major impact on the spread of HIV in Taiwan.
As stated earlier, we did not address hypodermic needle
sharing behavior (which occurs among both heterosexuals
and homosexuals) in the present study. A secondary impact
can be traced to carelessness in practicing safe sex while being
under the influence of drugs [40]. Figure 8 presents the results
of two simulations, one considering drug usage and one not.
Both simulations assume the same sharp increases in alpha
and beta populations as stated in Figure 7,model 1.The results
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Figure 9: HIV infection simulation data (100 runs), including
standard deviation at each point (left axis, “simulated”) and relative
to the value of each point (right axis, “deviation” percentage).

indicate significant effects from drug usage, especially in the
alpha and beta subpopulations.

6.3. Simulation Results Discussion. Certain simulation param-
eters (e.g., link distribution) were implemented as random
variables. The basic time unit was one month, with results
reported for each year. Results from a simulation with
dynamic increases in alpha and beta subpopulations, drug
usage, and HIV testing are presented in Figure 9. We
executed 100 runs of each simulation in an effort to reduce
statistical bias. Each point along simulated curves in the
figure represents the standard deviation over 100 runs; error
bars represent upper and lower point values. Each point on
the deviation curve represents the standard deviation over
100 runs for each point pegged to 100% of the current point
value, meaning that the curve represents the relative error
percentage at each point in relationship to the graph’s right
axis. Relative deviation fromupper and lower values obtained
over 100 runs was higher when the number of infected
individuals was smaller, though it never exceeded 37% of
the current point value. In terms of number of cases, the
deviation between upper and lower values did not exceed
147 cases over an average of 1,421 for the 12th year. This
is approximately 10% of the overall deviation, indicating a
higher value of 1,495 infected cases and a lower value of 1,347.
We also observed a connection between higher numbers of
infected cases and lower dispersion levels. Combined, these
results suggest that the simulations attained acceptable levels
of validity in terms of reproducibility (since dispersion was
limited) and credibility (since deviations across multiple runs
did not affect global trends based on different policies).

Figure 10 presents simulation and deviation results for
different policies with dynamic increases in alpha and beta
populations using model 1. The patterns of the deviation
curve shapes and values are similar to those for actual cases.
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Accordingly, it is possible to provide good estimates from the
simulation results across a range of accuracy values.

7. Conclusion

The original study goal was to establish a foundation for
constructing amodel capable of predicting the spread of HIV
among homosexual males living in two cities in northern
Taiwan. However, the project evolved into a more limited
effort to create a reliable model for an agent-based simulation
of a sexual activity network. It is assumed that an approach
that focuses on individual agent behavior offers a new path
for STI simulations. Furthermore, the results indicate that
implementing rules derived from social survey statistics can,
with some adjustment, accurately reflect global population
behaviors that are observable in the real world. In other
words, simulations in which specific behaviors are addressed
on an individual level can reflect global observations without
introducing unreasonably large numbers of societal rules.
Such results would reflect the small-world properties inher-
ent to scale-free networks. In the proposed model, the only
rules applied at a societal level were increases in alpha and
beta populations and increased drug usage. These rules were
minimized to reflect global trends associated with cultural
and individual tendencies. It is impossible to implement such
behaviors on an agent level when a study population is as
specific and limited as male homosexuals in two Taiwanese
cities.

The model can be modified and improved using new
data from field studies. It would be especially interesting to
keep track of changes in Taiwan over time, since acknowl-
edgment and limited acceptance of homosexuality represent
a significant shift in societal attitudes. Clustering results by
generation may provide insights into new behavioral trends
as they emerge and improve our understanding of the effects

of such factors as drug and condom usage. The biggest
challenge may be organizing and making a commitment to a
research project that will require several decades to complete.
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