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Fragile X syndrome (FXS) is the most common inherited form of intellectual disability and
is associated with increased risk for autism spectrum disorder (ASD), anxiety, ADHD,
and epilepsy. While our understanding of FXS pathophysiology has improved, a lack of
validated blood-based biomarkers of disease continues to impede bench-to-bedside
efforts. To meet this demand, there is a growing effort to discover a reliable biomarker to
inform treatment discovery and evaluate treatment target engagement. Such a marker,
amyloid-beta precursor protein (APP), has shown potential dysregulation in the absence
of fragile X mental retardation protein (FMRP) and may therefore be associated with FXS
pathophysiology. While APP is best understood in the context of Alzheimer disease,
there is a growing body of evidence suggesting the molecule and its derivatives play
a broader role in regulating neuronal hyperexcitability, a well-characterized phenotype
in FXS. To evaluate the viability of APP as a peripheral biological marker in FXS,
we conducted an exploratory ELISA-based evaluation of plasma APP-related species
involving 27 persons with FXS (mean age: 22.0 ± 11.5) and 25 age- and sex-matched
persons with neurotypical development (mean age: 21.1 ± 10.7). Peripheral levels of
both Aβ(1–40) and Aβ(1–42) were increased, while sAPPα was significantly decreased
in persons with FXS as compared to control participants. These results suggest that
dysregulated APP processing, with potential preferential β-secretase processing, may
be a readily accessible marker of FXS pathophysiology.

Keywords: amyloid precursor protein, FXS, biomarker, peripheral, enzyme-linked immunosorbent assay

INTRODUCTION

Fragile X syndrome (FXS) is the most common inherited form of intellectual disability and
the most common monogenic cause of autism spectrum disorder (Kosinovsky et al., 2005).
FXS is an X-linked disorder affecting 1 in 4,000 males and 1 in 6,000–8,000 females, with all
males and some females having significant developmental disability as well as increased risk for
autism, anxiety, ADHD, and epilepsy. FXS is caused by a CGG repeat expansion in the promoter
region of the fragile X mental retardation 1 gene (FMR1), resulting in silencing of the gene and
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decreased production of fragile X mental retardation protein
(FMRP). FMRP is an RNA binding and carrier protein that plays
a role in the transport, localization, and translational repression
of at least hundreds of target mRNAs (Darnell et al., 2011; Ascano
et al., 2012; Westmark, 2018). FMRP-mediated translation is
necessary for regulating local protein synthesis and normal
cellular processes. When FMRP is absent or expressed at low
levels, dendritic spine density and abnormal spine morphology
increase, leading to abnormal formation and function of
synapses. As a result, neural circuitry is significantly disrupted in
individuals with FXS, which is thought to account for the various
neurological, behavioral, and behavioral problems associated
with this intellectual disability. Although our understanding
of FXS pathophysiology has improved, to date, there are
still no effective targeted therapies approved in FXS. One of
the obstacles preventing the development of disease-modifying
treatments for FXS is a lack of useful readily accessible markers
of pathophysiology. Biomarkers linked to disease mechanisms
may be useful in screening participants, evaluating patient
responsiveness to treatment, and identifying subgroups that may
best respond to a particular treatment. In recent years, there
have been efforts to identify either a single or combination of
molecular markers in FXS.

Amyloid precursor protein (APP) is a transmembrane protein
with a large extracellular N-terminal domain and a short
cytoplasmic tail. Because APP is expressed within microglia,
astrocytes, oligodendrocytes, and neurites of the brain and
is primarily responsible for cell adhesion and axon pruning
(Chasseigneaux and Allinquant, 2012), its regulation is critical
to maintaining normal neuronal development and homeostasis
(Hartmann et al., 1999; Herms et al., 2004; Guénette et al., 2006;
Chasseigneaux and Allinquant, 2012). APP can be metabolized
through two distinct processing pathways, the amyloidogenic and
non-amyloidogenic processing pathways. In the amyloidogenic
processing pathway, APP undergoes cleavage by β-secretase
(BACE-1) to produce the neurotoxic amyloid peptides β-amyloid
peptides 40 and 42 [Aβ(1–40) and Aβ(1–42)] (Vassar et al.,
1999). These peptides are best understood in the context of
Alzheimer’s disease where Aβ deposition in brain has been
strongly implicated in cerebral plaque formation and brain
atrophy (Masters et al., 1985; Hardy and Selkoe, 2002; Persson
et al., 2017). However, at lower levels, Aβ monomers are
neuroprotective and have been shown to protect mature neurons
against excitotoxicity (Whitson et al., 1989). β-cleavage of the
soluble N-terminal domain of APP also produces secreted
amyloid precursor protein β (sAPPβ) (Vassar et al., 1999).
Alternatively, non-amyloidogenic, or α-secretase, processing
of APP by two disintegrin and metalloproteases (ADAM-10
and ADAM-17) produces secreted amyloid precursor protein
alpha (sAPPα) (Buxbaum et al., 1998; Lammich et al., 1999).
Similar to Aβ, sAPPα also has neuroprotective and neurotrophic
properties (Mattson et al., 1993; Smith-Swintosky et al., 1994;
Luo et al., 2001; Corrigan et al., 2011; Chasseigneaux and
Allinquant, 2012). However, less is known regarding altered
non-amyloidogenic metabolism.

APP metabolism has been studied in the context of a
variety of neurodevelopmental disorders including idiopathic

autism, Angelman Syndrome, and FXS (Sokol et al., 2006;
Ray et al., 2011; Erickson et al., 2014, 2016; Ray et al.,
2016; Westmark et al., 2016b). Previous work has shown that
FMRP directly binds and regulates App mRNA translation in
FMR1 KO mice (Westmark and Malter, 2007), leading to the
potential investigation of APP dysregulation in FXS. In this
work, genetic reduction of APP expression in Fmr1 KO mice
has been demonstrated to rescue neuronal hyperexcitability
(Westmark et al., 2011b, 2016a), a well-documented neural
phenotype in Fmr1 KO mice, FXS humans, and slice physiology
(Gibson et al., 2008; Choi et al., 2015; Ethridge et al., 2016,
2017; Westmark et al., 2016a; Lovelace et al., 2018). Of
note, products of both amyloidogenic [Aβ(1–42)] and non-
amyloidogenic (sAPPα) APP processing have been shown to
enhance mGluR-dependent protein synthesis and contribute to
hyperexcitability and altered synaptic plasticity in FXS (Renner
et al., 2010; Westmark et al., 2011b, 2016a; Pasciuto et al.,
2015). This suggests that targeting the synaptic deficits in FXS
via an APP-focused approach may require pharmacotherapeutic
manipulation of both amyloidogenic and non-amyloidogenic
processing to restore homeostatic levels of APP metabolites
(Westmark et al., 2011b, 2016a; Pasciuto et al., 2015).

Peripheral APP metabolite levels also have been reported
to be altered in idiopathic ASD and FXS (Sokol et al., 2006;
Bailey et al., 2008; Ray et al., 2011, 2016). For example, Ray
et al. (2016) reported increased peripheral levels of sAPPα,
sAPPβ, sAPP total, Aβ(1–40) and Aβ(1–42) in 18 children
with FXS compared to controls. Additionally, increased levels
of both sAPPα and total sAPP were found in a small sample
of young ASD children with aggressive behavior compared to
youth with ASD without aggressive behavior (Bailey et al., 2008).
In a follow-up study, children with ASD clinically rated to
have severe symptomology based on Childhood Autism Rating
Scale (CARS) scores had higher levels of sAPPα than children
with ASD who had mild-to-moderate rated symptomology.
Additionally, authors reported reduced levels of both Aβ(1–
40) and Aβ(1–42) in the more severely affected patient group
(Ray et al., 2011). This suggests APP metabolite levels may
track with severity of ASD symptoms, and thus may be an
important marker of behavioral functioning. Furthermore, in
a pilot study of individuals with ASD, our group showed that
both sAPPα and sAPP total were reduced in plasma after
treatment with acamprosate (Erickson et al., 2014). This suggests
the potential utility of APP metabolites as pharmacodynamic
markers. Together, initial findings suggest a role for APP
metabolites as peripheral biomarkers in neurodevelopmental
disorders, though further characterization of peripheral APP
metabolites and their association with clinical features are needed
in FXS.

In this study, we aimed to add to the existing understanding of
peripheral APP expression in FXS by quantifying peripheral APP
metabolite and processing enzyme expression in individuals with
FXS compared to typically developing controls (TDC). To do
so, we conducted a comprehensive evaluation of peripheral APP
metabolites including sAPPα, sAPPβ, sAPP total, Aβ(1–40), and
Aβ(1–42) and processing enzymes ADAM-10, ADAM-17, and
BACE-1 using enzyme-linked immunosorbent assays (ELISA).
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Finally, we conducted exploratory analyses looking at potential
correlations between APP species and APP-associated enzymes
and the clinical features of our participants.

MATERIALS AND METHODS

Participant
Plasma samples were collected from 27 individuals with FXS
(15 males, 12 females) and 25 age- and sex-matched control
subjects (TDC) (14 males, 11 females). Controls had no
known prior diagnosis or treatment for developmental or
neuropsychiatric disorders. No participant had a history of
seizure disorder or current use of anticonvulsant medication,
benzodiazepine, or novel potential treatment for FXS (i.e.,
minocycline, acamprosate, baclofen). All participants completed
the Stanford-Binet Intelligence Scale, 5th Edition (SB-5) to assess
intellectual functioning. SB-5 standard scores were converted to
deviation scores based upon expected age-related performance
to estimate intellectual ability in FXS participants for whom
reducing floor effects in scores is important (Sansone et al.,
2012). All participants or their legal guardians provided informed
written consent or verbal assent, when appropriate. The local
Institutional Review Board approved the study.

Blood Sample Collection
Blood samples were collected in 8.5 mL K2EDTA tubes (BD
Medical, 362799). Plasma samples were prepared within 1-hour
post-collection. Plasma was separated from whole blood by
centrifuging at 1100 × g for 15 min. The isolated plasma was
transferred in 2 mL aliquots into several microfuge tubes and
flash frozen. The samples were stored at−80◦C until analysis.

Plasma Preparation
Prior to testing, the plasma samples were thawed and
filtered through Corning R©Costar R©Spin-X R©centrifuge tube filters
(Corning 8163) to remove excess lipids and contaminants.
Similar to previous studies (Ray et al., 2011, 2016), we found that
immunodepletion of human serum albumin (HSA) improved
the detection of sAPPα in plasma (data not shown). HSA was
removed from plasma samples using EZAlbumin Depletion Spin
Columns (BioVision, Inc., K6573). This immunosubtraction was
only performed on samples used for sAPPα.

ELISA
The concentrations of sAPPα, sAPPβ, total sAPP, Aβ(1–40),
Aβ(1–42), ADAM-10, ADAM-17, BACE-1, were quantified
through commercially available ELISA kits from IBL America
(Catalog# 27734, 27732, 27731, 27718, 27719), LifeSpan
Biosciences (LS-F23768), Invitrogen Life Technologies
(EHADAM17), and Biomatik (EKU02709). Samples were
run according to manufacturer instructions. The assays were run
over three consecutive days. On the first day, sAPPα, sAPPβ,
total sAPP, Aβ(1–40), and Aβ(1–42) were prepared and allowed
to incubate overnight at 4◦C. The assays were completed and
analyzed the following day. The third day was used to run the
remaining moieties: ADAM-10, ADAM-17, and BACE-1. These

assays used a biotin-streptavidin detection system that allowed
for the tests to be setup and completed all within the same
day. Aliquots were stored at 4◦C during the 3-day period to
prevent protein degradation from repeated freeze-thaw cycles.
These storage conditions were tested for each moiety prior to
running the experiment. In pilot experiments, no degradation of
metabolites was observed up to 5 days in storage at 4◦C (data
not shown), confirming that these storage conditions adequately
maintained sample integrity.

Ideal dilution factors were optimized for each test to allow
for consistent and reproducible detection of each analyte. The
dilution factors and lower limit of detection (LLOD) for each
assay can be found in Supplementary Table S1.

Each sample was run in triplicate at the two dilutions for each
analyte. The absorbance for each assay was measured using the
CytationTM 3 plate reader and Gen5TM software from BioTek
Instruments, Inc. The standard curve for each assay was modeled
with a 5-parameter fit, and the concentrations of the samples were
calculated using this model. To limit variability, samples with a
coefficient of variation exceeding 10 percent were either rerun
to obtain an acceptable value or were excluded from the final
analysis [sAPPα (2), ADAM-10 (Darnell et al., 2011), Aβ(1–42)
(Kosinovsky et al., 2005), sAPPβ (Darnell et al., 2011), ADAM-17
(4), and BACE-1 (Ascano et al., 2012)].

Statistical Modeling
An Analysis-of-Covariance (ANCOVA) model was conducted
where each amyloid was the response and diagnosis group (FXS
vs. TDC) was the independent variable of interest. Covariates
included sex, age, and sex∗group interaction. Outliers determined
by the ROUT method (Q = 1%) were excluded from the analysis
using GraphPad Prism version 8.01 for Windows, GraphPad
Software, La Jolla, CA, United States1 (Motulsky and Brown,
2006). Adjusted least-square means (LS means) were derived to
compare group effects, or group∗sex effects if the interaction
term was significant. Lastly, Spearman correlation coefficients,
corrected for age, were derived between the amyloid responses
and FXS behavior scales for the FXS group. Consistent with prior
studies (Ashwood et al., 2010; Ray et al., 2016) and the exploratory
nature of this current study, correction multiple testing was
not completed. Standard deviations are not available for the
generalized linear models conducted here. However, pseudo-
effect sizes (d∗) may be derived by multiplying the resulting
t-statistic (absolute value) for the LS mean differences by the
square root of (1/n1 + 1/n2), where n1 and n2 are the sample sizes
of the two groups being compared. All statistical analyses (except
for the outlier detection) were conducted using SAS R©version 9.4
(SAS Institute Inc., Cary, NC, United States).

RESULTS

Patient Demographics
Results are summarized in Table 1. Subject groups were
comprised of 27 FXS (15 males; mean age: 20.5 ± 11.6 years;

1www.graphpad.com
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TABLE 1 | Characterization of FXS and control subjects.

Group No. Age Age range IQ IQ range

Male

FXS 15 (3 mosaic) 20.5 ± 11.6 5.9–40.9 44.1 ± 29.3 2.3–94.1

TDC 14 20.4 ± 11.1 5.9–43.5 101.5 ± 8.2 90.8–113.7

Female

FXS 12 23.8 ± 11.5 8.0–42.9 65.9 ± 22.2 23.9–98.9

TDC 11 22.0 ± 10.7 8.1–39.8 99.6 ± 3.6 95.5–107.4

Age ranges and IQ scores were measured for both FXS and control subjects.

range: 5.9–40.9, 12 females; mean age: 23.8 ± 11.5 years;
range: 8.0–42.9) and 25 age- and sex- matched neurotypical
controls (14 males; mean age: 20.4 ± 11.1; range: 5.9–43.5, 11
females; 22.0 ± 10.7; range: 8.1–39.8). FXS participants were

significantly more impacted (Deviation IQ = 54.0 ± 29.0; range:
2.3–98.9) than controls (Deviation IQ = 110.5 ± 6.5; range:
90.8–113.7) (p < 0.001). Females with FXS were (Deviation
IQ = 66.7± 24.2; range 23.9–98.9) generally, but not significantly,
higher functioning as compared to males with FXS (Deviation
IQ = 44.1 ± 20.9; range 2.3–94.1) (p = 0.879). All except three
males with FXS were full mutation. Two male mosaics were high
functioning with deviation IQ scores greater than 90. However,
these individuals were not found to impact the results observed.

APP Metabolites Are Differentially
Expressed in FXS
Results are summarized in Supplementary Table S2. Analytes
showing differential expression in the FXS group compared to
TDC group are described here. sAPPα levels were significantly
reduced in FXS relative to TDC (p = 0.0003, d∗ = 1.13).

FIGURE 1 | Expression of APP metabolites in plasma from FXS and TDC subjects. Plasma levels of sAPPα, sAPPβ, sAPP total (α and β), Aβ (1–40), and Aβ (1–42)
were measured using ELISA in both FXS and TDC participants. Outliers determined by the ROUT method were excluded from analysis [sAPPα (FXS = 3, TDC = 1),
sAPPβ (FXS = 2, TDC = 1), Aβ(1–42) (FXS = 1, TDC = 3)]. (A) sAPPα was found to be significantly decreased in subjects with FXS as compared to controls
(p = 0.0003). (B,C) Neither sAPPβ nor sAPP total levels were found to be significantly different between groups. (D,E) Both Aβ(1–40) and Aβ(1–42) were significantly
increased in subjects with FXS as compared to controls (p = 0.0169 and 0.0098). (F) No significant difference was observed in the ratio of sAPPβ/sAPPα. ∗p > 0.05.
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Aβ(1–40) (p = 0.0169, d∗ = 0.70) and Aβ(1–42) (p = 0.0098,
d∗ = 0.85) were significantly increased in FXS participants
compared to TDC participants. Neither age nor sex differences
contributed to these effects. Significant group differences were
not observed in the expression of sAPPβ or sAPP total (p > 0.05).
Additionally, no group difference in the ratio of sAPPβ/sAPPα

were noted when evaluating for any differences in the balance
of non-amyloidogenic versus amyloidogenic processing of APP
(Figure 1). No correlations between APP metabolites were
observed (p > 0.05, data not shown).

APP Processing Enzyme Levels Are
Unaltered in FXS
Plasma levels of enzymes contributing to the amyloidogenic
(BACE-1) and non-amyloidogenic (ADAM-10 and ADAM-17)
were measured to see if differences in APP metabolites could
be attributed to abnormal enzyme concentrations. However,
no significant differences in total enzyme levels were found
between groups (Figure 2). Additionally, no correlations were
found between enzyme and metabolite concentrations using
generalized mixed linear modeling with lognormal regression
(Supplementary Table S3).

Expression of Metabolites and Enzymes
Changes With Age
The effect of age was analyzed with respect to metabolite and
enzyme expression (Figure 3). Both sAPPβ and sAPP total levels
were found to significantly decrease with age in both groups
(p = 0.0074, 0.0112). Similarly, Aβ(1–40) levels were inversely
proportional to age (p = 0.0644) for both FXS and TDC groups.
While both major metabolites of β-cleavage were found to
decrease with age, BACE-1 levels appeared to increase with age
(p = 0.0548) for each group. Neither sex nor mosaicism were
found to affect the expression of any of the APP metabolites or
enzymes measured.

DISCUSSION

We report a distinct molecular phenotype in our FXS participants
as compared to matched controls with a significant decrease in
peripheral levels of sAPPα and significant increases in peripheral
levels of both Aβ(1–40) and Aβ(1–42). These results suggest
potential preferential amyloidogenic, or β-secretase, processing
of APP in individuals with FXS, as found in Alzheimer disease.

Similar to our findings, increased plasma concentrations of
Aβ monomers have been previously reported in FXS (Westmark
et al., 2011b; Ray et al., 2016). Although excess Aβ(1–40) and
Aβ(1–42) are best understood in the context of Alzheimer
disease, there are multiple ways that it can contribute to key
phenotypes in FXS. In the brain, Aβ can significantly alter the
excitability of the system both directly and indirectly. In APP
overexpressing hippocampal slice neurons, Aβ has been shown
to direct synaptic remodeling and depress excitatory synaptic
signaling. Aβ levels also increase or decrease with respective
excitation or depression of the neuronal activity and have been
suggested to regulate hyperexcitability (Kamenetz et al., 2003). In

FIGURE 2 | Plasma levels of APP processing enzymes in FXS and control
subjects. Plasma levels ADAM-10, ADAM-17, and BACE-1 were measured
using ELISA in both FXS and TDC subjects. Outliers determined by the ROUT
method were excluded from analysis [BACE-1 (FXS = 3, TDC = 1) and
ADAM-17 (FXS = 3, TDC = 3)] (A–C) No significant differences were observed
in the expression of ADAM-10, ADAM-17, and BACE-1 (p > 0.05).

the context of FXS, increased Aβ monomers may be indicative
of a similar compensatory mechanism mediating neuronal
hyperexcitability (Gibson et al., 2008; Choi et al., 2015; Ethridge
et al., 2016, 2017; Westmark et al., 2016a; Lovelace et al., 2018). In
contrast, excessive Aβ can form oligomers that, in conjunction
with an extracellular scaffolding protein, can redistribute and
reduce lateral mobility of mGluR5 receptors, ultimately resulting
in increased intracellular Ca2+ and neuronal excitation (Renner
et al., 2010). Therefore, we speculate that excess Aβ could
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FIGURE 3 | BACE-1 activity may decrease with age. Levels of sAPP total, sAPPβ, Aβ(1−40), and BACE-1 captured by ELISA were analyzed with respect to subject
age. (A) The expression of sAPP total decreases significantly in both FXS and TDC groups with respect to age (p = 0.0112). (B) The expression of sAPPβ decreases
significantly in both FXS and TDC groups with respect to age (p = 0.0074). (C) Aβ(1–40) appears to be elevated in younger FXS patients and seems to decrease with
age (p = 0.0644). (D) BACE-1 expression tended to increase with age although this trend did not reach statistical significance (p = 0.0548).

enhance neuronal excitability and lead to a positive feedback loop
that increases hyperexcitability. Together, these findings indicate
increased peripheral levels of both Aβ(1–40) and Aβ(1–42) are
reflective of hyperexcitability and increased expression of APP
and mGluR5 in FXS. Thus, Aβ(1–40) and Aβ(1–42) each may be
promising biomarkers of neural hyperexcitability in FXS.

Notably, a potential subgroup of FXS participants seem
potentially represent a cluster of the highest levels of Aβ(1–
42). Future studies including environmental and behavioral
analyses may help to determine the cause of increased Aβ(1–
42) in these individuals. For example, high fat diets have been
show to promote the formation of the BACE-1/Adaptor protein-
2/clathrin complex in mice, increasing the amount of intracellular
BACE-1 and subsequent cleavage of APP (Maesako et al.,
2015). Additionally, different behaviors, such as aggression, also
correlate with levels of sAPPα in patients with ASD (Sokol et al.,
2006). It could be that environmental or behavioral differences
could similarly contribute to differences in peripheral metabolite
expression within and between groups.

We also observed a significant reduction in peripheral sAPPα.
Since both the α- and β-secretase(s) compete for APP as a
substrate, the levels of their respective products also should
vary inversely. With increased levels of peripheral Aβ, it is
not surprising that there is a significant reduction in sAPPα.
Our findings contradict previous reports by Ray et al. (2016)
in which sAPPα was found to be increased in the plasma of
patients with FXS. While we tested a number of plasma samples
from patients with FXS from childhood to adulthood, Ray et al.
(2016) only analyzed samples from children. Previous studies

have shown that sAPPα is increased in juvenile FMR1 KO brain
at p21, and sAPP total is dysregulated at p21 and p30, but both
return to homeostatic levels after these time points (Pasciuto
et al., 2015). Restricting participant ages to children within
this neurodevelopmental window may better capture potential
increases in peripheral sAPPα and sAPP total.

While peripheral levels of APP metabolites were altered, we
did not find any differences in the levels of their respective
processing enzymes: ADAM-10, ADAM-17, and BACE-1 in
FXS compared to TDC. Additionally, no correlations were
found between any of the enzyme concentrations and the
concentrations of their respective metabolites, importantly
suggesting that total peripheral enzyme levels may not be
indicative of peripheral metabolite regulation. Indeed, since
ADAM-10, ADAM-17, and BACE-1 all act on numerous
targets in multiple tissues, their peripheral expression may
fluctuate less in response to increased APP (Barão et al., 2016;
Moss and Minond, 2017; Wetzel et al., 2017). Clearance of
APP metabolites from the brain and other tissues also could
strongly influence peripheral metabolite levels, making the direct
relationship between concentrations of enzymes and metabolites
less accurate. With multiple tissue subtypes contributing to
peripheral metabolite concentrations, the lack of correlation
between peripheral metabolite and enzyme expression is
expected. Additionally, peripheral concentrations may also not
be indicative of enzymatic activity. For example, increased
peripheral BACE-1 activity could result in higher turnover of
sAPPβ to both Aβ peptides. This could potentially account for the
differences in metabolite expression, while no differences were
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observed in enzyme concentration. These enzymes also could
be differentially regulated during critical developmental periods
not captured within our wider age range of participants. For
example, in FMR1 KO ADAM-10 expression is dysregulated in
cortical neurons during a critical neurodevelopmental window
in juvenile mice (Pasciuto et al., 2015). Thus, future studies are
needed examine processing enzymes in a more restricted range
of individuals with FXS.

Interestingly, we noted several molecular changes with age
in both persons with FXS and control participants, including
sAPP total, sAPPβ, Aβ(1–40), and BACE-1. Given associations
were observed across both patient and control participants,
this suggests that potentially developmental changes of APP
metabolites and enzyme concentrations is intact in FXS.
Since sAPP total is a total measure of sAPPα and sAPPβ,
its significant decrease with respect to age can largely be
attributed to the decrease in sAPPβ levels. Counterintuitively,
while peripheral expression of both Aβ(1–40) and sAPPβ

decrease with age, BACE-1 levels increase with age in both
our FXS and control groups. The inverse relationship between
amyloidogenic metabolites and BACE-1 reinforces that there
is no clear relationship between peripheral metabolite and
enzyme levels in FXS.

The results of our work should be understood within
the context of the limitations of our experimental design.
The greatest limitation was the overall sample size. With the
significant variability of multiple metabolites with respect to
age, it is possible that more subtle differences in metabolite
and enzyme expression may have been captured within a
narrower age range and/or a larger sample size. Correlations
with clinical features such as IQ may have also been limited
by sample size. Given the potential utility of APP metabolites
as peripheral biomarkers in FXS, future studies including with
larger participant pools need to be completed to evaluate for
correlations with clinical data. Additional measures of clinical
severity were not available to evaluate correlations with APP
metabolites. Future work with an expanded number of subjects
and deeper phenotyping will aide these efforts.

Amyloid-beta precursor protein metabolite concentrations
also have a diurnal expression pattern in both cerebrospinal
fluid and blood (Dobrowolska et al., 2014). Since not all blood
was collected at the same time of day, relative levels of APP
within participants may vary which could either prevent us from
observing a small effect or lead us to observing an exaggerated
effect. Additionally, blood was collected in tubes using K2EDTA
as a preservative, which has been shown to significantly reduce
levels of Aβ(1–42) in plasma (Westmark et al., 2011a). Because
K2EDTA was used to collect all samples, the effect size of
differences in Aβ(1–42) levels between groups may have been
underestimated in this study.

We also report no differences in metabolite or enzyme
expression between males, full mutation and mosaic, and
females with FXS (Supplementary Table S2), which is somewhat
unexpected. Many of the effects are subtle and may require a
more sensitive platform to detect and/or larger subject cohorts
to discern potentially more subtle differences. Additionally,
our FXS female sample did not differ on IQ from their

male counterparts, suggesting FXS males and females were
similarly affected in the current study. Thus, it is possible with
a more representative FXS female sample, sex differences in
primary measures may emerge. Last, we are using peripheral
APP metabolite and enzyme levels as a proxy to evaluate
their relative expression in brain. To date, there are a very
limited amount of known proteins that are expressed in parallel
between brain and blood (Tajima et al., 2013). In addition
to the brain, APP is also expressed in the thymus, heart,
muscle, lung, kidney, adipose tissue, liver, spleen, skin, and
intestine (Beer et al., 1995). Similarly, the processing enzymes
are also expressed in a variety of different tissue types. Thus,
blood levels of APP metabolites are most likely influenced
by their expression in many organs of the body. This makes
comparing peripheral APP levels to levels observed in the
brain much more difficult and introduces a level of uncertainty
to the measures.

CONCLUSION

In conclusion, we determined a distinct molecular pattern
of APP metabolite expression with increased Aβ(1–40) and
Aβ(1–42) and decreased sAPPα. While we suggest that there
is increased β-secretase activity in FXS, more work needs to
be completed to determine the exact mechanisms leading to
increased peripheral Aβ. Still our findings provide new evidence
of the promising potential of APP metabolite expression as a
blood-based biomarker in FXS. Ultimately, our work highlights
the need for more thorough characterization of APP expression
patterns with both behavioral and electrophysiological patterns in
FXS, which may provide additional insight into the mechanistic
roles of APP metabolites.
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