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Inflammatory mediators in diabetic retinopathy: Deriving clinicopathological 
correlations for potential targeted therapy
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The	 role	 of	 inflammation	 in	 diabetic	 retinopathy	 (DR)	 is	 well‑established	 and	 dysregulation	 of	 a	 large	
number	 of	 inflammatory	 mediators	 is	 known.	 These	 include	 cytokines,	 chemokines,	 growth	 factors,	
mediators	 of	 proteogenesis,	 and	 pro‑apoptotic	 molecules.	 This	 para‑inflammation	 as	 a	 response	 is	 not	
directed to a particular pathogen or antigen but is rather directed toward the by-products of the diabetic 
milieu.	 The	 inflammatory	 mediators	 take	 part	 in	 cascades	 that	 result	 in	 cellular	 level	 responses	 like	
neurodegeneration, pericyte loss, leakage, capillary drop out, neovascularization, etc. There are multiple 
overlaps	between	the	inflammatory	pathways	occurring	within	the	diabetic	retina	due	to	a	large	number	of	
mediators,	their	varied	sources,	and	cross‑interactions.	This	makes	understanding	the	role	of	inflammation	
in	clinical	manifestations	of	DR	difficult.	Currently,	mediator‑based	therapy	for	DR	is	being	evaluated	for	
interventions	that	target	a	specific	step	of	the	inflammatory	cascade.	We	reviewed	the	role	of	inflammation	
in DR and derived a simplified clinicopathological correlation between the sources and stimuli of 
inflammation,	the	inflammatory	mediators	and	pathways,	and	the	clinical	manifestations	of	DR.	By	doing	
so,	we	deliberate	mediator‑specific	therapy	for	DR.	The	cross‑interactions	between	inflammatory	mediators	
and	the	molecular	cycles	influencing	the	inflammatory	cascades	are	crucial	challenges	to	such	an	approach.	
Future research should be directed to assess the feasibility of the pathology-based therapy for DR.
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Diabetic	 retinopathy	 (DR)	 is	 often	 considered	a	 sequela	 to	
chronic	inflammatory	stress	that	results	from	persistent	and	
clinically unobtrusive activation of multiple harmful cascades 
in response to an aberrant metabolic memory.[1] The first 
indications	of	 the	 involvement	of	 inflammation	 in	DR	were	
provided more than half a century ago by retrospective studies 
analyzing	the	effects	of	rheumatoid	arthritis	and	its	therapy	on	
DR.[2] Following multiple studies with experimental, in vitro, 
and in vivo designs, and scores of well-directed clinical trials 
which date back to the last millennium, inflammation is 
now seen as one of the essential elements driving various 
pathological pathways responsible for the clinical and 
pathological manifestations of DR.[3] Yet, there is a lapse in 
our	understanding	of	the	linkage	between	the	inflammatory	
cascades and clinical DR, mainly due to a large number of the 
mediators and the pathways they result in. The understanding 
becomes further challenging for the clinician because of the 
multiple cross-interactions among these mediators.[4]

DR has multiple clinical manifestations, ranging from a 
staged non-proliferative DR (NPDR) to stages of proliferative 
DR (PDR) and diabetic macular edema (DME), and 
inflammation	 is	known	 to	be	 involved	at	 all	 these	 stages.[5] 
Intravitreal	 steroid	as	 an	anti‑inflammatory	agent	has	been	
successfully employed for the management of chronic DME 
while other agents have been evaluated.[6,7] However, these 
agents,	seen	as	“broad‑spectrum,”	have	not	been	developed	for	
a	pathology‑based	tailored	use	in	the	DR	that	matches	specific	
clinical indicators, and are rather employed as second-line 
agents only. This is an important reason for the varied results 
obtained with such therapies.[8]	 Further,	 anti‑inflammatory	
agents	find	minimal	use	 in	NPDR	and	PDR.	This	 is	despite	
the	well‑documented	role	of	inflammation	in	these	stages,	and	
to	date,	we	do	not	have	any	effective	anti‑inflammatory	agent	
targeting the retardation of DR.

The	literature	has	sufficient	pre‑clinical	evidence	favoring	
the	utility	 of	 anti‑inflammatory	 agents	 that	 target	 specific	
inflammatory	cascades.[9] However, currently, most of these are 
not	supported	by	a	piece	of	sufficient	clinical‑level	evidence,	
though their future use seems likely. As these therapeutic 
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strategies	will	focus	on	specific	and	individual	inflammatory	
cascades,[9] the clinician needs to understand if individual 
signs	of	DR	can	be	associated	with	a	particular	inflammatory	
mediator or cascade. The current review evaluates the 
evidence linking various manifestations of DR with the 
corresponding	 inflammatory	 cascades.	We	explore	whether	
a clinicopathological correlation can be developed, with a 
strength	sufficient	enough	to	guide	pathology‑driven	therapy.

Methods
PubMed and Google Scholar databases were searched using the 
following	keywords:	“inflammation	in	diabetic	retinopathy,”	
“inflammatory	mediators	 in	 diabetic	 retinopathy,”	 and	
“pathogenesis	 of	 diabetic	 retinopathy.”	Cross‑references	
were also screened from these articles wherever appropriate. 
Following the initial screening for duplicates and context, 
the articles published in the English language with available 
full text were evaluated for suitability, and 224 papers were 
included in this review. The articles were reviewed for the 
individual	role	of	inflammatory	mediators	in	DR,	inflammatory	
mediators in association with pathological changes related to 
DR,	correlation	of	inflammatory	mediators	with	clinical	lesions	
in DR, and individual treatment approaches if present. The data 
were	organized	into	four	sections	that	discuss	the	stimulus/
source	of	inflammation	in	DR,	the	mediators	of	inflammation	
themselves, their role in pathology, and the linkage between 
inflammation	and	clinical	DR.	The	data	have	been	summarized	
in Table 1 and the pathogenesis has been depicted in Figs. 1-3.

Stimulus and Source of Inflammation
Chronic persistent hyperglycemia in type 2 diabetes 
mellitus	(DM)	leads	to	a	pro‑inflammatory	diabetic	milieu	in	
the	retina.	This	abnormal	metabolic	state	is	reflected	by	altered	
platelet physiology and function, hypercoagulable state, altered 
metabolic pathways, free radical accumulation, oxidative 
stress, and cellular hypoxia.[10,11] Sustained hyperglycemia 
acts	as	a	key	link	in	the	development	of	the	pro‑inflammatory	
state where various pathways including polyol accumulation, 
advanced glycation end products (AGEs), oxidative stress, 
and activated protein kinase C (PKC) acts as a ‘stimulus’ for 
the	expression	of	various	mediators	of	inflammation.[12] These 
stimuli	subsequently	affect	the	specific	cells	or	pathways	within	
the cellular and vascular domains of the retina to initiate a 
cascade	of	inflammation.	Following	the	stimulus	from	these	
by-products of DM, the inner retina (mainly the inner nuclear 
layer),	retinal	ganglion	cells,	diversified	microglial	cells	along	
with the components of the inner blood-retinal barrier (iBRB), 
Müller cells, retinal pigment epithelium, endothelial cells, and 
pericytes	act	as	the	prime	source	of	inflammation.[12]

The retinal ganglion cells (RGCs) and astrocytes located 
in the inner retina act as the prominent cellular sites for 
the expression of monocyte chemotactic protein-1 (MCP-1) 
and	macrophage	 inflammatory	protein‑1α (MIP-1α).[13] the 
accumulation of free radicals and hypoxia in the inner retina 
augments the expression of the MCP-1 and MIP-1α genes in 
these cells.[13] Hyperglycemia and associated hypertensive 
milieu increase the angiotensin II (Ang-II) production, 
which along with the increased oxidative stress and AGEs 
stimulates	the	expression	of		nuclear	factor	(NF)‑кB.[14] Cells 
in the inner and outer nuclear layers, ganglion cell layer, and 
retinal pericytes are activated by these stimuli, leading to the 

phosphorylation	of	 an	 inhibitory	protein	of	NF‑кB	and	 its	
rapid	degradation	followed	by	the	release	of	NF‑кB.[15]	NF‑кB	
is present in nearly all cell types and has wide biological 
and	inflammatory	activity,	 including	the	promotion	of	gene	
transcription of several cytokines and chemokines.[16] the 
increased -glial cell, -caspase 1 and -caspase 3 activity along 
with the hypoxia stimulates the Müller glial cells, endothelial 
cells, macrophages, and neutrophils to increase the expression 
of  Interleukin (IL)-1β [Figs. 1 and 2].[17]

The microglial cells, which traverse a wide portion of 
retinal thickness, get activated in response to varied diabetic 
stimuli. Hyperglycemia, AGEs, oxidative stress, and PKC 
lead to reactive gliosis with the activation of the microglial 
cells.[18] Once activated, the microglial cells can assume any 
of	 the	several	phenotypic	states,	some	inflammatory,	others	
anti‑inflammatory.	In	the	inflammatory	context,	they	accelerate	
the production of various cytokines and chemokines including 
tumor necrosis factor-alpha (TNF-α), IL-1, IL-6, IL-8, and  
C-reactive protein (CRP). Moreover, elevated levels of IL-1, IL-6, 
interferon-gamma (IFN-Ƴ), and TNF-α further activate more 
microglial	cells	and	initiate	a	vicious	circle	of	inflammation.[9] 
Hyperglycemia and dyslipidemia also lead to the deposition 
of C5b-9, a terminal product of complement activation within 
the retinal microcirculation which ultimately results in altered 
inflammatory	 signaling	pathways,	 further	 exaggerating	 the	
inflammatory	milieu.	The	Müller	cells	are	the	main	source	of	
increased vascular endothelial growth factor (VEGF) expression 
in	the	diabetic	retina	along	with	a	significant	contribution	from	
the endothelial cells, astrocytes, and retinal pigment epithelial 
cells (RPEs).[19] Hyperglycemia, increased oxidative stress, 
hypoxia,	and	the	synergistic	proliferating	effect	of	cytokines	
like IL-6 and IL-1β act as stimuli for the increased expression 
of the VEGF-A from these sources [Figs. 1 and 2].[19]

Several stimuli like oxidative stress, dyslipidemia, and 
poly- Adenosine diphosphate (ADP) ribose polymerase (PARP) 
act ivat ion lead to  the  upregulat ion of  adhesion 
molecules (vascular cell adhesion molecule [VCAM-1],: 
Intercellular adhesion molecule [ICAM-1], integrins) from 
the endothelial cells and on the surface of the leukocytes,[20] 
whereas the endothelial cells and platelets act as a prime 
reservoir for the increased production of P-selectins and 
E-selectins, another class of adhesion molecules.[21] All these 
factors eventually culminate in leukostasis with a resultant 
inflammatory	insult	as	detailed	later	[Figs.	1	and	2].

Inflammatory Mediators
A large number of inflammatory mediators have been 
identified.	These	are	responsible	for	multiple	pathologies	that	
later manifest clinically too. Therapeutic avenues have been 
researched with varying levels of evidence to target these. 
These individual mediators are summarized in Table 1 and 
Figs. 1 and 2.

2a Interleukins
Interleukin 1β (IL‑1β)
The role of IL-1β	in	DR	is	well	identified.[22] It is produced as 
an inactive precursor pro-IL-1β which is cleaved by protease 
caspase 1 to its active form.[22,26-28] It also activates NF-κB which 
further	 increases	 the	 expression	of	 other	pro‑inflammatory	
cytokines.[22] A high caspase 1 activity in the retina of diabetic 
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animals,	as	well	as	humans,	shows	its	role	in	the	amplification	
of IL-1β activity.[23,24] Minocycline, an inhibitor of caspase 1 
is known to blunt the diabetes-led increase of IL-1β in the 
retina.[25] the IL-1R antagonist Anakinra has also been shown to 
reduce the endothelial dysfunction in diabetic mice. Similarly, 
systemic IL-1β inhibition with canakinumab in diabetic patients 
resulted in decreased vessel leakage and resolution of macular 
edema.[29-32]

Interleukin 2 (IL‑2)
The IL-2 activates T lymphocytes, NK cells, B lymphocytes, and 
monocytes.[33] Its role in DR has been correlated to its elevated 
levels.	 The	 IL‑2	 along	with	 other	 inflammatory	mediators	
leads to endothelial apoptosis and retinal leukostasis resulting 
in ischemia, thereby, culminating in vascular leakage and 

neovascularization [Fig. 2]. Johnsen-Soriano et al.[34] showed 
increased levels of IL-2 in diabetic mice as compared to controls 
suggesting	 a	possible	 role	 in	DR.	 the	 aqueous	 analysis	 of	
diabetic patients found IL-2 to be higher in the PDR group 
than in NPDR and controls.[35] Similarly, its levels were noted 
to be raised in a study of epiretinal membranes obtained from 
the PDR patients.[43]

Interleukins‑3, 4, and 5 (IL‑3, IL‑4, IL‑5)
The role of IL-3 in DR is inconclusive. Its levels were increased 
in	the	aqueous	humor	of	diabetics	without	DR	and	lower	in	
patients with DR.[44] Similarly, in a study by Hang et al.[45] in 
the plasma of diabetics, the IL-3 concentration was lower in 
the	diabetics	than	in	controls.	The	aqueous	levels	of	IL‑5	and	
vitreous levels of IL-4 were seen to be comparatively higher in 

Figure 1: The figure depicts the stimulus of inflammation in diabetes mellitus, the cells (source) responding in the retina to produce the “retinal 
inflammation,” and the consequent release of inflammatory mediators. AGE: Advanced glycation end products, PKC: Protein kinase C, PARP: 
Poly-ADP ribose polymerase, RPE: Retinal pigment epithelium, IL: Interleukin, VEGF: Vascular endothelial growth factor, VEGFR: VEGF 
receptor, MCP: Monocyte chemotactic protein, MIP: Macrophage inflammatory protein, MAC: Membrane attack complex, NF: Nuclear factor, 
ICAM: Intercellular adhesion molecule, VCAM: Vascular cell adhesion molecule, TNF: Tumor necrosis factor, PDGF: Platelet-derived growth 
factor, ROS: Reactive oxygen species, NOS: Nitric oxide synthase
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Figure 2: The figure depicts the actions of the individual inflammatory mediators and the resulting cascades causing the retinal pathology in 
diabetic retinopathy. NF: Nuclear factor, ICAM: Intercellular adhesion molecule, VCAM: Vascular cell adhesion molecule, IL: Interleukin, TNF: 
Tumor necrosis factor, MAC: Membrane attack complex, VEGF: Vascular endothelial growth factor, MCP: Monocyte chemotactic protein, MIP: 
Macrophage inflammatory protein PECAM: Platelet endothelial cell adhesion molecule, NOS: Nitric oxide synthase, MAPK: Mitogen‑activated 
protein kinase, ERK: Extracellular signal-regulated protein, ECM: Extracellular matrix, BRB: Blood-retinal-barrier, ANG: Angiotensin

Figure 3: Doughnut chart representing the inflammatory pathogenesis of DR. The outermost blue circle represents the stimulus of inflammation 
developing outside the retina as a consequence of the metabolic state. The second circle shows the beginning of the retinal inflammation and the 
cells being stimulated as the source to produce the cytokines. The circles further in have been categorized to show how the inflammatory mediators 
are getting involved in the cascades to lead on to specific pathologic and cellular level changes in the retina that subsequently manifests as a 
clinical finding, completing the circle of diabetes mellitus (DM) to diabetic retinopathy (DR). There is tremendous overlapping at all levels of this 
process, horizontally as well as vertically. AGE: Advanced glycation end products, PKC: Protein kinase C, PARP: Poly-ADP ribose polymerase, 
ANG: Angiotensin, INL: Inner nuclear layer, RPE: Retinal pigment epithelium, RGC: Retinal ganglion cell
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PDR, as compared to NPDR and non-DR patients, signifying 
a plausible association with PDR.[35,46]

Interleukin 6
IL-6 is produced acutely by macrophages and microglia 
on coming in contact with pathogen-associated molecular 
patterns	(PAMP)	and	danger‑associated	molecular	patterns.[47-49] 
PAMPs	are	microbial	patterns	that	are	recognized	directly	by	
the host immune system through cell receptors. The major 
PAMPs include nucleic acids, surface glycoproteins (GP), 
lipoproteins (LP), and membrane components. IL-6 is an 
important mediator in the pathogenesis of DR causing vascular 
inflammation	and	endothelial	dysfunction.[50] It can directly 
affect the endothelial cells and disrupt the blood-retinal 
barrier (BRB) or even induce VEGF production.[50-53]

Interleukin 8 (IL‑8)
IL-8 is a pro-inflammatory cytokine and serves as a 
chemoattractant for neutrophils and also activates the T 
cells.[54] It causes endothelial cell death and leukostasis along 
with other interleukins and TNF-alpha, resulting in ischemia, 
promoting leakage, and neovascularization [Fig. 2]. The high 
levels of IL-8 have been found in the vitreous of PDR patients 
and its levels correlated with PDR activity.[55]	the	aqueous	levels	
of	IL‑8	were	also	significantly	elevated	in	patients	with	DME	
refractory	to	anti‑VEGF	treatment	suggesting	its	inflammatory	
role in leakage.[56]	The	effect	of	IL‑8	on	the	endothelium	was	
studied experimentally on the human vascular endothelial 
cell lines which showed that the IL-8 downregulated the tight 
junctions of the endothelium in a dose and time-dependent 
manner, thereby, altering its permeability.[57] It, therefore, is a 
promising target for managing refractory DME.

Interleukin 10 (IL‑10)
It	is	an	anti‑inflammatory	cytokine	that	decreases	the	synthesis	
of IL-1 and TNF-α.[58] It is also postulated to downregulate 
the VEGF expression, thereby, reducing angiogenesis.[59] Its 
concentration	was	low	in	the	aqueous	of	patients	with	DR	as	
compared	to	the	controls	with	a	significant	negative	correlation.	
Hence, the study concluded that low levels of IL-10 are 
pathogenetic in DR,[60] which has been noted by other studies 
too.[55,61,62]	However,	 a	 significantly	higher	 concentration	of	
IL-10 was noted in the vitreous of PDR patients by Mao et al.[79] 
and a similar result was noted by Paine et al.[80] too. Thus at the 
moment, its utility in clinical manifestations and therapeutics 
of DR is debatable.

Interleukin 13 (IL‑13)
IL-13 is produced by the T cells and dendritic cells. In a study by 
Sai et al., the lower levels of IL-13 were observed in the vitreous 
of	DR	patients	as	compared	to	other	inflammatory	mediators,	
whereas other studies have noted higher levels in the vitreous 
of patients with PDR suggesting its role in the formation of 
fibrous	membranes.[81,82] Therefore, its role in the management 
of DR is currently debatable just like IL-10.

2b TNF-α
TNF-α	is	a	pro‑inflammatory	cytokine	produced	by	microglia,	
Müller cells, macrophages, neutrophils, and T cells in response 
to various stimuli.[83] TNF-α is involved in various biological 
processes including the upregulation of adhesion molecules, 
proliferation,	differentiation,	and	cell	death,	and	 is	 involved	
in	the	pathogenesis	of	DR	and	intraocular	inflammation.[84] It 

can alter the distribution of tight junction proteins and increase 
the BRB permeability and leukocyte adhesion to the retinal 
endothelial cells.[64-66,84]	A	significantly	higher	 level	of	TNF‑α 
was found in the serum of the PDR patients suggesting its 
role in PDR.[67] In another study involving type 1 and type 2 
DM mice, increased microvascular apoptotic cell and acellular 
capillaries were noted. On administration of Pegsunercept (a 
recombinant	soluble	TNF‑receptor‑1	which	has	been	modified	
by	the	attachment	of	polyethylene	glycol),	significantly	reduced	
the pericyte loss and the acellular capillaries were noted.[66] the 
administration	of	infliximab	in	the	laser‑refractory‑DME	patients	
led	to	a	significant	improvement,	indicating	the	pathogenic	role	
of TNF- α.[68] Therefore, therapy targeting the TNF-α cascade is 
a relevant option in at least the advanced cases of DR.

2c Interferon γ (INF-γ) 
INF-γ is a cytokine released by helper T-cell class 1 (Th1) 
activating	pro‑inflammatory	M1	macrophages	or	microglia	
and B cells. In independent studies, INF-γ	was	significantly	
elevated in the vitreous of DR patients as compared to controls 
and also in diabetic mice, suggesting the upregulation of Th1 
cytokine response in DR.[34,44,82] Its application in the therapy 
for DR is yet to be proven.

2d Complement system
The initial studies showed complement deposition in the retinal 
choriocapillaris with decreased levels of complement inhibitors 
suggesting complement-induced diabetic damage.[69,70] 
Shahulhameed et al.[71]	showed	significantly	elevated	levels	of	
C3bα in the vitreous of PDR patients and the involvement of 
alternate pathways was also deduced from the upregulation 
of complement factor H (CFH). Gao et al.[72] reported a similar 
observation in the vitreous of PDR patients where complement 
C3	and	 complement	 factor	 I	were	 significantly	 elevated	 as	
compared to the controls. The role of the complement system 
in	neovascularization	in	DR	has	been	affirmed	by	other	studies	
as well.[70,73]

2e Integrin
Integrins are cell adhesion receptors mediating cell-cell and 
cell-extracellular matrix interactions. They have also been 
associated with various pathological processes, such as vascular 
leakage,	inflammation,	neovascularization,	and	fibrosis.[74] The 
role of integrin in DME can be well-established from the study 
by Quiroz-Mercado et al.[75] in which non-inferiority of integrin 
inhibitor	“ALG‑1001”	over	bevacizumab	was	met	with	favorable	
results. In another experimental model, THR-687 a novel 
integrin receptor antagonist prevented neovascularization.[76] 
Its	role	in	leukostasis	and	vascular	leakage	was	confirmed	in	
experimental	mice	where	inhibition	of	alpha	4	integrin/CD49d	
significantly	attenuated	diabetes‑induced	leukocyte	adhesion	
and vascular leakage.[77]

2f Arachidonic acid metabolites
Arachidonic acid is released from the phospholipids in the 
cell membranes in response to several stimuli where the 
cyclooxygenases (COX) and lipoxygenases convert arachidonic 
acid to leukotrienes and prostaglandins. Cyclooxygenase 2 
activity (COX-2) has been noted in retinal endothelial cells 
of diabetic patients.[78] On administration of COX-2 inhibitor, 
the diabetes-led upregulation of retinal VEGF, retinal vessel 
permeability, and leukostasis was found to be inhibited 
suggesting that COX-2 induces pathological alteration in 
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DR.[36] In a study by Joussen et al.,[64] meloxicam (COX-2 
inhibitor) reduced endothelial nitric oxide synthase (eNOS) 
levels, inhibited NF-κB activation in the diabetic retina, and 
partially reduced the TNFα levels. Similarly, nepafenac (COX 
inhibitor) inhibited leukocyte adhesion as well as apoptosis of 
the retinal capillary cells, and degeneration of retinal pericytes 
and capillaries.[27]

Arachidonic acid itself may act as a second messenger 
activator of protein kinase C—an important and established 
component in the pathogenesis of diabetic retinopathy (DR). 
Protein kinase C inhibitors have been used in DR. Protein 
kinase C b Inhibitor-Diabetic Retinopathy Study 2 (PKC-DRS 
2), a major clinical trial showed that oral ruboxistaurin led to 
significant	visual	improvement	in	the	NPDR	eyes	more	likely	
due to the reduction in macular edema.[37] the evidence also 
suggests that leukotrienes and other products of 5-lipoxygenase 
are involved in DR changes too. Lipoxygenase-derived 
5-hydroxyeicosatetraenoic acid (5-HETE) was noted 
to be elevated in the vitreous of diabetic patients. In 
5‑lipoxygenase‑deficient	diabetic	mice,	degeneration	of	retinal	
capillaries, leukostasis, and superoxide generation was found to 
be inhibited indicating its potential role in these alterations.[38]

2g Cellular adhesion molecules
Adhesion	molecules	 are	 required	 for	 leukocyte	migration	
and adhesion to endothelial cells, leading to leukostasis and 
endothelial dysfunction. In a study by Joussen et al.,[39] the diabetic 
mice	genetically	deficient	in	ICAM‑1	or	its	ligand	(CD18)	were	
protected from the development of lesions of early DR (including 
capillary degeneration, pericyte loss, and increased permeability) 
as well as leukostasis. Limb et al.[40]	noted	significantly	elevated	
levels of soluble vascular cell adhesion molecules (sICAM-1, 
sVCAM-1, and sE-selectin) in the vitreous of PDR cases. Funatsu 
et al.[41] reported higher vitreous levels of sICAM-1 in patients with 
hyperfluorescent	DME	than	in	those	with	minimally	fluorescent	
DME as well as its levels correlated with macular edema. Rao 
et al.[42] demonstrated that the topical administration of small 
molecule antagonists of the leukocyte function-associated 
antigen‑1	(LFA‑1)	significantly	reduced	retinal	leukostasis	and	
blood-retinal-barrier breakdown in rats. Such topical mediators, 
thus, are very promising as they have a potential for use in both 
early and late DR, but their utility is yet to be proven.

2h Vascular endothelial growth factor
VEGF is a well-established mediator of DR induced by the 
ischemic-hypoxic drive of the retina, and its role in leakage 
and neovascularization is well-known. Various drugs like 
bevacizumab,	ranibizumab,	aflibercept,	and	brolucizumab	have	
been	extensively	evaluated	and	found	beneficial	for	advanced	
DR.	However,	it	has	been	found	that	it	is	a	pro‑inflammatory	
molecule too and some patients on anti-VEGF therapy have 
shown regression of DR too. Its role in leukostasis and BRB 
breakdown can be judged from the fact that the blockade 
of endogenous VEGF resulted in significant suppression 
of these processes in DR.[85] A study by Wang et al.[86] in 
diabetic mice showed that the inhibition of Müller cell VEGF 
significantly decreased the expression of TNFα, ICAM-1, 
and NF-κB. the retinal leukostasis implicated in the DR 
pathogenesis too is mediated by VEGF. The administration 
of phosphomannopentaose sulfate (PI-88) (a sulfonated 
oligosaccharide which inhibits heparanase) led to the inhibition 
of leukostasis and preservation of the  Electroretinogram 

(ERG)  changes in diabetic rats suggesting that it may reverse 
retinal dysfunction by decreasing the VEGF expression.[115] It 
has	also	been	reported	that	pro‑inflammatory	cytokines	such	as	
IL-1β and IL-6 could upregulate the VEGF mRNA expression.[116]

2i Monocyte chemoattractant protein-1 and 2 (MCP-1, MCP-2)
MCP-1 is a chemokine produced by multiple cell lines of the 
immune system as well as endothelial cells leading to the 
recruitment and activation of the macrophages and monocytes. 
It also stimulates VEGF production promoting angiogenesis and 
fibrosis.[117,118]	It	is	also	reported	that	it	significantly	alters	retinal	
vascular permeability, angiogenesis, as well as contribution 
to the DR pathogenesis.[119,120] the higher levels of MCP-1 were 
noted in the vitreous of the PDR patients and retina of diabetic 
mice.[121-123]	MCP‑2	was	noted	 to	be	 significantly	elevated	 in	
the	aqueous	humor	of	diabetics	without	DR	as	compared	to	
non-diabetics. However, its role in DR and its therapy needs 
to be further evaluated.[44]

2j NF-κB
It is a transcription factor regulating genes involved in the 
immune and inflammatory processes as well as cellular 
proliferation and apoptosis. An overactivated NF-kβ leads to 
altered gene expression of VEGF, PDGF, and endothelin-1, 
and also the release of various cytokines including TNF-α, 
IL-1β, and IL-6. These processes ultimately lead to endothelial 
apoptosis and angiogenesis.[124,125] The inhibition of NF-κB 
activation	 by	dehydroxymethylepoxyquinomicin	 reduced	
diabetes-induced retinal leukostasis and expression of ICAM-1 
and VEGF experimentally.[126] Selective inhibition of NF-κB also 
resulted in reduced degeneration of the retinal capillaries and 
expression	of	inflammatory	proteins.[127] Because of its potential 
cross-interacting broad-spectrum activity, NF-κB is a promising 
target whose antagonistic therapy will likely curtail DR. Further 
evidence	is,	however,	required.

2k CD40 Ligand (CD40L)
The CD40L system is known to be present on the platelets. 
The activated platelets initiate inflammatory reaction of 
the endothelial cells with CD40L which is shed as soluble 
CD40L	(sCD40L)	and	can	serve	as	a	marker	of	inflammation.[128] 
Yngen et al.[129] studied the correlation of sCD40L in type 1 
diabetics with and without microangiopathy and found its 
levels	 to	 be	 significantly	 elevated	 in	 the	 blood	of	patients	
with microangiopathy suggesting it may be a part of the 
inflammatory	cascade	in	diabetic	microangiopathy.

2l Nitric oxide (NO)
It is produced by three nitric oxide synthase (NOS) isoforms 
that are expressed variably in the retina—endothelial (eNOS), 
neuronal (nNOS), and inducible (iNOS).[130,131] NO is a regulator 
of important cellular functions including vascular dilation and 
inflammation.	eNOS	and	nNOS	are	expressed	constitutively	
and regulate neuronal and endothelial functions.[114] iNOS is 
associated with increased severity and accelerated development 
of DR and is upregulated in DR.[132,133] It has been demonstrated 
in experimental mice that the deletion of iNOS led to a 
reduction in the DR changes of capillary degeneration and 
permeability.[134,135] Aminoguanidine, an inhibitor of NO, has 
been found to inhibit microvascular complications of diabetes 
in the retina in experimental models.[132] Several other studies 
in humans have indicated the role of NO in neurodegeneration 
and neovascularization.[136,137]
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Inflammatory Pathways, Cellular 
Responses, and Clinicopathological 
Correlation
Clinically, DR presents with different findings including 
microaneurysm,	edema,	ischemia,	new	vessels,	and	fibrosis.	
These	findings	are	used	to	grade	the	severity	of	 the	disease	
and assign a stage that determines the entailing management. 
Neuro-retinopathy has also been realized to be a part of DR 
now,	 though	not	 included	 in	 the	 conventional	 classification	
systems. The pathologies discussed in Table 1 are responsible 
for these clinical processes. This section correlates these 
pathologies	to	the	common	clinical	findings	seen	in	DR.
1. Microaneurysm – the loss of structural support to retinal 

capillaries by pericyte loss and endothelial cell damage leads 
to microaneurysm formation which on rupture leads to 
retinal hemorrhage. Eventually, these outpouchings lead on 
to	leakage	resulting	in	edema.	Inflammation	has	been	shown	
to cause pericyte loss as mentioned in Table 1. As explained 
in	Fig.	 2,	 a	 large	number	of	 inflammatory	molecules	are	
involved in the pericyte loss and endothelial dysfunction 
which	culminates	in	aneurysms.	A	significantly	high	level	
of gene expressions and protein concentrations of IL-1β, 
NF-κB, VEGF, TNFα, TGF-beta, and ICAM-1 were found in 
retinal pericytes in an experimental model where the cells 
were exposed to high glucose concentration suggesting 
changes secondary to inflammation. These changes 
persisted after the glucose levels became normal, thus, 
indicating irreversible nature.[138,139]	Other	 inflammatory	
mediators causing pericytes apoptosis include TNF-alpha 
and reactive oxygen species.[87]

2. BRB breakdown and edema – BRB breakdown alters 
the permeability of retinal capillaries causing leakage 
eventually culminating in edema and exudation. The role of 
inflammation	in	BRB	breakdown	has	been	shown	to	occur	
by increased leukostasis, cytokines, and growth factors 
as well as pericyte loss.[88,89,140,170] TNF-alpha and VEGF 
have also been shown to increase the permeability of BRB. 
Miyamoto et al. showed that retinal vascular leakage and 
capillary non-perfusion corresponded to retina leukostasis 
and the diabetes-led increase in the leukostasis correlated 
with the elevated levels of ICAM-1. These processes were 
significantly inhibited by the injections of intravitreal 
antibody acting against ICAM-1 indicating the role of 
leukostasis in the BRB breakdown.[69,141,142] Therefore, ICAM-1 
antibody can serve as a potential therapeutic line against DR.

3. Ischemia – Inflammation	also	leads	to	capillary	occlusion	
and	capillary	dropout.	Inflammatory	cytokines	including	
TNFα and IL-1β have been reported to increase caspase 3 
activity leading to endothelial cell apoptosis.[22,84] In addition, 
the capillary occlusion by leukostasis due to the blockage 
of	blood	flow	can	also	lead	to	ischemia.[84] As depicted in 
Fig. 2, leukostasis itself is a resultant of multiple pathways, 
especially those involving integrins and cell adhesion 
molecules. Endothelial cell death is also induced during 
leukostasis by leucocyte-mediated Fas ligand (FasL) and 
Fas-mediated apoptosis.[148] The role of leukostasis in DR 
can	be	adjudged	from	the	fact	that	a	significant	reduction	
in diabetes-induced capillary degeneration was noted when 
the	proteins	required	for	the	adherence	of	white	blood	cells	
to the endothelium (ICAM-1 and CD-18) were deleted in 
experimental diabetes.[39]

4. Neovascularization –	Inflammation	has	been	shown	to	cause	
neovascularization.	Inhibition		of	inflammatory	cytokines	
including TNFα attenuated neovascularization.[144-147] 
Macrophages and monocytes were also found in the 
neovascular sprout by Ishida et al.[148] and selective depletion 
of monocyte lineage with intravitreal clodronate 
liposomes (dichloromethylene diphosphonate), which 
act as anti-macrophage agents, led to the suppression of 
pathological neovascularization. The role of unregulated 
VEGF in causing the development of new vessels is very 
well-known.[149]

 Neurodegeneration – Neurodegeneration occurs in DR 
preceding	clinical	findings	in	many	cases,	partly	a	resultant	
of	neuroinflammation.	Microglial		activation	resulting	from	
a persistent hyperglycemic state has been postulated to be 
the	main	factor	behind	neuroinflammation.[150] An increased 
microglial count and size have been noted in association 
with	cotton	wool	spots	and	microaneurysms.[18] Activated 
microglia	produce	pro‑inflammatory	mediators	 such	 as	
IL-1β, IL-3, IL-6, TNF-α, VEGF, lymphotoxin, MIP-1α, MMPs, 
NO, ROS, COX-2, and complement factors which promote 
neuronal cell death.[18,151,152] Further activated Müller cells 
and astrocytes produce IL-1β and TNF-α, which then induce 
cytokine	IL‑8	contributing	to	neuroinflammation.[153,154] the 
presence of activated NF-κB had been noted in microglia 
in a hypoxic neovascular mouse model.[18,127] Topical gents 
like pigment epithelium-derived growth factor have been 
used in the mice to prevent microglial activation, and this 
pathway has also been exploited in phase 3 human trials 
using neuroprotective agents.[18] However, no therapy 
targeting	 specifically	neuroinflammation	 in	DR	has	been	
evaluated yet.

5. Fibrosis and traction	–	Though	the	role	of	inflammation	in	
diabetic	retinal	detachment/tractional	changes	and	fibrosis	
has not been much explored, Limb et al.[40] evaluated the 
vitreous	of	PDR	patients.	The	authors	reported	significantly	
elevated levels of sICAM-1 and sE-selectin in the eyes 
with 	Tractional	retinal	detachment	(TRD)	as	compared	to	
the eyes with vitreous haemorrhage (VH) alone. IL-8 and 
TNF‑alpha	have	also	been	reported	to	contribute	to	fibrosis	
after initiating ocular angiogenesis.[155] Another study 
showed that the upregulation of thioredoxin-interacting 
protein	 (TXNIP),	 a	 pro‑inflammatory	 and	proapoptotic	
protein, played a significant role in promoting retinal 
fibrosis	and	blockade	of	TXNIP‑ameliorated	retinal	fibrosis	
in diabetic rats.[156] Additionally, toll-like receptors 2 and 
4,	were	also	shown	to	play	a	significant	role	in	subretinal	
fibrosis	formation.[157] All these are possible future avenues.

Linking Inflammatory Pathways to Clinical 
Findings and Approach to Therapy
Fig. 3 presents the link between DM, stimulus source 
of inflammation, the resulting inflammatory mediators, 
inflammatory	cascade‑led	cellular	processes,	and	the	clinical	
finding	manifesting	 as	DR.	 It	 is	 easily	 seen	 that	 there	 are	
major overlaps in the proximal cascade, especially at the level 
of	stimulus	and	source	of	inflammation.	For	example,	AGEs	
contribute to the production of NF-κB and also stimulate 
the glial cells. The former, as discussed before, is a general 
transcription controlling factor that relates to the production 
of a host of mediators, is present in almost all the retinal layers, 
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and	contributes	to	the	regulation	of	definitive	molecules	like	
VEGF and ICAM. Similarly, as mentioned before, stimulated 
glial cells can lead to the production of tumor necrosis 
factor-alpha (TNF alpha), IL-1, IL-6, IL-8, and CRP, apart from 
inciting neurodegeneration. This would theoretically mean that 
AGEs	alone	are	sufficient	to	be	considered	as	responsible	for	all	
manifestations	of	DR.	If	we	consider	the	source	of	inflammation,	
Müller cells are involved in the production of VEGF, IL-1β, and 
NF-κB, and thus, are involved in almost all the major pathways 
of DR [Fig. 1]. The overlap is lesser as we come closer to 
DR centrally in the passage of linkage, but major mediators 
like VEGF, IL-1B, and TNF-alpha are involved in multiple 
inflammatory	pathways.	Further,	molecules	like	VEGF,	NO,	
and	ICAM	can	beget	inflammation	themselves	leading	to	the	
production of other mediators. Moving further centrally, the 
overlaps are too well-known clinically where microaneurysm 
can lead to leakage, ischemia can lead to new vessels, and 
new	vessels	 can	 lead	 to	fibrosis.	Thus,	 there	 is	 tremendous	
overlap	and	interaction	at	all	steps	in	the	inflammatory	cascade,	
initiating from DM and reaching right up to the clinical 
manifestations of DR, though the cross-interactions are lesser 
centrally.	Utilizing	anti‑inflammatory	agents	in	the	context	of	
DR should be seen in three contrasting approaches: narrow, 
tailored, or broad-spectrum.

Narrow‑spectrum approach: While	attempting	to	individualize	
anti-inflammatory therapy with reference to Fig. 3, the 
inside‑out	approach	(a	clinical	sign	of	DR	to	an	inflammatory	
agent) is easier to adopt than vice versa. This has multiple 
reasons. First, each individual with DM and other related 
comorbidities can have different clinical manifestations, 
which will also vary depending on the stage of DR in terms 
of predominance. Second, at any given point in time, one 
pathology of DR may be more responsible for the disease or 
symptoms while multiple pathologies may have manifested 
in the retina. Third, clinical examination is an easier done 
evaluation in comparison to the assessment of ocular 
inflammatory	markers	while	managing	patients.	For	example,	
If the clinician is able to identify microaneurysms as the 
predominant pathology [black circle Fig. 3], it should mean 
that pericyte loss or endothelial dysfunction is the predominant 
pathogenesis	[red	circle	Fig.	3].	Such	a	patient	may	benefit	from	
anti‑inflammatory	therapy	based	on	the	VEGF,	TNF,	ICAM,	or	
NF-κB pathways. Beyond this, at the levels of sources [yellow 
circle	Fig.	3]	and	stimuli	of	inflammation	[blue	circle	Fig.	3],	
there are lots of cross-interactions that do not allow an 
individualized approach. At these levels, any agent is likely 
to	have	a	“broad‑spectrum”	action.

Broad‑spectrum approach: the anti-inflammatory agents 
which	 target	 “broad‑spectrum”	 targets	 like	 IL‑1β, VEGF, 
TNF-α, and NO [Table 1] are likely to act in most stages and 
manifestations of DR, as compared to a narrow-spectrum 
target	 like	 IL‑2	 or	MCP‑1,	 though	 the	 efficiency	would	be	
variable.[171] The linkage in Fig. 3 explains why therapies that 
target	a	“broad‑spectrum”	mediator	like	VEGF	work	very	well	
and have become so well-adopted into clinical practice, as also 
the	success	of	the	agents	that	have	“broad‑spectrum”	action	
like the steroids.[90] This approach has easier application, but 
its	long‑term	efficiency	is	questionable.

Tailored approach: At present, the narrow-spectrum 
approach	 for	 individualizing	anti‑inflammatory	 therapy	 to	

a particular manifestation of DR is challenging, and more 
research	is	needed	to	define	the	utility	of	a	particular	agent	
for a particular manifestation of DR. The broad-spectrum 
approach though may work in most cases, it may not be 
the	most	efficient	in	the	long	term.	The	tailored	approach	is	
another	possibility	but	may	require	the	assessment	of	ocular	
inflammatory	markers.	 This	 approach	may	 be	 feasible	 at	
least in some cases like refractory DME where, for example, 
the IL-8 pathway may be targeted.[91] Further, deducing the 
actual rise of a mediator in a particular pathology in restricted 
cases, as seen in the case of the correlating rise of sICAM-1 
and angiographic leakage in the retina, will give vital insights 
into	 the	 “primary”	 inciting	 role	 of	 these	mediators	 at	 that	
stage of the pathology.[92,142] Such approaches are likely to be 
more	efficient	in	the	long	term.

Conclusion
Diabetes	induces	a	chronic	inflammatory	state	in	the	retina	
that originates due to altered systemic metabolism. Many 
cells of the retinal neurovascular unit contribute to its 
occurrence, and it is not limited to any particular retinal 
layer.	As	a	 consequence,	 a	 large	number	of	heterogeneous	
inflammatory mediators are generated which not only 
participate in multiple inflammatory cascades but also 
influence	each	other’s	production	and	action.	The	result	is	a	
persistently	active	intertwined	inflammation	with	entailing	
cellular responses leading to DR.

The	current	success	of	some	anti‑inflammatory	agents	 in	
DR	can	be	attributed	in	part	to	their	“broad‑spectrum”	nature.	
Trials conducted in the last century had contrasting results. 
The Dipyridamole Aspirin Microangiography of Diabetes 
Study Group (DAMAD) showed a small reduction in the 
number	 of	microaneurysms	 (MAs)	 in	 an	 aspirin	 =	 treated	
group whereas the Early Treatment of Diabetic Retinopathy 
Research	Group	(ETDRS)	found	no	significant	difference	in	the	
impact of aspirin on DR.[172,173] the current research has shown 
promising	pre‑clinical	 results	with	many	anti‑inflammatory	
agents in their domains, and in the future, we are likely to 
see a higher level of evidence as clinical trials unfold. While 
steroids as broad-spectrum agents have been tested extensively 
for DR and DME, risuteganib is a prime example of a possible 
targeted therapy acing at the level of integrins and is entering 
phase	3	trials.	Which	patients	will	benefit	from	such	therapies	
is, however, yet not known.[174]

We	reviewed	the	role	of	inflammation	in	DR	in	detail	and	
attempted	to	develop	a	clinicopathological	correlation	between	
the	 inflammatory	mediators	 and	DR.	There	 is	 a	 theoretical	
possibility	 of	 a	 tailored	 anti‑inflammatory	 approach	 apart	
from other approaches discussed in the review. However, we 
found	that	 the	current	 literature	does	not	present	sufficient	
evidence	to	build	specific	linkages	between	the	inflammatory	
mediators	and	clinic‑pathological	findings	of	DR.	This	will	
make	the	“future	choice”	of	such	agents	difficult	and	arbitrary	
for	the	clinician,	as	well	as	render	these	therapies	inefficient.	
Many	questions	need	to	be	answered	before	the	potential	of	
such	individualized	anti‑inflammatory	therapies	is	realized,	
and	that	they	may	be	offered	in	a	tailored	way	to	the	patients	
and not just as second-line agents in refractory cases. The 
search should begin in realizing their actual role as well 
as the extent of their role in the pathogenesis of DR. Mere 
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extraneous presence of a mediator is not enough to suggest 
its	“therapy‑defining	role,”	rather	elucidating	the	correlation	
between	the	mediator	activity	and	clinicopathologic	finding	
should	 set	 its	 “therapy‑defining	 role.”	 This	 should	 be	 the	
prime focus of future clinical research evaluating the role of 
inflammation	in	DR.
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