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Abstract.
Background: Hippocampal atrophy is a well-known biomarker of neurodegeneration, such as that observed in Alzheimer’s
disease (AD). Although distributions of hippocampal volume trajectories for asymptomatic individuals often reveal substantial
heterogeneity, it is unclear whether interpretable trajectory classes can be objectively detected and used for prediction analyses.
Objective: To detect and predict hippocampal trajectory classes in a computationally competitive context using established
AD-related risk factors/biomarkers.
Methods: We used biomarker/risk factor and longitudinal MRI data in asymptomatic adults from the AD Neuroimaging
Initiative (n = 351; Mean = 75 years; 48.7% female). First, we applied latent class growth analyses to left (LHC) and right
(RHC) hippocampal trajectory distributions to identify distinct classes. Second, using random forest analyses, we tested 38
multi-modal biomarkers/risk factors for their relative importance in discriminating the lower (potentially elevated atrophy
risk) from the higher (potentially reduced risk) class.
Results: For both LHC and RHC trajectory distribution analyses, we observed three distinct trajectory classes. Three biomark-
ers/risk factors predicted membership in LHC and RHC lower classes: male sex, higher education, and lower plasma A�1–42.
Four additional factors selectively predicted membership in the lower LHC class: lower plasma tau and A�1–40, higher
depressive symptomology, and lower body mass index.
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Conclusion: Data-driven analyses of LHC and RHC trajectories detected three classes underlying the heterogeneous dis-
tributions. Machine learning analyses determined three common and four unique biomarkers/risk factors discriminating the
higher and lower LHC/RHC classes. Our sequential analytic approach produced evidence that the dynamics of preclinical
hippocampal trajectories can be predicted by AD-related biomarkers/risk factors from multiple modalities.

Keywords: Biomarker predictions, hippocampal atrophy, latent class growth analyses, random forest analyses, trajectory
classes

INTRODUCTION

Hippocampal atrophy is a well-documented ana-
tomical process that typically occurs during brain
aging [1–4]. However, aged individuals may vary in
several indicators of hippocampal atrophy, including
level (e.g., overall volume loss), slope (e.g., rate of
volume loss), and associated clinical outcomes (e.g.,
memory impairment, Alzheimer’s disease (AD))
[1, 5–7]. In a distribution of cognitively normal
(i.e., unimpaired or asymptomatic) older adults,
hippocampal volume trajectories characterized by
relatively lower levels and steeper decline may be
suggestive of elevated risk for subsequent clinical
transitions to mild cognitive impairment (MCI) or AD
[8–10]. Given its heterogeneity in level and change,
further studies are required to ascertain and disentan-
gle important features that characterize hippocampal
atrophy in cognitively normal aging. Among the
considerations are accumulating evidence of hip-
pocampal hemispheric differences that are reflected
in volume trajectories and various clinical outcomes
[11–13]. For example, left and right hippocampal
trajectories have been found to be differentially
moderated by sex and APOE (McFall et al., unpub-
lished data). Hemispheric differences in hippocampal
subfields have also been observed between clinical
cohorts (i.e., normal controls, subjective cognitive
decline, MCI, and AD) [14]. We investigated this
issue by deploying a sequence of two data-driven
analytic approaches (i.e., latent class growth analy-
sis, random forest classification) in parallel for the
left (LHC) and right (RHC) hippocampi: 1) objec-
tively discriminating classes within a distribution of
individualized volume longitudinal trajectories, and
2) identifying key biomarkers and risk factors that
discriminated between the observed classes.

Previous hippocampal atrophy research has been
conducted with both cross-sectional (comparing age
or clinical groups at one time point) and longi-
tudinal (following groups over two or more time
points) designs [3, 7, 9, 15, 16]. Although useful
for determining average group differences or mean-
level change in multiple domains of asymptomatic

brain and cognitive aging, these variable-oriented
approaches (i.e., focused on relationships between
variables in assumed homogeneous populations)
are not typically aimed at scrutinizing the well-
established individual heterogeneity in either the
level or slope of trajectories [3, 17–19] as compared
to person-oriented approaches (i.e., focused on simi-
larities and patterns among individuals in an assumed
heterogeneous population) [20]. Recently, the grow-
ing interest in examining heterogeneity in brain aging
and dementia [21, 22] has led to a corresponding
effort to adapt data-driven technologies to the 1)
examination of individualized trajectories of cogni-
tive changes in older adults and 2) determination of
possible underlying classes of trajectory patterns [19,
21, 23]. These latent classes, which are determined
via application of algorithms based on performance
intercept (level) and slope (rate of change) parameters
[20], may later be clarified by identifying predictors
most associated with reduced or exacerbated risk for
cognitive decline or clinical impairment [21].

A growing body of neurocognitive aging and
dementia research has demonstrated the viability
of applying data-driven technologies to model het-
erogeneity in both cross-sectional and longitudinal
(trajectory) distributions, including the identification
of detectable asymptomatic classes and the deter-
mination of differential biomarker predictors [19,
21, 24]. One such longitudinal example in an AD
sample identified atrophy subtypes associated with
differing degrees of memory performance [25].
In asymptomatic individuals, three cross-sectional
biomarker profile subtypes were extracted from a
combination of magnetic resonance imaging (MRI)
data and cerebrospinal fluid (CSF) biomarkers [26].
One of these subtypes, similar in biomarker pro-
file to a comparative AD group, was associated
with accelerated cognitive decline and lower baseline
scores on cognitive tests [26]. Although few stud-
ies have explored longitudinal data-driven subtypes
[21], separate cross-sectional studies of cognitively
unimpaired older adults have previously reported
distinct imaging subtypes [27–32]. As both cogni-
tively unimpaired aging and AD are characterized by
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progressive hippocampal atrophy, the possible pre-
sence of detectable longitudinal subtypes of hip-
pocampal trajectories in cognitively normal older
adults and their potential associations with AD-
related risk factors merit further investigation.

Research on early detection of AD risk in asymp-
tomatic older adults has identified a large number of
modifiable and non-modifiable factors (e.g., APOE
genetic risk, education, metabolic health, sex) which
are associated with increased risk of (or protection
from) accelerated cognitive decline, MCI, and AD
[33–35]. Similarly, previous studies of normal aging
and hippocampal atrophy in normal aging and clini-
cal groups have identified predictors from multiple
domains. For example, both traditional CSF AD-
related biomarkers, such as baseline p-tau181p and
A�1–42 [36, 37], and disparate lifestyle risk factors,
such as smoking [38] and complex mental activity
[39], have been associated with hippocampal atrophy.
In addition, three CSF biomarkers [37] have been pre-
viously used in a multiple linear regression model to
predict longitudinal hippocampal atrophy. Although
some recent biomarker reports have featured data-
driven technologies applied to large numbers of
predictors of AD outcomes [40], longitudinal stud-
ies of hippocampal atrophy in cognitively unimpaired
older adults have not included a large number of
biomarkers or biomarker domains. Previous reports
have emphasized the need to include biomarkers from
multiple modalities in prediction models over the use
of a single biomarker or domain in order to achieve
increased prediction accuracy [41, 42].

We aimed to address a knowledge gap regard-
ing hippocampal volume trajectories in cognitively
asymptomatic aging. Specifically, the gap refers to the
extent to which the heterogeneity of trajectory distri-
butions can be clarified by the detection of underlying
longitudinal latent classes and the determination of
leading risk factor and biomarker predictors. Because
hippocampal hemispheric atrophy differences have
been reported both cross-sectionally [13, 43] and
longitudinally [44–46], we implemented this aim
by testing two main research goals, both of which
included parallel analyses of LHC and RHC. For
the first research goal (RG1), we analyzed distribu-
tions of hippocampal volume trajectories (up to six
time points, maximum of 7.2 years) for predom-
inantly cognitively normal (asymptomatic) partici-
pants from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI). We used latent class growth anal-
yses (LCGA) to detect discriminable classes of
trajectories. LCGA is a data-driven longitudinal

quantitative modeling technology that applies an
algorithm of level and slope to identify statistically
separable trajectory classes. Our study focused on
a brain aging phase not yet characterized by clini-
cal impairment. Despite normal cognitive function,
some individuals may exhibit relatively lower and
declining hippocampal volume likely associated with
increased risk of future cognitive decline or AD.
Notably, membership in higher volume trajectory
classes may indicate reduced risk for (or protection
from) age-typical morphological shrinkage, member-
ship in lower volume trajectory classes may indicate
elevated risk for impending pathological changes.
For our second research goal (RG2), we compiled a
large, multi-modal set of 38 AD-related biomarkers
and risk factors (e.g., CSF A�1–42, body mass index,
hypertension, sex) from the ADNI database. Whereas
most studies have investigated these factors indepen-
dently or in relatively small clusters, we examine
them simultaneously in the context of a competitive
quantitative model. We used random forest analyses
(RFA), a machine-learning technology for evaluating
the relative importance of multiple biomarker and risk
factors predictors to the discrimination of higher and
lower classes of LHC and RHC atrophy trajectories.

METHODS

Alzheimer’s Disease Neuroimaging Initiative

Data used in preparation of this article were
obtained and downloaded from the ADNI database
(http://adni.loni.usc.edu on June 30, 2020). The
ADNI was launched in 2003 as a public-private
partnership, led by Principal Investigator Michael
W. Weiner, MD. The primary goal of ADNI has
been to test whether serial MRI, positron emission
tomography, other biological markers, and clinical
and neuropsychological assessment can be combined
to measure the progression of MCI and early AD.
For up-to-date information, see http://www.adni-
info.org.

Participants

From the ADNI database, we used a subsample
of older adults who were cognitively normal at base-
line with at least one wave of successful MRI data
that were processed with the longitudinal imaging
pipeline by UCSF (files: UCSFFSL 02 01 16.csv,
UCSFFSL51Y1 08 01 16.csv, and UCSFFSL51A
LL 08 01 16.csv). The final sample consisted of

http://adni.loni.usc.edu
http://www.adni-info.org
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Table 1
Baseline characteristics for entire sample (n = 351)

Whole LHC LHC LHC RHC RHC RHC
(Highest) (Middle) (Lowest) (Highest) (Middle) (Lowest)

N 351 100 173 78 96 167 88
n in ADNI-1 214 60 113 41 55 105 54
n in ADNI-2 137 40 60 37 41 62 34
Sex (% Female) 48.7 64.0 46.8 33.3 69.8 45.5 31.8
Age M (SD) 74.8 (5.7) 75. 1 (5.9) 75.0 (2.6) 73.9 (5.6) 74.6 (6.2) 75.1 (5.5) 74.5 (5.4)
Education M (SD) 16.3 (2.7) 15.7 (2.6) 16.3 (2.9) 17.2 (2.4) 15.3 (2.8) 16.5 (2.7) 17.2 (2.4)
MMSE M (SD) 29.1 (1.0) 29.1 (1.2) 29.1 (1.0) 29.0 (1.1) 29.2 (1.2) 29.1 (1.1) 29.1 (1.0)
ADAS-Cog M (SD) 9.3 (4.3) 8.5 (3.9) 9.7 (4.4) 9.2 (4.6) 9.0 (4.0) 9.3 (4.4) 9.5 (4.7)

MMSE, Mini-Mental State Examination; ADAS-Cog, Alzheimer’s Disease Assessment Scale – Cognition.

351 participants who were 1) cognitively unim-
paired at baseline (Mean [M] age at baseline = 74.8,
SD = 5.7, baseline range = 59.8–90.6 years, Mini-
Mental State Examination [MMSE] M = 29.1;
ADAS-Cog M = 9.2, 48.7% Female, 14% �2+, 25%
�4+) and 2) followed for up to six times points (M
interval between successive time points = 0.91 years
[SD = 0.53]). The full distribution analyzed in this
study populated a 35-year band of aging (ranging
from 59.8 to 94.6 years). The total wave observa-
tions in this study were overwhelmingly cognitively
normal (96.3%), with only 3.7% and 0.56% of obser-
vations being persons with MCI or AD respectively.
As such, the present sample was uniformly CN at the
outset of the study and predominantly CN throughout
the remainder of the study period. Baseline partic-
ipant characteristics and demographic information
can be found in Table 1. Individuals were considered
cognitively unimpaired at baseline if they: 1) had no
memory complaints, 2) scored between 24–30 on the
MMSE, 3) had a Clinical Dementia Rating (CDR)
score of 0, and 4) scored equal to or above a cut-off
based on years of education (3, 5, or 9 for 0–7, 8–15,
and 16 or more) on the Logical Memory II subscale of
the Wechsler Memory Scale-Revised [47]. The ADNI
data collection procedures were in certified compli-
ance with prevailing human ethics guidelines and
boards. All participants or authorized representatives
provided informed written consent.

MRI acquisition and image processing

MRI data were provided by the ADNI neu-
roimaging team and full details about the image
processing can be found on adni.loni.usc.edu in the
following file: UCSF FreeSurfer Methods and QC
OFFICIAL 20140131.pdf. Briefly, cortical recon-
struction and volumetric segmentation was per-
formed with the FreeSurfer image analysis suite,

which is documented and freely available for down-
load online (http://surfer.nmr.mgh.harvard.edu/). We
used longitudinal pipelines (freesurfer.net) which
uses each subject as their own control and pro-
cessed the data using FreeSurfer 4.4 (1.5T) and
FreeSurfer 5.1 (3T) [48]. The technical details of
these procedures are described in prior publications
[49–60]. Briefly, this processing includes motion cor-
rection and averaging [61] of multiple volumetric T1
weighted images, removal of non-brain tissue using
a hybrid watershed/surface deformation procedure
[59], automated Talairach transformation, segmenta-
tion of the subcortical white matter and deep gray
matter volumetric structures (including hippocam-
pus, amygdala, caudate, putamen, ventricles) [52,
53] intensity normalization [62], tessellation of the
gray matter white matter boundary, automated topol-
ogy correction [54, 63], and surface deformation
following intensity gradients to optimally place the
gray/white and gray/cerebrospinal fluid borders at the
location where the greatest shift in intensity defines
the transition to the other tissue class [49, 55, 60].
ADNI protocols have ensured that MRI harmoniza-
tion is performed by using 1) a standardized protocol,
harmonized across all three vendors (GE Healthcare,
Siemens Medical Systems, Philips Healthcare); 2)
the use of a geometric phantom for distortion evalua-
tion; and 3) manual quality control of the image data
[64, 65].

Quality control was conducted by the ADNI
neuroimaging team. We removed all failed segmen-
tations, indicating a global failure due to extremely
poor image quality, registration issues, gross mises-
timation of the hippocampus, or a processing error.
In the present sample, 60.1% of the images were pro-
cessed with the FreeSurfer 4.4 (1.5T) and 39.9% with
the FreeSurfer 5.1 (3T) pipelines. Hippocampal vol-
umes and estimated intracranial volume from the aseg
file were used. We corrected LHC and RHC volume

http://surfer.nmr.mgh.harvard.edu/
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for head size at the individual level (and at each time
point) using the following formula [66]:

Hippocampal volume

Intra − cranial volume
x 103

Magnetic field strength (coded as 1.5T, 3T, or
change from 1.5T to 3T) was used as a covariate
for hippocampal volume level and slope within each
class in the LCGA.

Biomarkers and risk factors

Based on previous literature and availability, we
identified 38 biomarkers and risk factors available
at baseline which have been identified to be associ-
ated with increased risk of AD. We included these
biomarkers and risk factors in the machine learn-
ing prediction models for RG2 (see Table 2). For
interpretive convenience, we sorted the biomarkers
and risk factors into eight modalities: biospeci-
men (e.g., CSF t-tau; n = 6), demographic (e.g., sex;
n = 3), genetic (APOE, coded as �2 + [�2/�2, �2/�3],
�3/�3, and �4 + [�3/�4, �4/�4] with �2/�4 carriers
removed; n = 1), vascular and metabolic (e.g., sys-
tolic blood pressure; n = 5), lifestyle (e.g., smoking
history; n = 2), comorbidities (e.g., cardiovascular
disease; n = 17), familial background (e.g., paternal
dementia history; n = 2), and cognitive status (e.g.,
MMSE; n = 2).

Statistical analyses

RG1. Classes of LHC and RHC
We analyzed the longitudinal data with chrono-

logical age as the metric of change. Accordingly,
age is included directly into the analyses and is
essentially co-varied. We used LCGA, which imple-
ments an algorithm based on individual level (i.e.,
intercept) and slope, to identify differentiable classes
of individual trajectories within the overall distribu-
tion of trajectories [67]. Analyses were conducted in
Mplus 8.2 [68] and performed separately for LHC and
RHC volume change data. The analysis plan speci-
fied the development of the most parsimonious one
class (baseline) model, followed by the testing and
comparison of four alternative k-class models to the
k-1 models. LCGA can model non-linear trajectories;
however, quadratic models were tested and removed
from consideration due to poorer model fit. Thus, all
tested models were random intercept, random slope
linear growth models with the variance fully con-
strained within each class. We evaluated model fit

in three steps only for models with entropy values
greater than 0.8, which confirm that the model has
satisfactory class separation and classification pre-
cision. Higher entropy is the best indicator of model
separation, with values of 1 indicating perfect classifi-
cation precision and separation between classes [20].
First, we considered models which had lower values
(compared to the baseline model) of the following
recommended statistical fit indices: Akaike informa-
tion criterion (AIC), Bayesian information criterion
(BIC), and sample-size adjusted BIC (SABIC) [20].
For this step, we plotted the values of fit indices (i.e.,
AIC, BIC, SABIC) on the number of classes in a scree
or elbow plot [20, 69] to identify a possible inflection
point (i.e., the point at which the values the slope
changes). Second, as is recommended for LCGA
research in which classes will be used for subsequent
analyses [70], we applied an a priori cut-off criterion
for model selection which stipulated that candidate
models would have greater than 10% of the sample
in each class. This ensured that the subsequent predic-
tion analyses (in the second research goal) would have
sufficient participants in each identified class for sta-
ble and robust multiple-group analyses and solutions.
As a consequence of this model selection criterion,
possible low prevalence classes of potential clini-
cal interest were not identified or studied. We aimed
to represent as much as possible the broader distri-
bution of initially cognitively normal aging adults
and account for any existing heterogeneity using
this recommended approach [20]. Third, we con-
sulted related and neighboring literature to ensure that
class parameters for the final model were consistent
with theoretical expectations. Based on complemen-
tary findings in the episodic memory literature, we
expected to find a three class model for hippocampal
volume trajectories [19].

RG2. Important predictors of LHC and RHC
class membership

Prediction analyses were also conducted sepa-
rately for LHC and RHC and used the full pool of
38 AD-related biomarkers and risk factors. Using
RFA (R 3.2.5, “Party” package) [71], we simulta-
neously tested these biomarkers and risk factors for
relative importance in discriminating the lowest ver-
sus highest hippocampal trajectory classes. We used
the conditional probabilities provided in the LCGA to
determine class membership for individuals. Specif-
ically, the models determined each individual’s LHC
and RHC volume at every wave (i.e., level) and the
slope of volume change [72] and then assigned them
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Table 2
Predictors by modality and measurement characteristics

Modalities Biomarkers Metric % Missing % Missing
for LHC for RHC

Biospecimen Plasma A�1–401 pg/mL 47.2 44.6
Plasma A�1–421 pg/mL 46.6 44.0
CSF A�1–422 pg/mL 38.2 35.3
CSF total-tau2 pg/mL 38.8 35.9
CSF p-tau2 pg/mL 38.2 35.3
Plasma tau3 pg/mL 55.6 50.0

Demographic Age Years 0 0
Sex Female/Male 0 0
Education Years 0 0

Genetic APOE �2+, �3/�3, �4+ 0 0
Vascular/Metabolic Systolic blood pressure mm Hg 0 0

Diastolic blood pressure mm Hg 0 0
Hypertension 140/90 mm Hg 0 0
Subjective report of diabetes Yes / no 0 0
Glucose level at baseline mg/dL 3.9 2.2

Lifestyle Body mass index kg/m2 1.1 0.5
History of smoking Yes / no 0 0

Co-morbidities Geriatric depression scale
score

Mild (5–8),
moderate
(9–11), severe
(12–15)

0 0

Cardiovascular, alcoholism,
psychiatric, neurological,
head/eyes/ears/nose/throat,
respiratory, hepatic,
dermatologic connective
tissue, musculoskeletal,
endocrine-metabolic,
gastrointestinal,
hematopoietic-lymphatic,
renal-genitourinary,
allergies/drug sensitivities,
malignancy, and/or major
surgeries

Yes / no 0 0

Familial background Maternal dementia history Yes / no 0.6 0
Paternal dementia history Yes / no 1.7 2.6

Cognitive status MMSE 0–30, > 24
indicates no
dementia

0 0

ADAS-Cog 0–70, ≥ 18
indicates
cognitive
impairment

0 0

1Plasma collection - University of Pennsylvania (UPENNPLASMA.csv); 2CSF collection - University of Pennsylvania (UPENN
BIOMK MASTER.csv, median re-scaled values); 3Plasma collection – Blennow Lab (BLENNOWPLASMATAU.csv).

to the class to which they had the highest proba-
bility of membership. The conditional probabilities
for membership assignment were very high for both
LHC (M = 0.96; % > 0.8 = 92.3) and RHC (M = 0.97,
% > 0.8 = 92.8).

Due to its robustness to overfitting and ability to
accommodate a large number of predictors, RFA
was selected as the optimal technique for simulta-
neous testing of a large number of mixed-type (i.e.,
categorical and continuous) variables [19]. Unlike
conventional statistical methods (e.g., multinomial

logistic regression), which require conservative
correction approaches, RF prediction models are
equipped with provisions that lead to accurate and
stable prediction solutions with many predictors [73,
74]. Combining multiple classification predictions
and regression trees (ntree) based on a random sample
of participants and predictor variables (mtry), RFA is
a recursive partitioning multivariate data exploration
technique. Each forest was comprised of ntree = 1000
(sufficient for good model stability) and each poten-
tial split evaluated a random sample of the square
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root of the total number of predictors (biomarkers
and risk factors; mtry = 6) [19]. We utilized the
cforest function in the “Party” package to deter-
mine biomarker and risk factor importance based on
their conditional permutation accuracy importance
(varimp function; conditional = TRUE), utilizing an
algorithm that averages the prediction weight of
each of the variable across all 1000 permutations
[73–75]. Interactions between predictors are taken
into account with each permutation when variable
importance is determined, although specific interac-
tions are not reported [74]. Specifically, conditional
permutation importance provides a measure of the
association between the outcome (i.e., hippocam-
pal trajectory class) and each predictor based on the
values of other predictors [76]. The conditional vari-
able importance method is especially advantageous in
that it accounts for potentially correlated predictors
to avoid typically occurring multicollinearity issues
[76–78]. As such, results regarding ranked predictor
importance are presented and discussed in the context
of all included predictors. After removing biomark-
ers and risk factors that were of lowest importance,
the final RFA consisted of 16 variables (mtry = 4).
Important variables were determined based on obser-
vation of an ‘elbow’ in the RFA plot. The cforest
function also computes out-of-bag estimates, which
can be used in place of cross-validation procedures
[79]. For both LHC and RHC volume trajectory mod-
els, we reported the concordance statistic (C), which
is equivalent to the area under the curve. In non-
medical prediction analyses an area under the curve or
C value of 0.5 is considered to be chance, between 0.6
and 0.7 is considered to be a medium effect size, and
0.8 or greater is considered a strong effect size [19]. In
order to clarify the direction of relationship between
the identified important predictors and hippocampal

trajectory class membership, we report post-hoc
correlational analyses as well as group means fre-
quencies. These were interpreted independently from
other predictors and do not represent formal proba-
bilities of risk.

Missing biomarker and risk factor data was add-
ressed as follows. Across the biomarker and risk fac-
tor modalities, with one exception, missing data rates
were very low (range = 0 to 3.9% for LHC; 0 to 2.6%
for RHC). The exception was the biospecimen modal-
ity (range = 38.2–55.6% for LHC; 35.3–50.0% for
RHC). Details by biomarker and risk factor are pro-
vided in Table 2. Missing data were imputed using
the “missForest” package as recommended in R [80,
81]. This package is especially recommended in the
case of mixed-type missing data. Used together with
the “RandomForest” package in R, the “missForest”
package utilizes a random forest trained on the data
matrix for missing value prediction [80, 82].

RESULTS

RG1: LHC and RHC trajectory classes

Left hippocampal volume trajectories
Model fit statistics for all analyses are presented

by number of classes in Table 3. All tested mod-
els had acceptable entropy values (i.e., > 0.8). The
two-, three-, and five-class models were selected as
possible candidate models as they had lower AIC,
BIC and SABIC values than the baseline model and
sufficient participants in each class. We selected the
three-class model as the final model following the
inspection of a scree plot (see Supplementary Fig-
ure 1) and in the context of past findings in the related
domain of memory aging trajectory analyses [19].
The three-class model is portrayed in Fig. 1c, with

Table 3
Latent class growth analyses model fit statistics and class proportions for left and right hippocampal volume

Volumetric variable Number Class proportions AIC BIC SABIC Entropy
of classes

Left hippocampus 1 – 403.50 442.12 410.39 –
2 0.49/0.51 –909.04 –851.13 –898.71 0.90
3∗ 0.49/0.29/0.22 –1907.10 –1829.88 –1893.33 0.92
4 Did not replicate – – – –
5 0.10/0.26/0.22/0.13/0.30 –2707.13 –2591.31 –2686.48 0.89

Right hippocampus 1 – 399.19 437.80 506.08 –
2 0.46/0.54 –885.82 –827.91 –875.49 0.90
3∗ 0.25/0.27/0.48 –1997.35 –1920.14 –1983.58 0.93
4 0.12/0.34/0.23/0.31 –2450.80 –2354.28 –2433.59 0.92
5 0.12/0.09/0.36/0.22/0.21 –2765.27 –2649.45 –2744.62 0.90

AIC, Akaike information criteria; BIC, Bayesian information criteria; SABIC, Sample-size adjusted BIC. * Identified as best model fit based
on low AIC, BIC, SABIC and no class proportion less than 10%.
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Fig. 1. Distribution of left (1a) and right (1d) hippocampus volume data. Individual trajectories of left (1b) and right (1e) hippocampal
volume. Three classes were identified within left (1c) and right (1f) hippocampal volume trajectories: Class 1 (Blue; highest, least atrophied),
Class 2 (Green; middle), and Class 3 (Red; lowest, most atrophied). Hippocampal volume was corrected for head size using (hippocampal
volume / intra cranial volume) × 103.

Table 4
Final latent class growth analyses models statistics and parameters

Volumetric variable Class n (%) Level (intercept) Slope [95% CI]
[95% CI]

Left hippocampus 1 100 (28.5) 2.50 [2.50–2.51] –0.02 [–0.025—0.021]
2 173 (49.3) 2.14 [2.13–2.14] –0.03 [–0.028—0.024]
3 78 (22.2) 1.79 [1.78–1.80] –0.03 [–0.030—0.022]

Right hippocampus 1 96 (27.4) 2.53 [2.53–2.54] –0.02 [–0.025—0.021]
2 167 (47.6) 2.21 [2.20–2.21] –0.03 [–0.028—0.023]
3 88 (25.1) 1.83 [1.83–1.84] –0.03 [–0.027—0.023]

Class 1 refers to the higher group; Class 2 refers to the middle group; Class 3 refers to the lower group.

parameter means (level and slope) reported in Table 4.
Discriminated and ranked by a combination of both
level and slope, from highest to lowest volume in the
trajectory distribution, the three classes can be char-
acterized as follows. Class 1 (n = 100; the group at
the top of the distribution) was characterized by the
highest combination of level and slope, followed by
Class 2 (n = 173), the group in the middle of the distri-
bution, and Class 3 (n = 78), the group at the bottom
of the distribution. Informally, the classes appear to
differ more in level than in slope (with Class 2 and 3
having the steeper slopes), but both parameters con-
tributed to the latent class solution. Specifically, the
LCGA algorithm identifies distinguishable trajectory
classes based on simultaneous consideration of level
and slope, both of which are essential parameters in
model identification. It is important to note that the

resulting trajectory classes are statistically differen-
tiated even though they may not appear visually as
dramatically distinct at their edges. This between-
class distinction is clearly indicated by the entropy
values (revealing good class separation) and the level
and slope parameters (and 95% confidence intervals)
for each class (see Table 4).

Right hippocampal volume trajectories
Model fit statistics for all analyses are presented

by number of classes in Table 3. Similar to the LHC
models, all tested models had acceptable entropy val-
ues (> 0.8). The four-class model was removed from
consideration as the loglikelihood failed to replicate,
indicating that no global solution was reached. The
five-class model was removed from consideration due
to insufficient participants in one class (9%). The
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two- and three-class models were selected as possible
candidate models as they had lower AIC, BIC, and
SABIC values than the baseline model and sufficient
participants in each class. As with LHC trajectories,
we selected the three-class model as the final model
based on past findings and inspection of the scree
plot of relative fit indices for the inflection point (see
Supplementary Figure 2). Thus, we identified three
unique classes of RHC volume trajectories within
the overall sample (Fig. 1f). Parameter means (level
and slope) are reported in Table 4. Discriminated and
ranked by a combination of level and slope, from
highest to lowest volume in the trajectory distribu-
tion, the classes can be characterized as follows. Class
1 (n = 96; the group at the top of the distribution) was
characterized by the highest combination of level and
decline, followed by Class 2 (n = 167), the group in
the middle of the distribution, and Class 3 (n = 88), the
group at the bottom of the distribution. Comparable
to the LHC trajectory class distribution, the classes
appear to differ in level more than slope; however,
both parameters contributed to the latent class solu-
tion. Informally, the level (but not slope) of each RHC
class appears to be consistently higher than that of the
corresponding LHC class.

RG2: Important predictors of LHC and RHC
class membership

We performed RFA to identify biomarkers and
risk factors that best discriminated between the high-
est (Class 1) and lowest (Class 3) trajectory classes
within LHC and RHC volume separately.

Left hippocampal volume trajectory classes
The higher and lower LHC volume trajectory

classes were discriminated by seven biomarkers
and risk factors from four modalities: biospecimen
(plasma A�1–40, plasma tau, plasma A�1–42), demo-
graphic (sex, education), co-morbidities (geriatric
depression scale [GDS] score), and lifestyle (body
mass index; C = 0.80; Fig. 2a). As informed by post-
hoc correlational analyses, we found that individuals
belonging to the lower LHC volume trajectory class
were more likely to have lower levels of plasma
A�1–40, A�1–42, and tau, greater number of years
of education, higher GDS scores (indicating more
depressive symptoms), a lower BMI, and be male
(see Table 5 for biomarker/risk factor frequencies and
means per class).

Right hippocampal volume trajectory classes
The higher and lower RHC volume trajectory

classes were discriminated by three biomarkers and
risk factors from the following two modalities: demo-
graphic (sex, education) and biospecimen (plasma
A�1–42; C = 0.78; Fig. 2b). As informed by post-
hoc correlational analyses, we found that individuals
belonging to the lower RHC trajectory class were
more likely to be male, have lower levels of plasma
A�1–42, as well as have greater number of years of
education (see Table 5 for biomarker frequencies and
means per class).

DISCUSSION

This study applied data-driven technologies to lon-
gitudinal imaging data to 1) extract computationally

Fig. 2. Variable importance (permutation accuracy) in the discrimination of the (2a) lowest (n = 78) versus highest (n = 100) classes of
left hippocampal volume trajectories (C = 0.80, ntree = 1000, mtry = 4), and (2b) lowest (n = 88) versus highest (n = 96) classes of right
hippocampal volume trajectories (C = 0.78, ntree = 1000, mtry = 4). GDS, Geriatric Depression Scale score; BMI, body mass index; APOE,
Apolipoprotein E genotype; MH, medical history; ADAS-Cog, Alzheimer’s Disease Assessment Scale-Cognitive Subscale; CSF A�1–42,
cerebrospinal fluid amyloid �1–42; CSF t-tau, cerebrospinal fluid total tau; CSF p-tau, cerebrospinal fluid phosphorylated tau; MMSE,
Mini-Mental State Examination score.
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Table 5
Biomarker and risk factor means and frequencies for LHC and RHC trajectory classes

Significant biomarker Lowest LHC Highest LHC Lowest RHC Highest RHC
trajectory class trajectory class trajectory class trajectory class

N 78 100 88 96
Plasma A�1–40 139.72 (56.78) 171.46 (47.03) 142.23 (47.19) 168.31 (45.30)
Sex (%, female) 33.33 64.0 31.82 69.80
Plasma t-tau 2.41 (0.94) 2.65 (1.05) 2.50 (1.42) 2.55 (1.07)
Plasma A�1–42 34.71 (10.58) 41.00 (14.62) 34.35 (10.13) 42.04 (14.52)
Education, y (SD) 17.15 (2.42) 15.73 (2.56) 17.17 (2.43) 15.33 (2.73)
GDS 0.91 (1.27) 0.52 (0.88) 0.81 (1.19) 0.67 (1.01)
BMI 26.06 (4.47) 27.35 (4.69) 26.11 (4.43) 27.36 (5.07)
Follow-up cognitive status documentation
# of person-waves (observations) 398 496 442 473
% of person-waves that are non-AD 98.2 99.8 98.6 100
% of person-waves that are non-AD and non-MCI 93.0 98.6 92.5 98.7

separable classes based on individual level and slope
from LHC and RHC trajectory distributions and 2)
subsequently identify key AD-related biomarkers and
risk factors that discriminate between the higher and
lower trajectory classes. To our knowledge, no previ-
ous study has used these technologies to 1) identify
trajectory classes based on separate LHC and RHC
volume change in a sample of predominantly cogni-
tively normal older adults and 2) assemble and test
a large pool of putative biomarker and risk factor
predictors of trajectory class.

Overall, the class structures (number and member-
ship) and constituent trajectory characteristics (levels
and slopes) for the two hemispheres were similar.
One exception is that RHC volumes appeared con-
sistently higher (in level) for each corresponding
class. This RHC advantage is consistent with previous
research indicating that RHC volumes are generally
more preserved at corresponding ages than LHC vol-
umes in cognitively normal older adults [43, 46, 83].
Our results provide a new and discriminating indica-
tor of this advantage; namely, the advantage can be
observed at all corresponding classes (higher, middle,
and lower) of aging change. For both hemispheres,
the slope means across classes were relatively simi-
lar; however, the two lowest classes (middle, lowest)
exhibited steeper slopes than the highest class. This
pattern was expected as the current sample con-
sisted of uniformly cognitively normal older adults at
baseline and who remained clinically non-impaired
over 96% of the analyzed longitudinal observations.
Notably, even in the more limited heterogeneity
of a cognitively unimpaired older adult sample (as
compared to a more clinically diverse sample), our
analytic approach detected discriminable classes of
HC volumetric change. In addition, although there

was some overlap between the participants classi-
fied into the LHC and RHC classes, there were a
substantial number of individuals (n = 93) who were
uniquely classified (e.g., were in the lowest LHC but
not the lowest RHC) in the two hemispheric analy-
ses. These findings provide further evidence for the
consideration of LHC and RHC differences in future
research.

As increasing hippocampal atrophy is associated
with incipient clinical progression [8, 9, 84], two
potential implications of our data-driven latent class
approach could be considered. First, these classes of
hippocampal trajectories could be provisionally con-
sidered as “secondary phenotypes” of brain aging
in that they 1) differ in objective and salient brain
aging trajectory characteristics and 2) may be associ-
ated with differential outcomes or clinical phenotypes
such as cognitive impairment or AD. A post-hoc
informal check of the current data revealed that cog-
nitive performance over time decreased in a stepwise
manner across hippocampal trajectory classes (see
the Supplementary Material for ADAS-Cognition
and ADNI Memory Composite scores by wave). In
addition, higher scores on the CDR were somewhat
more prevalent in the lowest classes and none of the
participants with a CDR of 1 were classified in the
highest trajectory classes. Similarly, a recent study
identifying four spatiotemporal trajectory subtypes
of tau deposition found that longitudinal MMSE
outcomes differed between subtypes [85]. The inter-
pretation was that data-driven groups based on other
AD-related biomarkers (tau) have also identified dif-
ferences in cognitive trajectories [85]. Taken together,
the present and complementary findings chart an
important direction for future research, in which stud-
ies with comprehensive clinical outcome information
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could provide insights into AD or impairment risk
based on long-term pre-clinical trajectory class mem-
bership. Second, members of higher trajectory classes
may have lower exposure to AD risk factors. We
investigated these implications in the next research
goal by testing associations with AD biomarkers and
risk factors.

Accordingly, we tested predictor importance for
a roster of 38 multi-modal AD risk factors and
biomarkers. The machine learning technology (RFA)
evaluated the relative importance of all of the pre-
dictors in a quantitatively competitive context. The
leading predictors of extreme classes (higher ver-
sus lower) were thus identified for their prediction
importance with both independent and interactional
contributions considered. The present prediction
models do not establish mechanisms of associ-
ation, but instead identify the risk factors that
emerge in data-driven analyses from a large panel of
potential predictors and thereby point to promising
future directions of both validation and mechanistic
research. The full roster of predictors was presented
earlier and listed (by modality) in Table 2. Three
aspects of the results are discussed: 1) the subset of
predictors that were observed for both LHC and RHC,
2) any predictors that were selectively associated with
either hemisphere, and 3) notable predictors (e.g., fac-
tors that have been associated in candidate biomarker
studies) that did not emerge in the present analy-
ses. In all cases, we refer to any available candidate
biomarker and risk factor literature to establish the
context. Three important predictors from two modali-
ties were robust across the hemispheres: demographic
(sex, education) and biospecimen (plasma A�1–42).
Four additional predictors were observed selectively
in the LHC analyses. We characterize the three com-
mon predictors briefly and then discuss the unique
predictors for LHC.

Regarding predictors in common for LHC and
RHC classes, the sex factor indicated that being male
was associated with membership in the lower trajec-
tory classes. For hippocampal atrophy in cognitively
unimpaired aging, a common result is that, for given
ages, males experience more overall atrophy than
females [86]. Our results conducted separately on
LHC and RHC extend this pattern to both hemi-
spheres. As an illustration, for both LHC and RHC we
noted that membership of the upper (less atrophied)
class was predominantly female (64–70%) whereas
the lower class membership was predominantly
male (66.7–68.2%). Notably, our current multimodal
approach highlights the importance of sex relative

to other established AD biomarkers and risk fac-
tors in predicting differential hippocampal atrophy.
This female advantage is concordant with 1) find-
ings in the cognitively asymptomatic aging literature,
whereby cognitively normal females often perform
at higher the levels than males, and 2) our post-hoc
check regarding cognitive trajectories for this sam-
ple (see Supplementary Material). Specifically, mean
memory scores for the lowest HC trajectory classes
(predominantly male) were lower than for the highest
trajectory classes (predominantly female), which is
consistent with the growing evidence of a male disad-
vantage in asymptomatic memory aging [24, 87, 88].
However, it should be noted that this female advan-
tage may be reversed in persons living with AD or
even preclinical AD. For example, studies have found
that females with AD exhibit more rapid hippocam-
pal atrophy [89] and similar associations have been
reported for females with AD-related neuropathol-
ogy [44]. In contrast, we found that in predominantly
cognitively unimpaired individuals, men made up a
higher proportion of the hippocampal trajectory class
characterized by the lowest level and steepest decline
(i.e., most atrophy). Thus, future research can aim
to resolve whether there is 1) a selectively acceler-
ated rate of hippocampal volume loss for preclinical
and clinical (where AD-related neuropathology, such
as low CSF A�42 levels, would be evident) females
or 2) some other factor accounts for the contrasting
observations.

More years of education was associated with
the lowest (most atrophied) classes of both LHC
and RHC volume trajectories. In cognitively unim-
paired older adults, non-significant cross-sectional
associations between hippocampal size (volume and
thickness) and education have been reported [90,
91]. In contrast, education has been previously iden-
tified as a potential protective factor in the AD
epidemiological literature [92]. Longitudinal find-
ings regarding associations with cognitive reserve
(including education) have also been mixed [93, 94].
These inconsistencies may originate from a num-
ber of study-related differences, including: 1) design
(cross-sectional versus longitudinal), 2) measure-
ment (years of schooling versus attainment), 3) cohort
(education differing across generations), 4) study
sample (cognitively normal versus clinical; higher
versus lower education), 5) analytic approaches (most
often single variable versus multi-variable predic-
tion models), 6) study role (correlate, covariate, and
even AD protective factor), and 7) outcome (cogni-
tive differences/changes, brain differences/changes).
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In the current ADNI sample, the majority of partic-
ipants were relatively highly educated (M years of
total schooling at baseline = 16.3). Previous findings
regarding the moderation of hippocampal volume by
education [95] indicate that these effects are dimin-
ished among those with higher education attainment.
A relevant previous result [96] led us to explore
whether the commonly used proportional approach
to correcting for head size [97–99] could lead to
potential overcorrections in volume estimates for
highly educated samples. Specifically, the common
approach corrects the numerator (hippocampal vol-
ume) by the denominator (intracranial volume). In
a post-hoc check we observed a positive correlation
between intracranial volume and education [96]. We
suggest (a) careful monitoring of education effects
in cognitively normal brain aging, (b) further specific
attention to intracranial HC volume corrections when
education levels are high, and (c) increasing attention
to education effects in research on other brain regions
and related biomarkers (e.g., hippocampal to cortex
atrophy ratio [94]).

Lower levels of plasma A�1–42 were associated
with the lower trajectory classes for both LHC and
RHC. Although a conventional biomarker of AD,
A�1–42 has been found to be more strongly related to
overall neurodegeneration (versus AD specifically)
as increased levels in the brain and decreased lev-
els in CSF also occur in other neurodegenerative
diseases [34]. Evidence for brain atrophy associa-
tions with plasma levels of A�1–42 have been mixed.
For example, higher plasma A�1–42 levels and lower
volumes of hippocampal subfields have been linked
in older adults with, but not those without, sub-
jective complaints [100]. In a separate study using
a large sample of cognitively normal older adults,
decreased levels of plasma A�1–42 were associated
with smaller hippocampal volumes and increased
risk of dementia [101]. Similarly, plasma levels of
A�1–42 were found to be lower in amnesic MCI
individuals as compared to cognitively normal older
adults [102]. Our results contribute to the existing
and emerging evidence that 1) lower A�1–42 levels
are a detectable biomarker of emerging neurodegen-
eration (hippocampal trajectory classes) in initially
cognitively normal individuals and 2) less invasive
biomarker collection procedures (e.g., plasma) pro-
vide reliable indicators of this early trend toward
neurodegeneration [34, 103].

Four additional predictors discriminated LHC tra-
jectory classes only. From the biospecimen modality,
plasma A�1–40 and plasma tau predicted class

membership uniquely for the LHC. Specifically,
lower levels of both plasma A�1–40 and plasma t-
tau were associated with membership to the lowest
LHC trajectory class. Our findings support and extend
previous reports of lower levels of plasma A�1–40
in preclinical AD and AD-related neurodegenera-
tion [101, 102]. Specifically, our results indicate
that lower baseline levels of plasma A�1–40 pre-
dict trajectories associated with more left (but not
right) hippocampal atrophy prior to detectable dis-
ease stages. For plasma t-tau, increased levels have
been associated with lower gray matter volumes in
A�+ (but not A�-) older adults [104] as well as
higher risk of incident dementia [105]. However, our
results suggest that lower plasma t-tau may be differ-
entially associated with “secondary phenotypes” of
clustered individuals representing different patterns
of longitudinal atrophy in cognitively normal adults.
A possible explanation is the potential effect of age
on plasma t-tau levels. In a recent study, older adults
(compared to middle-aged adults) were found to have
higher levels of plasma t-tau after controlling for sex
and APOE [106]. Although not directly testable in
the present data, the average age of the lowest class
LHC class (MW1 = 73.9, MW2 = 74.3, MW3 = 74.8,
MW4 = 75.7, MW5 = 77.0, MW6 = 78.6) was some-
what lower than that of the highest LHC class
(MW1 = 75.1, MW2 = 75.6, MW3 = 75.9, MW4 = 76.7,
MW5 = 78.2, MW6 = 79.5) at each time point. It is pos-
sible that the reported age-related effects extend to
a higher age range and to subtler age differences,
representing an important area of future investigation.

Depressive symptoms (at a non-clinical level) were
a selective predictor of LHC trajectory classes, with
higher mean GDS score associated with the lowest
trajectory class. This result is concordant with pre-
vious literature in which depression has been linked
with increased AD risk [33]. Similarly, depressive
symptoms have been associated with increased lim-
bic and prefrontal atrophy over a four-year follow-up
in cognitively normal older adults [107]. The left hip-
pocampus (but not the right hippocampus) has also
been found to be reduced in major depression disorder
in adults [108]. In our sample, only 2% of individuals
were considered mildly depressed at baseline and no
individuals had GDS scores indicating moderate or
severe depression. The present findings suggest that
the association between mild depressive symptomol-
ogy and prefrontal/limbic atrophy also extends to the
left hippocampus. Although the mechanism of this
relationship remains largely unknown, it is possible
that such mood or affect symptomology is associated



S.M. Drouin et al. / Discrimination and Biomarker Prediction of Change Classes 109

with the subtle changes in cognition as a function
of emerging hippocampal and cortical atrophy [109].
Another perspective is that hippocampal atrophy may
be directly affecting networks that are associated with
mood and impact depressive symptomology through
numerous mechanisms such as estrogen depletion
and deregulation of certain neural circuits [110].

A lower body mass index (BMI) was associated
with the lower LHC, but not RHC, trajectory class.
BMI associations with brain and cognitive aging are
complex [111–113]. A previous studying using BMI
as a predictor of HC volumetric change reported a
negative association between hippocampal volume
(across hemispheres, but with stronger effects for the
LHC) and BMI [114]. Participants of that study were,
on average, a decade younger than those of the current
study. Our findings indicate that a protective effect of
higher BMI persists in an older cohort, and further
support that this effect occurs more strongly in the
LHC. Potential protective effects of increased BMI in
older age (versus midlife or young-old cohort) have
been reported in the context of AD risk [115, 116]
and cognitive decline [117] and may act similarly for
risk reduction for hippocampal atrophy. Notably, it
appears that higher BMI might be an important AD
risk factor in midlife, but this association reverses
towards protection or risk-reduction in later life and
older age, perhaps due to weight changes occurring
in preclinical AD phases [118, 119].

We tested 38 biomarkers and risk factors as poten-
tial predictors of trajectory class membership. Our
analytic approach considered all predictors simulta-
neously in a computationally competitive context. In
addition to the seven predictors of trajectory classes,
we note that there were 31 AD-related predictors that
did not successfully emerge in either (LHC or RHC)
of the analyses. Within the biospecimen modality,
plasma measures of A� and tau outperformed CSF
A� and tau to discriminate between hippocampal tra-
jectories. Although CSF measures of A� have been
consistently reported as sensitive biomarkers of MCI
and AD, recent developments have identified less
invasive and lower cost alternatives such as blood-
based biomarkers [103]. Potentially, these peripheral
biomarkers are more useful in predicting specific
pathological changes and broader neurodegeneration,
such as hippocampal atrophy. Alternatively, it is pos-
sible that the present plasma markers are better suited
as predictors of non-clinical aging outcomes (i.e.,
hippocampal classes representing a dynamic distribu-
tion of cognitively normal longitudinal trajectories)
as compared to related findings for CSF markers

and associations with AD diagnosis and clinical pro-
gression patterns. For the genetic modality, although
APOE genetic risk is the most important genetic risk
factor for sporadic AD [120], it did not appear as one
of the important or leading predictors of the lowest
HC atrophy class (although it was among the lesser
contributing predictors). This may point to an atten-
uated importance of single genetic factors within an
interactive network of wide-ranging AD risk factors.
The inclusion of a polygenic AD-related risk score
may have revealed more predictive utility in the con-
text of other risk-related AD predictors and should
be investigated in future research [22]. Within the
vascular/metabolic modality, no factors reached suffi-
cient variable importance to be considered important
predictors despite past findings suggesting possible
associations [17, 121]. For the demographic modality,
chronological age was not found to be an important
predictor of the lowest hippocampal trajectory class
membership. Instead, our findings indicate that, when
available, certain aging-related mechanistic predic-
tors may be more important than age per se for
predicting adverse brain aging outcomes in predom-
inantly cognitively normal samples. This provides
additional support to the growing evidence that mark-
ers of biological age (versus chronological age) are
important to consider in predictions of exacerbated
decline in non-demented aging [122–125]. Given the
current analytic approach and the use of a condi-
tional variable importance measure, we identified the
most prominent predictors of hippocampal trajectory
classes in the context of other previously identified
and often closely related AD-related biomarkers and
risk factors.

There were several limitations to the present
study. First, previous reports have acknowledged
some limited generalizability of the ADNI cohort
due to convenience sampling and possible biases in
recruited participants (e.g., familial history of AD)
[126]. However, these potentially at-risk individu-
als are key targets of clinical trials and prevention
efforts. As our study aimed to identify biomark-
ers and risk factors associated with morphometric
change in cognitively normal older adults, we have
identified biomarker associations in individuals that
are likely to be targeted for these purposes. Sec-
ond, although variables included in the current study
had few missing data (0–3.9%), there was a notable
exception for biomarkers in the biospecimen modal-
ity. For the biospecimen biomarkers, missing data
ranged from 35 to 51.3%. Missing data were imputed
using the ‘missForest’ package in R which utilizes a
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random forest to iteratively predict missing values.
The present imputation procedure and RFA models
allowed for the inclusion of many predictors from
multiple modalities despite some with higher rates
of missing data. We consider this a notable strength
of our approach, as previous studies predicting AD
risk have often employed fewer biomarker or risk fac-
tor predictors, possibly due to analytical restrictions
(e.g., multiple comparison issues) [127–129]. Repli-
cating and validating these findings using additional
biomarker data would be an important future step.
Third, because of data limitations we were unable to
investigate whether preclinical trajectory class mem-
bership would predict clinical diagnostic outcomes
such as MCI or AD. As shown in Table 5, 96.3%
of the analyzed longitudinal observations were with
participants who were free of MCI or AD and over
99% included persons who were non-AD. In total,
there were very few participants who transitioned to
AD (n = 8) or MCI (n = 32, with 5 reverting back to
CN) within the six waves under study—and together
they contributed data for only 3.7% of the analyzed
longitudinal observations (AD = 0.56%). By design,
the present sample was selected initially to be cog-
nitively asymptomatic (all were cognitively normal
at baseline) and remained predominantly so through-
out the study. The very small number of observations
that could be characterized as impaired was appro-
priate for our objectives and expected in our design.
No separate machine learning prediction analysis of
this small cluster is possible due to severely imbal-
anced groups. However, a post-hoc check revealed
that, in general, most of the individuals transition-
ing to impairment status were members of the lower
trajectory classes. Accordingly, we suggest future
work aimed at testing whether lower HC trajectory
class membership is a reliable precursor condition
for impairment and AD diagnosis. Fourth, the cor-
relational analyses to clarify predictor directionality
were focused more on describing associations with
predictor variables than interpreting potential under-
lying mechanisms. Specific mechanisms should be
further explored in future studies. Fifth, due to the
ADNI MRI methods and protocols, almost all partici-
pants from ADNI1 were scanned using 1.5T scanners
and all participants from ADNI2 were scanned using
3T scanners. However, we found no significant asso-
ciations between scanner strength and hippocampal
trajectory classes. This indicates that scanner strength
was properly corrected for at the modelling stage,
as has been done in previous studies [44]. Sixth,
other (non-AD specific) pathologies and risk factors

unavailable in this study may have contributed
to the observed hippocampal volume and atrophy
trajectories.

Conclusions

We used multi-wave MRI data from ADNI to iden-
tified three data-driven trajectory classes of left and
right hippocampal volume in asymptomatic older
adults. Our analytic approach, based on an algorithm
of level and slope, revealed that the vast individ-
ual variability in hippocampal atrophy could be
clustered into trajectory classes which capture the
heterogeneous and dynamic nature of brain aging
in cognitively normal older adults. We then applied
machine learning technology to a large, multi-modal
set of AD-related biomarkers and risk factors and
identified the best predictors that discriminated lower
versus higher hippocampal trajectory classes. The
current findings identify several emerging and promi-
nent risk factors and biomarkers associated with early
stages of hippocampal atrophy, all of which merit fur-
ther investigation in future mechanistic and clinical
research.
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