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Abstract
The decline in bone mass and bone strength and musculoskeletal problems associ-
ated with aging constitute a major challenge for affected individuals and the health-
care system globally. Sirtuins 1-7 (SIRT1-SIRT7) are a family of nicotinamide adenine 
dinucleotide-dependent deacetylases with remarkable abilities to promote longevity 
and counteract age-related diseases. Sirtuin knockout and transgenic models have 
provided novel insights into the function and signaling of these proteins in bone ho-
meostasis. Studies have revealed that sirtuins play a critical role in normal skeletal 
development and homeostasis through their direct action on bone cells and that their 
dysregulation might contribute to different bone diseases. Preclinical studies have 
demonstrated that mice treated with sirtuin agonists show protection against age-
related, postmenopausal, and immobilization-induced osteoporosis. These findings 
suggest that sirtuins could be potential targets for the modulation of the imbalance 
in bone remodeling and treatment of osteoporosis and other bone disorders. The aim 
of this review was to provide a comprehensive updated review of the current knowl-
edge on sirtuin biology, focusing specifically on their roles in bone homeostasis and 
osteoporosis, and potential pharmacological interventions targeting sirtuins for the 
treatment of osteoporosis.
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1  |  INTRODUC TION

Bone is a dynamic tissue that is constantly adapting its structure 
to functional demands through processes tightly regulated by 
two principal cell types: osteoblasts and osteoclasts (Harada & 
Rodan, 2003). Imbalanced action of these two cell types disrupts 
bone formation and resorption, leading directly or indirectly to 
the manifestation of various bone diseases (Rodan & Martin, 
2000). Osteoporosis is a major public health concern world-
wide, particularly in aging societies (Gullberg et al., 1997; Zeng 
et al., 2019). Current pharmacological treatments of osteopo-
rosis primarily aim either to reduce excessive osteoclastic bone 
resorption (e.g., estrogen and bisphosphonates) or to promote 
osteoblastic bone formation (e.g., parathyroid hormone), and to 
a lesser degree, to achieve both (e.g., anti-sclerostin [SOST] an-
tibody). The primary cause of this imbalance in bone cell activity 
observed with aging is not yet fully understood. In addition, there 
is growing concern about the long-term use of these drugs due 
to their off-target effects (Davis et al., 2016; Kim et al., 2016; 
Lv et al., 2020; Silverman & Landesberg, 2009). There is a clear 
demand for continuing efforts in the research and development 
of safer preventative and/or therapeutic agents. Mitochondrial 
dysfunction (McBride et al., 2006; Trifunovic & Larsson, 2008; 
Trifunovic et al., 2004; Varanasi et al., 1999), oxidative stress 
(Balaban et al., 2005; Cadenas & Davies, 2000), and inflamma-
tion (El Assar et al., 2013; Woods et al., 2012) are found to be 
closely related with the impairment of cellular homeostasis and 
contribute to the progression of age-related diseases, including 
osteoporosis. Therefore, targeting these primary aging processes 
represents a new class of treatment strategies for multiple aging 
tissues, including bone.

Mammalian sirtuins play important roles in longevity, aging-as-
sociated diseases, and response to stresses (Bonkowski & Sinclair, 
2016; Donmez & Guarente, 2010; Haigis & Sinclair, 2010; Imai & 
Guarente, 2014; Wątroba et al., 2017). Increased sirtuin activity 
is associated with the delayed onset of age-related diseases, in-
cluding cancer, cardiovascular disease, and diabetes (Banks et al., 
2008; Hubbard & Sinclair, 2014; Kanfi et al., 2010; Kugel et al., 
2016; Pfluger et al., 2008), and prolonged longevity in some cir-
cumstances (Kanfi et al., 2012; Mercken et al., 2014; Mitchell 
et al., 2014; Satoh et al., 2013). These beneficial effects might be 
attributable to the action of sirtuins in mitochondrial biogenesis, 
increased resistance against oxidative stress, and anti-inflamma-
tory effects (Donmez & Guarente, 2010; Finkel et al., 2009; Haigis 
& Sinclair, 2010; Hirschey et al., 2010; Kincaid & Bossy-Wetzel, 
2013; Rardin et al., 2013). It has been postulated that manipulation 
of sirtuin expression and/or activity could represent a new thera-
peutic approach for the prevention and treatment of osteoporosis. 
In this review paper, we present a comprehensive updated review 
of the current knowledge on sirtuin biology, focusing specifically 
on their roles in bone homeostasis and osteoporosis, and the po-
tential pharmacological interventions that could target sirtuins for 
the treatment of osteoporosis.

2  |  MOLECUL AR MECHANISM OF 
OSTEOPOROSIS

Osteoporosis is the most common bone remodeling disease, and 
the resulting increased risk of fragility fractures is of great concern 
(Pouresmaeili et al., 2018). Notably, the risk of fracture doubles with 
every 10% of bone mass lost (Rodan & Martin, 2000). The number 
of people who experience hip fracture in the United States has been 
estimated to reach over 6.26 million by 2050, resulting in dramatically 
high morbidity and healthcare costs (Gullberg et al., 1997). In China, 
there are currently over 60 million individuals diagnosed with oste-
oporosis, and the prevalence is estimated to be 6.49% and 29.13% 
for men and women aged 50 years or older, respectively (Zeng et al., 
2019). Considering the huge social and economic burden associated 
with osteoporosis, there is an urgent need for a better understanding 
of the molecular mechanism underlying osteoporosis which might pro-
vide a scientific basis for the development of more effective therapies.

2.1  |  Mitochondrial dysfunction and 
oxidative stress

Recent clinical and preclinical animal studies have demonstrated 
an association between increased mitochondrial damage and 
osteoporotic bone loss (Trifunovic & Larsson, 2008; Trifunovic 
et al., 2004; Varanasi et al., 1999). Mice lacking HTRA2/OMI, an 
mitochondrial adenosine triphosphate (ATP)-independent serine 
protease, exhibited elevated mtDNA deletions and severe os-
teoporosis (Kang et al., 2013). Impaired ATP production, caused 
by a dysfunctional mitochondrial transcription factor A (Tfam) 
gene, led to increased bone resorption (Miyazaki et al., 2012). 
Mitophagy and the unfolded protein response (UPRmt) are impor-
tant for mitochondrial homeostasis (Fang et al., 2014; Mouchiroud 
et al., 2013b), whereas their disruption leads to severe bone loss, 
which is closely associated with impaired mitochondrial func-
tion (Wang et al., 2020; Zainabadi, Liu, Caldwell, et al., 2017). 
Furthermore, in vitro cellular and in vivo animal studies have dem-
onstrated a link between mitochondria-derived reactive oxygen 
species (ROS) and osteoporosis (Manolagas, 2010; Treiber et al., 
2011; Yang et al., 2014). The skeletal changes in aging mice were 
accompanied by a progressive increase in ROS levels in the bone 
tissues (Almeida et al., 2007), which could adversely influence the 
survival and differentiation of osteoblasts and osteocytes from 
their corresponding progenitor cells. Mice with homozygous su-
peroxide dismutase 2 (SOD2) deficiency in connective tissue (es-
tablished using Col1α2-Cre) exhibited decreased bone mineral 
density (BMD) associated with increased ROS levels (Treiber et al., 
2011). Specific deletion of SOD2 in osteocytes caused remarkable 
bone loss in an age-dependent manner, which was associated with 
the decreased number of osteocytes and disorganization of os-
teocyte canalicular networks resulting from increased ROS levels 
(Kobayashi et al., 2015). High levels of hydrogen peroxide (H2O2) in 
osteoblastic cells resulted in apoptosis and initiated osteoporosis 
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by impairing osteoblast formation (Treiber et al., 2011; Yang et al., 
2014). Conversely, accumulation of ROS induced osteoclast prolif-
eration and facilitated osteoclast differentiation (Baek et al., 2010; 
Bartell et al., 2014; Garrett et al., 1990; Treiber et al., 2011; Yang 
et al., 2014). Loss of forkhead box O (FoxO) function in osteo-
clasts in mice increased osteoclast numbers and resulted in bone 
loss due to accumulation of intracellular H2O2 (Bartell et al., 2014). 
Attenuation of H2O2 generation in cells of the osteoclast lineage 
(using the lysozyme M promoter) abolished the loss of cortical 
bone following ovariectomy (OVX) by decreasing osteoclast num-
bers (Ucer et al., 2017). Collectively, factors modulating mitochon-
drial function and antioxidant defense could be potential targets 
for interventional treatment or prevention of osteoporosis.

2.2  |  Cellular senescence

Various intra- and extracellular stresses, such as DNA damage, on-
cogenic insults, reactive metabolites, and proteotoxic stress, lead to 
cellular senescence (LeBrasseur et al., 2015; Swanson et al., 2013; 
Tchkonia et al., 2013; Zhu et al., 2014), in which cells stop divid-
ing, undergo distinct genetic and phenotypic changes, and develop 
a senescence-associated secretory phenotype (SASP; Blasco et al., 
2013; Campisi, 2013). SASP is characterized by the secretion of 
pro-inflammatory cytokines, chemokines, and extracellular matrix-
degrading proteins, which have deleterious paracrine and systemic 
effects (Acosta et al., 2013; Coppé et al., 2010; Nelson et al., 2012; 
Xu, Palmer, et al., 2015). By secreting damaging factors to neighbor-
ing cells, the SASP induces cellular senescence in normal cells adja-
cent to the senescent cells via the bystander effect (Nelson et al., 
2012). Reducing the number of senescent cells by either genetic 
(INK-ATTAC transgenic mice) or pharmacological (long-term seno-
lytic treatment) clearance of p16Ink4a-expressing senescent cells has 
been shown to extend the life span and prevent the development of 
multiple aging-related comorbidities in both prematurely and natu-
rally aged mice (Baker et al., 2011; Roos et al., 2016; Xu, Palmer, 
et al., 2015). A recent study comparing young (6-month-old) and 
aged (24-month-old) mice demonstrated that osteocytes and my-
eloid cells were the two main senescent cells in the bone microen-
vironment (Farr et al., 2016). Increased osteocyte senescence was 
further confirmed by another study that showed higher expression 
of the senescence markers γH2AX and p16Ink4a, and several SASP 
markers in osteocytes in 21-month-old in comparison with their 
expression levels in 7-month-old mice (Piemontese et al., 2017). A 
subsequent study from the same group demonstrated similar find-
ings in osteoprogenitors. Specifically, a decreasing number of osterix 
(Osx)-expressing osteoprogenitor cells were observed with increas-
ing age in mice and were associated with increased expression of 
senescence markers (Kim, Chang, et al., 2017). Furthermore, bone 
marrow stromal cells from old mice also exhibited elevated expres-
sion of SASP genes (Kim, Chang, et al., 2017; Sui et al., 2016). In 
addition to these findings on cellular senescence in age-related bone 
loss, increased cellular senescence in bone cells was also associated 

with glucocorticoid-induced (Leclerc et al., 2004; Li et al., 2012) and 
unloading-induced (Okazaki et al., 2004; Sakai et al., 2002) bone loss. 
The causal relationship between cellular senescence and age-related 
bone loss was evidenced by the higher bone mass and strength ob-
served in aged mice after the elimination of senescent cells in bone 
tissue by activating transduced suicide genes or administrating seno-
lytics or a JAK inhibitor (Farr et al., 2017; Kim, Chang, et al., 2017). 
It has been proposed that SASP-associated factor secretion from the 
senescent osteoblasts and osteocytes could lead to increased bone 
resorption and reduced bone formation. Thus, targeting senescent 
osteocytes represents a novel treatment for age-related bone loss. 
Furthermore, cell cycle arrest is part of cellular senescence, which 
limits osteoblast differentiation of skeletal progenitor cells and con-
tributes to age-related bone loss (Wang et al., 2012). Future in-depth 
studies are needed to investigate the mechanisms by which cellular 
senescence could impact bone remodeling. In view of current evi-
dence demonstrating beneficial effects, eliminating senescent cells 
in the bone microenvironment represents a novel strategy that may 
potentially be used for the prevention and treatment of osteoporosis.

2.3  |  Inflammation

Under the influence of lifelong exposure to chronic antigenic load 
and oxidative stress during aging, a variety of cytokines, including 
interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), and inter-
leukin 1 (IL-1), are elevated and play direct roles in the pathogen-
esis of age-related diseases, including atherosclerosis, Alzheimer's 
disease and diabetes (Bruunsgaard, 2002; Ferrucci & Fabbri, 
2018; Sarkar & Fisher, 2006; Yuan et al., 2019). Recent emerging 
evidence suggests that osteoporosis and other age-related disor-
ders could, to certain extent, be considered as inflammatory dis-
eases (Arron & Choi, 2000; Lorenzo, 2000). Clinical studies have 
reported an association between an increased risk of developing 
osteoporosis and inflammatory conditions, such as rheumatoid 
arthritis, ankylosing spondylitis, and inflammatory bowel disease 
(Bultink et al., 2005; Haugeberg et al., 2004; Mikuls et al., 2005; 
Mitra et al., 2000; Moschen et al., 2005). Inflammatory cytokines, 
such as TNF-α, IL-1, and IL-6, are elevated and play critical roles 
in these conditions (Ishihara & Hirano, 2002; Manolagas & Jilka, 
1995; Moschen et al., 2005). Specifically, the aforementioned cy-
tokines promote osteoclast differentiation and activation, which 
has been linked to accelerated bone loss in various bone disor-
ders including postmenopausal osteoporosis, Paget's disease, and 
idiopathic osteoporosis (Kim et al., 2009; Manolagas & Jilka, 1995; 
Moffett et al., 2005; Pacifici et al., 1989; Wei et al., 2005; Yun & 
Lee, 2004). In women, the most common cause of postmenopausal 
osteoporosis is estrogen depletion, which results in elevated levels 
of pro-inflammatory and pro-osteoclastic cytokines (Ershler et al., 
1997; Liu et al., 2005; Pfeilschifter et al., 2002; Scheidt-Nave et al., 
2001). These findings support the observation that inflammation 
could exert significant influence on bone turnover and contribute 
to the development of osteoporosis.
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3  |  BIOLOGIC AL FUNC TIONS OF 
SIRTUINS

The first member of the sirtuin family, yeast Sir2 (silent informa-
tion regulator 2), was isolated in a screening for silencing factors 
in budding yeast thirty years ago (Rine et al., 1979). Subsequent 
studies revealed that SIR2-like genes, also known as sirtuins, play a 
key role in prolonging the life span of lower organisms (Kaeberlein 
et al., 1999; Kennedy et al., 1995). The important discovery that 
life span extension by caloric restriction is abolished in sirtuin-de-
ficient yeast has inspired multiple studies on mammalian sirtuins 
(Guarente & Picard, 2005; Boily et al., 2008). To date, seven mam-
malian homologs (SIRT1-SIRT7) of nicotinamide adenine dinucleo-
tide (NAD+)-dependent lysine deacetylases have been identified 
and found to be important in the promotion of DNA repair, anti-
oxidant defense, mitochondrial biogenesis, and anti-inflammatory 
effects (Donmez & Guarente, 2010; Finkel et al., 2009; Haigis & 
Sinclair, 2010). These sirtuins differ from each other in tissue dis-
tribution, subcellular localization, enzymatic activity, and target 
proteins (Table 1). SIRT1 is predominantly located in the nucleus 
and cytosol and modulates various transcription factors, such as 
tumor protein p53 (p53; Vaziri et al., 2001), nuclear factor κ-light-
chain-enhancer of activated B cells (NF-κB; Yeung et al., 2004), 
FoxO (Mouchiroud et al., 2013a; Shan et al., 2017) and peroxisome 
proliferator-activated receptor γ coactivator 1α (PGC1α; Rodgers 
et al., 2005). SIRT2 is mostly found in the cytoplasm, whereas 
SIRT3, SIRT4, and SIRT5 are located in the mitochondria and con-
tribute to the regulation of ATP production, antioxidant defenses, 
energy metabolism, and cell signaling (Haigis et al., 2006; Hirschey 
et al., 2010; Kincaid & Bossy-Wetzel, 2013; Rardin et al., 2013). 
SIRT6 and SIRT7 are primarily localized in the nucleus and regu-
late the response to and repair of damaged DNA (Li et al., 2016; 
McCord et al., 2009).

A detailed discussion of the biological function of each sirtuin 
in mitochondrial function, antioxidative stress, inflammation, and 
cellular senescence has been covered extensively in the literature 
(Donmez & Guarente, 2010; Haigis & Sinclair, 2010; Kitada et al., 
2019; Satoh et al., 2011), suggesting a link between sirtuins and os-
teoporosis. This review focuses more on the biological functions of 
sirtuins in bone homeostasis.

4  |  SIRTUINS IN BONE BIOLOGY

4.1  |  SIRT1

Among the seven sirtuins, SIRT1 is the most studied and plays criti-
cal role in normal skeletal development and homeostasis (Zainabadi, 
2019). This review attempts to provide more updated informa-
tion regarding the role of SIRT1 in bone biology and osteoporosis 
development.

Pioneering work on the role of SIRT1 in bone biology was con-
ducted in SIRT1 global knockout (KO) mice (Cheng et al., 2003; 

Lemieux et al., 2005; McBurney et al., 2003). Compared with 
wild-type control mice, SIRT1 KO embryos and newborn pups 
were smaller at birth and exhibited higher rates of perinatal le-
thality and notable developmental defects of the retina and heart 
(Figure 1). These mice also had craniofacial abnormalities, includ-
ing defects in the development and closure of craniofacial su-
tures, abnormal palate architecture, and instances of exencephaly 
(Cheng et al., 2003; McBurney et al., 2003). Furthermore, SIRT1 
KO pups exhibited delayed mineralization of the skull, vertebrae, 
and digits (Lemieux et al., 2005). Likewise, deletion of SIRT1 in 
adult mice showed a significant reduction in both trabecular and 
cortical bone irrespective of sex (Mercken et al., 2014; Zainabadi, 
Liu, Caldwell, et al., 2017). These results suggest an important 
role of SIRT1 in bone development and remodeling. However, it is 
difficult to interpret these findings separately from the frequently 
associated gross developmental abnormalities, including smaller 
size, sterility, and high rates of postnatal lethality (Cheng et al., 
2003; McBurney et al., 2003). Additional observations of adult 
heterozygous KOs showed a significant reduction in both trabec-
ular and cortical bone mass in long bones (Cohen-Kfir et al., 2011) 
without developmental abnormalities, thus supporting the hy-
pothesis that SIRT1 plays a role in bone remodeling. Interestingly, 
the phenotypic changes appear to be sex- and age-specific, as in-
dicated by the more pronounced alterations in female and young 
mice (1-month-old). Furthermore, it is evidenced that SIRT1 
could influence bone remodeling via hormone and endocrine sig-
naling pathways and the somatotropic axis (Cohen et al., 2009; 
Kolthur-Seetharam et al., 2009; Toorie et al., 2016). The possible 
link between SIRT1 and steroid hormone signaling pathways is 
verified by the upregulation of SIRT1 expression upon estrogen 
treatment. In contrast, OVX caused a decline in SIRT1 expression 
(Elbaz et al., 2009; Shakibaei et al., 2012; Artsi et al., 2014; Wang 
et al., 2017).

To examine whether SIRT1 exerts its effect on bone metabo-
lism through direct actions on bone cells or via intermediate hor-
mone signaling, a number of mouse models with specific deletion 
of SIRT1 in different bone cells, including osteoblasts, osteoclasts, 
and mesenchymal stem cells, have been developed (Edwards et al., 
2013; Simic et al., 2013; Zainabadi, Liu, Caldwell, et al., 2017; 
Figure 1). Of note, deletion of SIRT1 in osteoblasts (ObcKOs) using 
the collagen type 1 2.3 kb promoter and in osteoclasts (OccKOs) 
using the lysozyme M promoter showed lower trabecular bone 
mass (Zainabadi, Liu, Caldwell, et al., 2017). However, double de-
letion of SIRT1 in both osteoblasts and osteoclasts did not result 
in a more severe bone loss phenotype (Zainabadi, Liu, Caldwell, 
et al., 2017). Mechanistic studies revealed that the bone loss phe-
notype of ObcKOs was associated with a lower osteoblast number 
and reduced bone formation rate (BFR), while increased osteoclast 
number was observed in OccKOs. These findings support the hy-
pothesis that SIRT1 can exert a direct effect on osteoblast and 
osteoclast.

Furthermore, deletion of SIRT1 in osteoprogenitors using the Osx 
promoter resulted in lower cortical bone thickness at the endocortical 
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surface as a result of decreased bone formation, but had no effect on 
trabecular bone mass (Iyer et al., 2014). Similar phenotypic changes 
were observed in mice with the deletion of SIRT1 in earlier osteoblast 
precursors using the Prx1 promoter (Simic et al., 2013). These results, 
along with the finding that cortical bone was unaffected in mice lack-
ing SIRT1 in mature osteoblasts (Edwards et al., 2013), suggest that 
SIRT1 could protect the cortical and trabecular bone compartments 
via actions on different osteoblast populations (i.e., early versus late in 
the osteoblast lineage) through different mechanisms. In contrast to 
the bone loss phenotype in female mice, bone loss was not observed 

in male mice. A potential explanation could be the existence of a 
cross-talk between SIRT1 and estrogen receptor α (ERα; Elangovan 
et al., 2011; Ji Yu et al., 2011). The bone loss phenotype observed 
using Prx1-Cre was more pronounced in aged mice (26-month-old) 
than in young mice (2-month-old; Simic et al., 2013), which was ac-
companied by a marked decrease in the number of marrow-derived 
mesenchymal stem cells (MSCs). These results suggest that in addi-
tion to its role in regulating the osteogenic differentiation potential 
to osteoblast, SIRT1 also positively regulates MSC self-renewal (Yoon 
et al., 2014). On the other hand, chondrocyte-specific deletion of 

F I G U R E  1 Effects of sirtuins on bone mass as determined from studies using knockout and transgenic mouse models. (a) Effect of loss of 
function of SIRT1-SIRT7 in osteoblast lineage cells on bone mass. Target cells included BMSCs, pre-osteoblasts, and osteoblasts. (b) Effect 
of gain of function of SIRT1 in BMSCs on bone mass. (c) Effect of loss of function of SIRT1-SIRT7 in osteoclast-lineage cells on bone mass. 
Target cells included HSC and preosteoclasts. (d) Effect of whole-body gain or loss of function of SIRT1-SIRT7 on bone mass as determined 
using mouse models with global SIRT1-SIRT7 overexpression or knockout. BMSCs, bone mesenchymal stromal cells; Osx, osterix; Ocn, 
osteocalcin; HSC, hematopoietic stem cell. 1(Simic et al., 2013), 2(Iyer et al., 2014), 3(Zainabadi, Liu, Caldwell, et al., 2017), 4(Edwards et al., 
2013), 5(Kim et al., 2020), 6(Fukuda et al., 2018), 7(Sun et al., 2018), 8(Park et al., 2016), 9(Zainabadi, Liu, Caldwell, et al., 2017), 10(Edwards 
et al., 2013), 11(Moon et al., 2019), 12(Cheng et al., 2003), 13(Lemieux et al., 2005), 14(McBurney et al., 2003), 15(Zainabadi, Liu, Guarente, 
2017), 16(Jing et al., 2019), 17(Gao et al., 2018), 18(Huh et al., 2016), 19(Sugatani et al., 2015), 20(Zhang, Ryu, et al., 2016), 21(Zhang et al., 2018), 
22(Fukuda et al., 2018), 23(Herranz et al., 2010), and 24(Ho et al., 2017)
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SIRT1 using the collagen II promoter resulted in growth retardation 
and shorter bones, which was associated with decreased chondro-
cyte proliferation and hypertrophy (Jin et al., 2019). In addition, SIRT1 
has been shown to promote cartilage-specific gene expression (Dvir-
Ginzberg et al., 2008) and protect chondrocyte against radiation-in-
duced senescence (Hong et al., 2010). These findings were consistent 
with reduced levels of SIRT1 measured in human osteoarthritis (OA) 
cartilage (Fujita et al., 2011; Takayama et al., 2009), suggesting a po-
tential protective role of SIRT1 in chondrocytes, which was further 
evidenced by the accelerated development of OA in mice lacking 
SIRT1 in chondrocyte (Matsuzaki et al., 2014). However, a recent 
finding demonstrated an increased ratio of proliferative-to-hypertro-
phic zone following SIRT1 deletion in chondrocyte, suggesting SIRT1 
inhibits chondrocyte proliferation (Shtaif et al., 2020). Possible rea-
son for the discrepancy could be due to the differences in the genetic 
models, which requires further investigation. In addition to its role in 
chondrogenesis, the absence of SIRT1 in chondrocytes also resulted 
in decreased trabecular and cortical bone mineralization, which was 
attributed to the disorganized epiphyseal growth plate in chondro-
cyte-specific KO mice (Shtaif et al., 2020).

In addition to the KO models, SIRT1 overexpression mouse mod-
els have also been developed to study the impact of SIRT1 activa-
tion on bone homeostasis (Herranz et al., 2010; Sun et al., 2018; 
Wang et al., 2019). Encouragingly, these transgenic mice showed 
40%–50% higher bone mass than that of control mice at 2.5 years of 
age (Herranz et al., 2010), as well as improved healthy aging. More 
recently, overexpression of SIRT1 in cells of the mesenchymal lin-
eage (using the Prx1 promoter) showed increased bone volume in 
both young mice (1-month-old) and aged mice (18-month-old), which 
was associated with increased osteoblast and decreased osteoclast 
numbers (Sun et al., 2018; Wang et al., 2019). These effects were 
achieved by restoring the redox balance in MSCs. These preclinical 
findings suggest that SIRT1 could be a potential target for the devel-
opment of novel anti-osteoporotic therapy.

4.2  |  SIRT2

SIRT2 KO mice developed normally at a young age but exhibited tu-
morigenesis in multiple tissues at an advanced age, suggesting an 
essential role of SIRT2 in maintaining genetic stability and repressing 
tumor formation (Kim et al., 2011). Among all reported SIRT2 KO 
studies (Beirowski et al., 2011; Jing et al., 2019; Kim et al., 2011), one 
related to skeleton changes was identified (Jing et al., 2019) and is 
included in the present review. Compared with the wild-type control 
group, rats with SIRT2 deletion (SIRT2 KO) exhibited a higher total 
bone volume fraction, trabecular bone mineral density, and trabecu-
lar number at the age of 36 weeks, which was not apparent at the 
age of 12 weeks. In an in vitro study, it was demonstrated that inhib-
iting SIRT2 expression using AGK2 could suppress osteoclastogenic 
differentiation (Jing et al., 2019). Further investigation is required to 
delineate how SIRT2 regulates osteoclast differentiation and activ-
ity, and its effect on age-related bone loss.

4.3  |  SIRT3

SIRT3, a mitochondrial NAD+-dependent protein deacetylase 
(Ansari et al., 2017; Lombard et al., 2007), was found to be associ-
ated with long life span in humans and has, thus, attracted public 
and research interest (Bellizzi et al., 2005; Rose et al., 2003). An 
initial study showed that SIRT3 KO mice appeared to be structur-
ally normal, without significant changes in body composition and 
BMD at a young age (Lombard et al., 2007). However, aging-related 
health problems such as metabolic syndrome, cancer, and cardio-
vascular and neurodegenerative diseases were observed earlier in 
the SIRT3 KO mice (McDonnell et al., 2015; Van de Ven et al., 2017). 
SIRT3 KO mice exhibited lower trabecular bone mass in long bones 
at a young age (8-week-old), indicating a positive role of SIRT3 dur-
ing the development of peak bone mass (Gao et al., 2018; Huh et al., 
2016). However, such differences became more subtle in SIRT3 KO 
mice reaching adulthood (6-month-old; Ho et al., 2017). In contrast, 
mice with global SIRT3 overexpression had normal bone mass at 
young age (3-month-old) but exhibited lower bone mass at an older 
age (13-month-old; Ho et al., 2017). Evidence from mice with dif-
ferent SIRT3 expression levels suggests the likelihood of an age-
dependent effect of SIRT3 on bone, but further investigations with 
cell/tissue-specific SIRT3 KOs and wider age spectrums are war-
ranted to unravel the biological function of SIRT3 on bone metabo-
lism and aging.

4.4  |  SIRT6

SIRT6 is involved in the regulation of chromatin and is shown to play 
a number of roles in metabolism, aging, and diseases (Kanfi et al., 
2008; Kugel & Mostoslavsky, 2014; Mostoslavsky et al., 2006; 
Mu et al., 2018). The first study of bone in SIRT6 KO mice dem-
onstrated a progeroid degenerative syndrome including reduced 
size, lordokyphosis, and severe osteopenia with a 30% reduction 
in BMD (measured with dual-energy X-ray absorptiometry [DXA]; 
Mostoslavsky et al., 2006). A more recent investigation of young 
SIRT6 KO mice showed significant deficiencies in both trabecular 
BMD and cortical bone volume compared with those of control 
mice (Sugatani et al., 2015; Zhang, Cui, et al., 2016; Zhang et al., 
2018), which was associated with impaired bone formation. The ef-
fects of SIRT6 on bone resorption remain controversial, with only 
one report of impaired osteoclast function (Sugatani et al., 2015). 
In contrast, most other studies have reported increased osteoclas-
togenesis reported (Zhang et al., 2016a, 2018). Interpretation of 
these findings is difficult due to the extremely small size of the 
tested animals and the overall poor health condition of the SIRT6 
KO mice.

To better understand the exact molecular role of SIRT6 in bone 
homeostasis, several osteoblast lineage- and osteoclast lineage-spe-
cific SIRT6 KO mice have been developed. Specifically, osteoblast 
lineage-specific SIRT6 KO mice established using the osteocalcin 
promoter exhibited osteopenia, which was attributed to a paracrine 
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activation of osteoclastogenesis due to decreased osteoprotegerin 
(OPG) levels without changes in osteoblast function (Kim et al., 
2020). Targeted deletion of SIRT6 in hematopoietic cells (using the 
Mx1 promoter), including osteoclast precursors, resulted in in-
creased bone volume, which could be due to the decreased number 
of osteoclasts (Park et al., 2016). In contrast, myeloid SIRT6 deletion 
(using the lysozyme M promoter) resulted in decreased trabecular 
bone mass in aged mice (20-month-old). This age-related change in 
phenotype was associated with a twofold increase in the number of 
mature osteoclasts in SIRT6 KO mice (Moon et al., 2019). These re-
sults, along with the controversial findings on the effects of SIRT6 on 
osteoclasts, suggest that a more in-depth elucidation of the role of 
SIRT6 in skeletal homeostasis is required, such as in cKO and trans-
genic animal models.

4.5  |  SIRT7

SIRT7 acts as a histone deacetylase with an important role in 
the DNA damage response and cell survival (Li et al., 2016), 
as evidenced by the genomic instability and premature aging 
phenotypes of SIRT7-deficient mice (Paredes & Chua, 2016). It 
has been proposed that upon DNA damage, SIRT7 is mobilized 
onto chromatin and deacetylates ataxia–telangiectasia mutated 
(ATM) to control proper DNA damage repair. Deletion of SIRT7 
induces impaired DNA damage repair due to persistent ATM ac-
tivation (Tang et al., 2019). Furthermore, SIRT7 promotes DNA 
repair by direct H3K18Ac deacetylation at DNA double-strand 
break (DSB) sites and then triggers recruitment of non-homol-
ogous end joining (NHEJ) repair factors, which are speculated 
to be the primary pathway for the repair of DSBs (Chang et al., 
2017; Vazquez et al., 2016). SIRT7 KO mice were found to have 
deficiencies in embryonic and postnatal development, including 
elevated perinatal lethality and shorter life span with signs of 
progeroid-like phenotypes including kyphosis, heart hypertro-
phy, hepatic steatosis, deafness, increased p16INK4 expression, 
and reduced circulating insulin-like growth factor 1 (IGF-1) pro-
tein (Ryu et al., 2014; Shin et al., 2013; Vakhrusheva et al., 2008; 
Vazquez et al., 2016). Analysis of adult female SIRT7 KO mice 
revealed significant deficiencies in both trabecular and corti-
cal bone mass, which was associated with defects in osteoblast 
numbers and bone formation (Fukuda et al., 2018). Furthermore, 
tissue-specific deletion of SIRT7 in osteoblasts (using the α1(I)-
collagen promoter) showed decreased trabecular bone mass and 
cortical bone thickness (Fukuda et al., 2018). Importantly, the 
phenotype of obcKOs was found to be associated with lower 
in vivo osteoblast numbers and reduced BFR, with no effect on 
osteoclastogenesis. The stimulatory effects of SIRT7 on osteo-
blasts might be due to its positive regulation of the transactiva-
tion activity of Osx through deacetylation of lysine 368 in its 
C-terminal region. However, there is no available data on the 
influence of SIRT7 on osteoclast function, which requires fur-
ther investigation.

5  |  POSSIBLE MECHANISMS UNDERLYING 
THE BIOLOGIC AL AC TIONS OF SIRTUINS IN 
BONE

5.1  |  SIRT1

The above in vivo studies all point to the possible important roles of 
sirtuins in the regulation or modulation of different phases of bone 
remodeling. These findings are in line with the in vitro results.

SIRT1 promotes self-renewal and maintenance of MSCs through its 
direct regulation of the sex-determining region Y-box 2 (SOX2; Yoon 
et al., 2014; Figure 2a). SIRT1 has also been reported to promote os-
teoblast differentiation of MSCs by activating runt-related transcription 
factor 2 (RUNX2) through direct deacetylation of RUNX2 or indirect 
modulation by forming a SIRT1-forkhead box O3 (FOXO3A) complex 
(Shakibaei et al., 2012; Tseng et al., 2011; Zainabadi, Liu, & Guarente, 
2017), and repressing peroxisome proliferator-activated receptor γ 
(PPARγ; Bäckesjö et al., 2006; Picard et al., 2004; Figure 2b). In addition, 
SIRT1 has been shown to promote osteoblast activity by stimulating 
Wnt signaling through deacetylation effect directly (Simic et al., 2013) 
or indirect deacetylation of FoxOs, which prevents the association of 
FoxO with β-catenin, thus resulting in increased expression of β-cat-
enin (Iyer et al., 2014). SIRT1 may also promote bone formation by de-
creasing the expression of SOST (Artsi et al., 2014; Cohen-Kfir et al., 
2011; Stegen et al., 2018), an inhibitor of bone formation, by modify-
ing H3 K9 acetylation at the Sost promoter, silencing SOST expression. 
Additionally, SIRT1 activates PGC1α transcriptional activity to induce 
mitochondrial biogenesis and the induction of antioxidative enzymes, 
which can protect bone cells and inhibit the generation of mitochondrial 
ROS (Cantó et al., 2009; He et al., 2010; Yao et al., 2018). In addition 
to its stimulatory actions on osteogenic differentiation from bone mes-
enchymal stromal cells (BMSCs), SIRT1 has also been shown to play a 
role in mature osteoblasts (Figure 2c). Upregulation of SIRT1 inhibits 
H2O2‑induced osteoblast apoptosis via the FoxO1/β‑catenin pathway 
(Yao et al., 2018). Similarly, SIRT1 has been shown to suppress osteo-
blast apoptosis by inhibiting both the p53-p21 and NF-κB signaling 
pathways (Gu et al., 2019; Huang et al., 2012). Furthermore, SIRT1 has 
been shown to repress osteoclast differentiation through negative reg-
ulation of NF-κB and positive regulation of FoxO transcription factors 
(Edwards et al., 2013; Kim et al., 2015; Figure 3a).

The roles of sirtuins in osteocytes are less studied to date. A 
recent study demonstrated that SIRT1-dependent deacetylation of 
the Sost promoter resulted in decreased sclerostin expression and 
enhanced WNT/β-catenin signaling, leading to increased bone mass 
in mice (Stegen et al., 2018; Figure 3b).

5.2  |  SIRT2-7

To date, the roles of other sirtuins in bone cells in vitro have not 
been extensively studied. Inhibition of SIRT2 with its specific in-
hibitor, AGK2, suppressed the differentiation of BMMs into oste-
oclasts by reducing the expression of c-Fos and nuclear factor of 
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F I G U R E  2 Sirtuins regulate BMSCs, osteogenic differentiation, and osteoblast function through multiple downstream targets. (a) SIRT1 
maintains BMSC self-renewal and stemness through its direct regulation of SOX2. (b) SIRT1 regulates osteogenic differentiation of BMSCs 
by directly or indirectly interacting with RUNX2, β-catenin, SOD2, PPARγ, FOXOs, PGC1α, and SOST, thus modulating the expression of 
their target genes. SIRT3 decreases ROS production by stimulating SOD2, and SIRT3 also enhances cellular respiration by increasing the 
activities of complex I, complex II, complex III, and IDH2. (c) SIRT1 regulates the function of osteoblast by directly or indirectly regulating 
β-catenin, FOXO3a, and the p53-p21 and NF-κB signaling pathways, modulating the expression of their targets. SIRT3 decreases ROS 
production by stimulating SOD2. SIRT6 interacts with RUNX2 and OSTERIX via deacetylating H3 K9 in their promoters and increasing the 
expression of their target genes. SIRT7 promotes the transcriptional activity of OSTERIX by deacetylating its promoters and increasing 
expression of its target genes. BMSCs, bone mesenchymal stromal cells; SOD2, sex-determining region Y-box 2; RUNX2, regulating runt-
related transcription factor 2; SOD2, superoxide dismutase 2; PPARγ, peroxisome proliferator-activated receptor γ; FOXOs, forkhead box O 
transcription factors; PGC1α, peroxisome proliferator-activated receptor γ coactivator 1α; SOST, sclerostin; ROS, reactive oxygen species; 
IDH2, isocitrate dehydrogenase 2; FOXO3a, forkhead transcription factor 3a; NF-κB, nuclear factor kappa-light-chain-enhancer of activated 
B cells; H3 K9, histone H3 at lysine 9; MPP, matrix processing peptidase; Ac, acetylation; SDH, succinate dehydrogenase; TCA, tricarboxylic 
acid cycle
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activated T cells, cytoplasmic 1 (NFATc1; Jing et al., 2019). SIRT3 
was required for osteogenic differentiation through positive reg-
ulation of SOD2 and maintenance of mitochondrial function in 
osteoblasts (Ding et al., 2017; Gao et al., 2018; Figure 2b). Despite 
its clear protective role in osteogenesis, the effect of SIRT3 on 
osteoclastogenesis still remains controversial. Deletion of SIRT3 
in BMMs enhanced osteoclast differentiation through modulation 

of ROS, which stimulated the differentiation and activation of os-
teoclasts (Kim et al., 2017). These findings are in contrast to a 
recent finding that demonstrated that SIRT3 positively regulated 
osteoclastogenesis by activating the mammalian target of rapa-
mycin (mTOR) pathway (Ho et al., 2017). In addition to the differ-
ent experimental conditions and materials used, such as BMMs 
of different origins. Impaired ATP production following SIRT3 

F I G U R E  3 Sirtuins regulate osteoclast and osteocyte function through multiple downstream targets. (a) SIRT1 inhibits the activity of the 
NF-κB protein complex through the deacetylation of lysine 310 on the p65 subunit and thus decreases the expression of its target genes. 
SIRT3 decreases ROS production by stimulating SOD2 in mitochondria. Excessive ROS levels stimulate autophagy and promote the release 
of proteolytic enzymes (e.g., CTSK, MMP9) from lysosomes to resorb bone. Furthermore, SIRT3 regulates ATP generation, which is required 
for the generation of hydrogen ions released through vacuolar ATPase proton pumps to create an acidic environment in the resorptive pit. 
SIRT6 deacetylates the ERα protein to prevent its proteasomal degradation and promotes transcription of FasL in preosteoclasts, resulting 
in osteoclast apoptosis. (b) SIRT1-dependent deacetylation of the Sost promoter results in decreased sclerostin expression and enhanced 
WNT/β-catenin signaling. NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; ROS, reactive oxygen species; SOD2, 
superoxide dismutase 2; CTSK, cathepsin K; MMP9, matrix metalloproteinase-9; ATP, adenosine triphosphate; ADP, adenosine diphosphate; 
ERα, estrogen receptor alpha; FasL, fas ligand
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deficiency could also explain the above discrepancy due to the 
high energy demand of osteoclastic bone resorption (Ishii et al., 
2009). In addition, autophagy is involved in osteoclastic bone 
resorption, which is regulated by ROS levels (Scherz-Shouval & 
Elazar, 2011; Figure 3a). Deletion of SIRT6 in BMSCs resulted in 
impaired osteogenesis (Sun et al., 2014; Zhang, Cui, et al., 2016), 
whereas overexpression of SIRT6 impaired osteoblast differentia-
tion of human MSCs (Xiao et al., 2019). The exact mechanism by 
which SIRT6 affects osteogenesis requires further investigation. 
SIRT6 has been shown to promote osteoblast activity through di-
rect interaction with RUNX2 and Osx via deacetylating histone 
H3 at lysine 9 (H3 K9) in their promoters (Sugatani et al., 2015). 
Furthermore, SIRT6 has also been shown to regulate osteoclas-
togenesis. The absence of SIRT6 impaired osteoclastogenesis 
associated with increased OPG expression (Park et al., 2016; 
Sugatani et al., 2015), whereas SIRT6 deficiency was reported to 

induce activation of osteoclasts by inhibiting transcription of Fas 
ligand (FasL) in preosteoclasts, resulting in an increased number 
of osteoclasts (Moon et al., 2019). Details of the regulation mech-
anisms need to be further clarified. A more recent study showed 
that SIRT7 knockdown accelerated osteogenesis of human 
BMSCs, at least in part via the Wnt/β-catenin signaling pathway 
(Chen et al., 2017). In this regard, it is noteworthy that SIRT7 acts 
on multiple cell types to regulate bone metabolism.

6  |  POTENTIAL THER APEUTIC 
AGENTS TARGETING SIRTUINS FOR THE 
TRE ATMENT OF OSTEOPOROSIS

These findings open up a new line of investigation into the meta-
bolic control of sirtuins and modulation of their activity by small 

F I G U R E  4 Timeline of the discovery of representative sirtuin-activating compounds and their preclinical and clinical effects. (a) The 
effects of different sirtuin-activating compounds on bone mass were determined using animal studies. (b) The chart shows the distribution 
and percentage of indications for clinical studies of sirtuin-activating compounds registered on ClinicalTrials.gov, which were started 
between January 2004 and July 2020. We excluded studies with suspension, termination, and withdrawal statuses and those without 
FDA-defined phases. Other diseases included Friedreich ataxia, pseudoachondroplasia, lymphangioleiomyomatosis, endometriosis, 
common cold, knee osteoarthritis, infertility, renal dysfunction, COVID-19, cancer, allogeneic hematopoietic cell transplantation, and 
ataxia–telangiectasia. (c) The graph shows the number of studies of each sirtuin-activating compound posted on ClinicalTrials.gov each year 
between 2004 and 2020, based on the start date. We excluded studies with suspension, termination, and withdrawal statuses. FDA, food 
and drug administration; COVID-19, coronavirus disease 2019. 1(Howitz et al., 2003), 2(Bieganowski & Brenner, 2004), 3(Milne et al., 2007), 
4(Hoffmann et al., 2013), 5(Libri et al., 2012), 6(Hubbard & Sinclair, 2014), 7(Pillai et al., 2015), 8(Rahnasto-Rilla et al., 2018), 9(Pearson et al., 
2008), 10(Feng et al., 2014), 11(H. Zhang, Ryu, et al., 2016), 12(Fang et al., 2016), 13(Zainabadi, Liu, Caldwell, et al., 2017), 14(Stegen et al., 
2018), 15(Mercken et al., 2014), 16(Artsi et al., 2014), and 17(Cheng et al., 2018)
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molecules. The activation of sirtuins either by genetic or by phar-
macological means extends life span and promotes the health of a 
wide variety of organisms (Kaeberlein et al., 1999; Kanfi et al., 2012; 
Mercken et al., 2014; Mitchell et al., 2014; Satoh et al., 2013), thus 
demonstrating the feasibility of developing drugs that target sirtuins 
in the treatment of osteoporosis.

6.1  |  SIRT1

Resveratrol, the first generation of SIRT1 activator discovered 
in 2003, is a polyphenol found in nuts, grapes, and other plant 
sources, and can increase SIRT1 protein expression in a dose-de-
pendent manner (Kim et al., 2014) and extend the life span of yeast 
(Howitz et al., 2003). Cumulating evidence has demonstrated the 
protective effect of resveratrol on osteoporosis (Pearson et al., 
2008). Mice treated with resveratrol for over 18 months showed 
moderate improvements in both trabecular and cortical bone 
mass, indicating protective effect of SIRT1 activation on aging-
related bone loss (Pearson et al., 2008; Figure 4a). Furthermore, 
resveratrol treatment protected against bone loss in OVX models 
of postmenopausal osteoporosis (Feng et al., 2014). In addition to 
the osteoporosis model, resveratrol administration for 10 weeks 
also increased bone mass and osteoblast number in young mice 
(12-week-old; Zhao et al., 2018). However, resveratrol may be 
able to activate SIRT3 (Chen et al., 2015) and SIRT5 (Gertz et al., 
2012) as well as other non-sirtuin targets, including AMPK (Fulco 
et al., 2008), F1-ATPase (Gledhill et al., 2007), and PARp1 and Thr-
tRNA (Sajish & Schimmel, 2015). To avoid this, more specific and 
selective SIRT1 activators with a greater substrate-binding affin-
ity for SIRT1 have been developed.

SRT1720, SRT2104, and SRT3025 are representative sirtu-
in-activating compounds (STACs) discovered in the past two de-
cades. SRT1720 was found to be beneficial for preventing bone 
loss. For instance, femoral trabecular bone mass in aged mice 
(12-month-old) increased by 50% after five months’ treatment 
of SRT1720 (Zainabadi, Liu, Caldwell, et al., 2017). Similarly, ad-
ministration of SRT1720 attenuated bone loss in OVX models 
(Zainabadi, Liu, Caldwell, et al., 2017). These benefits could be 
attributed to the stimulation of bone formation, inhibition of re-
sorption, and reduction in sclerostin levels (Stegen et al., 2018). 
Among the various STACs, SRT2104 not only extended the life 
span in mice, but also enhanced BMD by more than 65% com-
pared with that of control mice, which might be a result of higher 
mitochondrial content and decreased inflammation (Mercken 
et al., 2014). SRT3025 was found to significantly restore bone 
mass and structure in OVX mice by inhibiting the expression of 
sclerostin (Artsi et al., 2014). In addition, drugs targeting SIRT1 
may also have the potential to treat other bone disorders. For ex-
ample, activation of SIRT1 may protect against bone loss caused 
by the use of glucocorticoids and thiazolidinedione, both of which 
are associated with impaired osteoblast differentiation and, at 
least in part, due to the diversion of MSCs toward the adipocyte 

lineage (Briot & Roux, 2015; Hou et al., 2019; Schwartz, 2008). 
Similarly, the SIRT1 agonist SRT2104 may help alleviate immobi-
lization-induced osteoporosis (Mercken et al., 2014), a common 
indication in the aging population. Finally, modulation of SIRT1 
expression may prove effective for combatting Paget's disease, 
which is the second most common bone disorder after osteoporo-
sis, both of which are associated with defects in bone remodeling 
(Feng & McDonald, 2011). These findings provide compelling evi-
dence suggesting that SIRT1 may serve as a potential therapeutic 
target for combating osteoporosis and other bone disorders.

6.2  |  SIRT3

Honokiol is a natural biphenolic compound derived from the bark of 
magnolia trees that can bind to SIRT3 and increase SIRT3 expression 
and activity (Pillai et al., 2015, 2017). Honokiol has been reported to 
block agonist-induced and pressure overload-mediated heart failure 
(Pillai et al., 2015) as well as the associated mitochondrial damage 
and cell death (Pillai et al., 2017), and was accompanied by upregula-
tion of SIRT3 expression and activity. At the time of writing, there 
have been no studies exploring the effect of honokiol in osteoporo-
sis models. In addition, the aforementioned protective effect of res-
veratrol on bone might be mediated, at least in part, by SIRT3 as the 
protective effects of resveratrol were blunted by deletion of SIRT3 
(Chen et al., 2015). Therefore, STACs should be used in combination 
with sirtuin transgenic mice in future mechanistic studies to better 
understand the roles of each sirtuin in bone.

6.3  |  SIRT6

In 2016, You and colleagues reported the first synthetic SIRT6 acti-
vator through screening of pyrrolo[1,2-a]quinoxaline derivatives (You 
et al., 2017). Later, cyanidin was found to be a more potent SIRT6 acti-
vator and shown to increase both the expression and activity of SIRT6 
(Rahnasto-Rilla et al., 2018; You et al., 2019). Cyanidin could protect 
cells against oxidative stress, thus reducing the risk of age-related 
diseases (Kumar and Pandey, 2013; Smeriglio et al., 2016). A recent 
animal study demonstrated that cyanidin treatment protected against 
bone loss in OVX mice by inhibiting osteoclast formation and bone 
resorption (Cheng et al., 2018). More studies on cyanidin in other os-
teoporosis models are needed to test its therapeutic effect on bone 
loss prevention and potentially lead to clinical trials in the future.

More recently, using an activity-based screening platform, a vari-
ety of compounds were found to be able to stimulate SIRT6-mediated 
deacetylation against the H3 acetyl-lysine 9 peptide. It is interesting 
to note that the majority of these activators consist of a terminal 
negative charge and linear aliphatic chain. Using further simulation 
analysis, the same group developed a more potent SIRT6 activator, 
CL5D (Klein et al., 2020). All these findings provide an important 
foundation for understanding the physiological function of SIRT6 in 
vivo and to investigate its potential in osteoporosis treatment.
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6.4  |  NAD+

NAD+ is an essential sirtuin substrate, and the abundance of NAD+ 
regulates the enzymatic activity of sirtuins (Imai & Guarente, 2014; 
Sauve et al., 2006). Restoration of NAD+ improved both the life span 
and health span in animal models of the Werner syndrome, which 
is accompanied by severe osteoporosis (Fang et al., 2019; Oshima 
et al., 2017). NAD+ boosters serve as another class of STACs that 
restore NAD+ levels and potentially activate all seven sirtuins 
(Bonkowski & Sinclair, 2016). Nicotinamide mononucleotide (NMN), 
a key NAD+ intermediate, has been shown to enhance NAD+ bio-
synthesis and ameliorate various pathologies in mouse models (Imai 
& Guarente, 2014; Mills et al., 2016). Mills et al. (2016) showed that 
NMN could provide modest protection against osteoporosis in mice. 
Nicotinamide riboside (NR), another natural precursor of NAD+, has 
been shown to extend the life span in both wild-type mice (Zhang, 
Ryu, et al., 2016) and progeria animal models (Fang et al., 2014, 
2016). In addition, NR also prevents high-fat diet-induced glucose 
dysregulation (Cantó et al., 2012), noise-induced hearing loss (Brown 
et al., 2014), cardiac injury (Xu, Barrientos, et al., 2015), and stem 
cell-niche depletion (Zhang, Ryu, et al., 2016). Unfortunately, bone 
phenotypes were not included in the above reports. Future stud-
ies are warranted to investigate the effect of NR on bone mass in 
animal models of osteoporosis. Another question to be answered is 
whether NAD+ precursors exert their protective effects by activat-
ing all or some sirtuins.

7  |  IMPLIC ATIONS FROM CLINIC AL 
STUDIES

Despite the encouraging evidence from preclinical researches, the 
clinical use of sirtuin activators for the treatment of osteoporosis 
is not fully supported by sufficient clinical evidence. Nevertheless, 
several clinical studies have pointed out the link between sirtuins 
and osteoporosis. For example, women with osteoporotic hip frac-
ture had lower SIRT1 expression at the femoral neck (El-Haj et al., 
2016). Single nucleotide polymorphisms (SNPs) in SIRT1 (associated 
with lower SIRT1 expression) were also found to be associated with 
bisphosphonate-induced osteonecrosis in an exome-wide associa-
tion analysis (Yang et al., 2018). These findings, together with the 
aforementioned preclinical studies, provided early evidence sug-
gesting that SIRT1 might serve as a potential therapeutic target for 
the treatment of bone disorders. However, there are still outstand-
ing questions to be answered. For example, whether osteoporosis 
is triggered by dysregulated sirtuin activity or whether sirtuin dys-
function contributes to the progression of osteoporosis remains to 
be revealed. Other issues, including the effect of sirtuin activation 
on fracture risk and the healing of osteoporotic fracture, are impor-
tant clinical questions to be adequately addressed.

Currently, more than 100 ongoing clinical trials are evaluat-
ing the safety and physiological activity of STACs for treating 
human diseases such as cardiovascular diseases, type 2 diabetes, 

and inflammation (Baksi et al., 2014; Bonkowski & Sinclair, 2016; 
Figure 4b). Some of these studies have shown the benefits of sir-
tuins on the cardiovascular system and metabolic diseases, while 
others reported little or no effects. Resveratrol is the most studied 
STAC in clinical trials, with NR playing a promising role (Figure 4c). 
To the best of our knowledge, none of these STACs have been suc-
cessfully translated into clinical practice for various reasons (those 
under clinical trial are not accounted for). However, resveratrol, due 
to its low bioavailability and potency, has demonstrated variable 
efficacy in humans (Tomé-Carneiro et al., 2013). Synthetic STACs, 
such as SRT1720, failed to enter clinical trials due to limited target 
specificity (Dai et al., 2018; Huber et al., 2010; Nguyen et al., 2013). 
On the other hand, SRT2104, which mimics the effects of caloric 
restriction and extends the life span of male mice (Mercken et al., 
2014), has entered phase II trials with few side effects (Hoffmann 
et al., 2013; Venkatasubramanian et al., 2013). SRT3025 was tested 
in healthy male volunteers for the treatment of metabolic diseases 
but the trial was stopped by GlaxoSmithKline (GSK) due to unknown 
reasons (ClinicalTrials.gov Identifier: NCT01340911). Although NR 
administration increased blood NAD+ levels and was well tolerated, 
it has not resulted in a striking improvement in any diseases so far 
(Dollerup et al., 2018; Dollerup et al., 2018; Katsyuba et al., 2020; 
Martens et al., 2018). Oral administration of NMN was reported to be 
safe and feasible in healthy people. Furthermore, the trend toward 
decreased blood glucose levels in healthy participants after NMN 
treatment is a positive sign (Irie et al., 2020). These findings suggest 
that challenges and barriers still exist in the translation of STACs to 
clinical practice. Questions to be answered include optimal dosage, 
duration of treatment, and long-term side effects. Therefore, future 
clinical studies need to be designed with good rationale to deter-
mine the dosage and administration duration for specific diseases 
(Gilmour et al., 2020; Lautrup et al., 2019).

Despite the abovementioned preclinical and clinical evidence for 
the effects of STACs, clinical trials, including osteoporosis as indica-
tion, are very limited. A randomized placebo-controlled trial showed 
that resveratrol treatment for 16  weeks significantly increased 
bone mass in elderly men with obesity (ClinicalTrials.gov Identifier: 
NCT01412645; Ornstrup et al., 2014). A more recent randomized 
controlled trial also demonstrated that regular resveratrol supple-
mentation improved BMD in postmenopausal women (Wong et al., 
2020). Further clinical trials to examine the effects of STACs alone 
or in combination with existing anti-osteoporosis drugs on the treat-
ment of osteoporosis are of clinical interest.

8  |  SUMMARY AND FUTURE 
PERSPEC TIVES

This extensive updated review reveals the important roles of 
sirtuins in diverse bone disorders. As sirtuins exert various bio-
logical effects on bone cells, they and their related underlying 
mechanisms are promising novel targets for the development of 
anti-osteoporotic therapies. Based on the current evidence, SIRT1 
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appears to be the most promising therapeutic target for the pre-
vention of bone loss as it counteracts imbalanced bone remod-
eling through its actions on MSCs, osteoblasts, osteoclasts, and 
possibly hormone signaling pathways. In addition, the cumulative 
preclinical evidence of the anti-osteoporotic effects of SIRT1 ac-
tivity enhancement has laid the foundation for many planned or 
ongoing clinical trials. Despite significant progress over the past 
few years, many research questions have yet to be answered. For 
example, it is important to know whether there is any discrepancy 
in terms of sirtuin activity with respect to sex and chronological 
age. Moreover, the biological functions of less studied sirtuins 
such as SIRT2, SIRT4, and SIRT5 in physiological and pathological 
conditions have not been adequately investigated. More in-depth 
mechanistic studies are expected to provide a better understand-
ing of the effect of sirtuins on individual bone cell type by using 
tissue-specific deletion and transgenic animal models. From a 
clinical perspective, more specific and selective sirtuin activators 
with clearer pharmacokinetic and pharmacodynamic properties 
are needed to obtain more consistent and conclusive outcomes.
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