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Abstract
Stone-flaking technology is the most enduring evidence for the evolving cognitive abilities of

our early ancestors. Flake-making was mastered by African hominins ~3.3 ma, followed by

the appearance of handaxes ~1.75 ma and complex stone reduction strategies by ~1.6 ma.

Handaxes are stones flaked on two opposed faces (‘bifacially’), creating a robust, sharp-

edged tool, and complex reduction strategies are reflected in strategic prior flaking to pre-

pare or ‘predetermine’ the nature of a later flake removal that served as a tool blank.

These technologies are interpreted as major milestones in hominin evolution that reflect the

development of higher-order cognitive abilities, and the presence and nature of these tech-

nologies are used to track movements of early hominin species or ‘cultures’ in the archaeo-

logical record. However, the warranting argument that certain variations in stone tool

morphologies are caused by differences in cognitive abilities relies on analogy with techni-

cal replications by skilled modern stoneworkers, and this raises the possibility that research-

ers are projecting modern approaches to technical problems onto our non-modern hominin

ancestors. Here we present the results of novel experiments that randomise flake removal

and disrupt the modern stoneworker’s inclination to use higher-order reasoning to guide the

stone reduction process. Although our protocols prevented goal-directed replication of

stone tool types, the experimental assemblage is morphologically standardised and

includes handaxe-like ‘protobifaces’ and cores with apparently ‘predetermined’ flake remov-

als. This shows that the geometrical constraints of fracture mechanics can give rise to what

appear to be highly-designed stoneworking products and techniques when multiple flakes

are removed randomly from a stone core.

Introduction

If the archaeological traces could have been generated by simpler actions, or if the actions
could have been organized by a simpler cognitive system, then the simpler explanation must
be favoured. ([1]:S12)
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The persistence of stone tool-making across sequential hominin species suggests that the homi-
nin phenotype evolved alongside this technology [2, 3] and changes in toolmaking through
time and across species is evidence of cognitive evolution [4–8]. In one approach to studying
cognitive abilities, tool categories—the ‘types’ archaeologists identify for comparative analysis
—are assumed to reflect the forms that were intentionally produced by hominin toolmakers [9,
10]. Cognitive ability is inferred from the regularity of geometrical attributes of artefact types
because metrical conformity suggests greater attention to design and more advanced cognition
[8, 11–17]. In a second approach, the technical complexities of tool manufacture—a relatively
direct reflection of cognitive ability—are assessed through stone-flaking experiments by mod-
ern flintknappers. The experimental approach includes narrative descriptions of how stones
are transformed into types [18–29]; empirical studies of brain-imaging [30–35] and body
kinaesthetics [36–40]; and theoretical modeling of the complexities of knapping [41–44]. Many
explanations of cognitive evolution draw on both typological and experimental analyses
because regularity of geometrical attributes on tool types is assumed to arise from cognitively
more demanding manufacturing protocols [24, 45–49].

‘Least-effort’ stone tools ([50]:225–226) are the technological baseline against which com-
plexity is evaluated because they require the least amount of skill to produce [17]. Least-effort
flaking is conditioned by the size, shape, and flaking quality of the raw material, and the range
of tools forms in a least-effort assemblage can be largely explained by these variables combined
with the contingencies of tool function, the nature of the stone, and the distance to the stone
source [21, 22, 50]. More advanced cognitive performance can be inferred from assemblages
where the ‘standard forms begin to be hacked out regardless of the size, shape and flaking prop-
erties of the initial raw material’ ([50]:233). The bifacial handaxe is widely accepted as early evi-
dence of stone-flaking to produce a ‘standard form’; other examples include ‘predetermination’
by purposeful core manipulation to produce flakes [51–58], blades [59], and polyhedrons [49].
However, for reasons related to the geometries of stone-flaking, certain characteristics and
attributes of these relatively ‘advanced’ tools may occur in the simplest approaches stone flak-
ing, a phenomenon referred to as the ‘spandrel effect’ [42]. Evaluating this theoretical possibil-
ity is difficult because the elements and attributes of a least-effort baseline technology are
poorly described or extrapolated from uncontrolled knapping experiments that attempted to
replicate archaeological assemblages defined a priori as least-effort.

Here we define least-effort flaking in reference to a model of the structure of stone flaking
[41, 42] and present the results of novel experiments that approximate least-effort flaking. We
reverse the approach of traditional replications studies: rather than inferring cognitive perfor-
mance from the experiences of a modern flintknapper replicating a typologically-defined
gestalt, we instead create a simple approach to stoneworking by explicitly disrupting the hierar-
chical, ‘thinking ahead’ a modern flintknapper inevitably brings to the replication task [42]. In
describing the experimental products, we identify progressive changes, or lack of changes, in
commonly measured attributes on cores and flakes; we also describe the initial development of
core morphologies and their continuity or discontinuity as least-effort flaking proceeds.

Experimental Design and Methodology
Controlled stone-flaking involves the arrangement of irreducible behavioural ‘cells’, called
‘flake units,’ to produce effects [41, 42, 60]. A flake unit consists of the geometrical identifica-
tions and gestural actions that are necessary to strike a flake from a stone. The phenomenon
that allows flakes to be removed sequentially is the simultaneous destruction and realignment
of zones of ‘high mass’ on the core face with each flake removed. When a flintknapper works
intentionally towards a preconceived goal, rearrangements of high mass are predicted and
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acted on strategically and tactically [24, 61] and flake units are arranged hierarchically [41].
Hierarchical strategies are necessary to create exceptionally complex stone tools, and are a hall-
mark of the cognition underlying technical skills in modern humans [62–64].

But, because reconfiguration of mass is inevitable when a flake is removed, it is possible to
progressively change the form of the core with no more intention than is inherent within the
flake unit itself (the intent to remove a single flake). In this more simple process, core forms are
inevitably created because mass arrangements change with each flake removed, yet flake units
can be linked together in simple chains without a higher-level goal of creating a ‘standard
form’ [41, 42]. In this study, ‘least-effort’ flaking refers to this approach to stoneworking. An
empirical problem for archaeologists studying cognitive evolution—and one that is rarely
acknowledged or explored in detail (cf. [4]:178)—is differentiating the inevitable products of
simple ‘least-effort’ chaining from products that could only have been created by hierarchical
strategies. The know-how of modern human flintknappers is traditionally the deciding factor
on whether hierarchical flake unit arrangements were necessary to achieve the analysed effect,
but the propensity for modern humans to rely on hierarchical reasoning [62–64] raises the pos-
sibility that these strategies have been unnecessarily projected onto hominin stoneworkers
[42].

Our experimental protocols were designed to explore least-effort flaking by explicitly dis-
rupting hierarchical thinking and forcing an experienced flintknapper (MWM) to produce
flakes in simple chains. This was accomplished by denying the knapper a choice in how to pro-
gressively reduce the core; instead, the knapper identified all potential platforms on the experi-
mental core and a random number generator was used to choose the platform to strike. This
effectively prevented the knapper’s use of strategic and tactical reasoning to reduce the core
and thwarted unconscious tendencies to work towards preconceived goals or ‘standard’ core
forms. The experimental core and flake assemblage was created by linking flake units in simple
chains, and is one form of ‘least-effort’ stone flaking [41, 42].

Since the focus of the experiments was on the core and flake morphologies created by flake
unit chains, an individual flake unit was an experimental ‘black box,’ viewed in terms of its out-
put rather than its internal workings. The knapper was given uninhibited scope to apply his
intuitive assessments and gestural know-how to remove as large a flake as possible, of whatever
shape, from the selected unprepared platform using direct freehand hard-hammer percussion.
The zones of high mass included rounded natural surfaces covered in cortex, angular
enhanced-mass islands of flake scars and arrises, and combinations of these. This ‘maximisa-
tion protocol’ was an unambiguous goal contingent only on aspects internal to the flake unit,
such as indentor selection, mass configuration on the core, flaking angle, strength of blow,
hand-eye coordination, etc. The maximisation protocol may not characterise early hominin
intentions—in many cases, such as retouching to create tool edges, this was evidently not the
case—but this protocol was an experimental necessity to establish a clearly-defined starting
point for exploring the ‘baseline’ assemblage the experiments created. The influence of the
maximisation protocol on the experimental results, as well as other aspects of the experimental
design that may have influenced results, are discussed in S1 Text.

The maximisation protocol affected howMWM identified and defined suitable platforms.
Platform identification and numbering involved an estimate of allometric effects combined
with the goal to maximize flake size. For example, if a cobble or flake blank had a knappable
platform that extended continuously along a stone for 12 cm, and it was estimated that core
mass was suitable for striking 6 cm-wide flakes from it, two platforms were identified (spaced
appropriately); but if it was estimated that idiosyncrasies of the core mass would only allow the
removal of 4 cm-wide flakes, three platforms were identified. Four cm-wide flakes might have
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been struck from the former platform but these would have violated the maximization
protocol.

The experiments consisted of the reduction of 29 large silcrete and mudstone cobbles and
30 medium-sized silcrete flakes (Table 1) until they dropped below the arbitrary-defined target
weights of 400 grams for cobbles and 25 grams for flake blanks. The stones selected for knap-
ping were moderately tough, ranking about 4.0 to 4.5 on Callahan’s ([65]:Table 3) lithic grade
scale, and similar in knapping quality to quartzite or coarse-grained chert. Each blow removed
a flake and created a core with a new morphology, resulting in data for 1115 cores from the 59
stones (S1 Table). Cores were produced sequentially from each stone, but, because platform
selection was randomized, reduction effectively began anew with each flake removed. The
cores were classified into two typological schemes. As each flake was removed, the core and
flake was classified by MWM into technological types (after [66]). Then each flake was con-
joined back onto the core with double-sided tape and, as each flake was added, the core was
classified by YP into Isaac’s [67] morphological typology developed for the Middle Pleistocene
assemblage from Olorgesailie, Kenya. The Olorgesailie typology was chosen because it accom-
modates and describes the wide range of variation of core types in early stone artefact assem-
blages. (The results of the typological study will be described elsewhere). Core and flake
attributes were measured according to methods described below.

Stone hammers were not used in the experiments because the heavy blows necessary to
strike flakes from large stone cobbles causes significant hammerstone attrition after a few
blows and, eventually, catastrophic failure. To maintain indentor consistency over the more
than 1000 percussion blows delivered in the experiments, and to aid in replication of these
experiments, five solid copper bars were used (Table 2). These indentors retained their original
mass across all of the experiments. Copper indentors deformed slightly on impact and were
therefore somewhat ‘softer’ than stone hammers, and in 33 cases it proved necessary to use a
non-deforming steel hammer to initiate fracture. Indentor size was scaled to the size of the
intended flake, with the larger indentors used mostly in cobble reduction and smaller indentors
in flake blank reduction. The copper indentors were used in the same manner as stone

Table 1. Dimensions of cobbles and flake blanks reduced in the experiments.

Silcrete cobbles**, Mean +/- SD,
N = 16

Mudstone cobbles***, Mean +/- SD,
N = 13

Silcrete flake blanks****, Mean +/- SD,
N = 30

Length 258.1 +/- 39.5 247.0 +/- 36.0 128.9 +/- 20.3

Width 203.2 +/- 15.2 191.0 +/- 27.8 93.7 +/- 17.9

Thickness 149.9 +/- 24.0 135.8 +/- 33.0 37.4 +/- 9.9

Grams 8919.7 +/- 2327.7 6833.3 +/- 2829.9 367.2 +/- 184.6

Length/Width* 1.27 +/- 0.2 1.30 +/- 0.2 1.41 +/- 0.3

Width/
Thickness*

1.38 +/- 0.2 1.47 +/- 0.3 2.62 +/- 0.6

* Ratios presented here and elsewhere were calculated from raw data rather than summary data.

** The fully-rounded silcrete cobbles were from gravel bars of the Hunter River, New South Wales. This fine- to medium-grained silcrete is a composed of

small- (<0.25 mm) to medium-sized (0.25–0.5 mm) sub-rounded quartz grains in a silica matrix and is similar in appearance to orthoquartzite [68]. The outer

surfaces of the cobbles were pocked with shallow incipient cones from water-rolling.

*** The fully-rounded indurated mudstone cobbles were also from the Hunter River, and consisted of metamorphosed silt/clay or volcanic ash [69]. The

stone is slightly rough or chalky in appearance and insufficiently silicified to develop incipient cone cortex.

**** Flake blanks struck from angular blocks of pedogenic silcrete from a modern gravel quarry at Armidale, New South Wales. The stone consists of

medium-sized (0.25–5.0 mm) angular chert fragments distributed irregularly in a silica matrix. Fossil rootlets up to 2.0 mm in diameter are common and the

degree of silicification varied between and within individual stones.

doi:10.1371/journal.pone.0158803.t001
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hammers, held either in a precision grip with the tip aimed at the core platform or in a power
grip and swung like a club or billet. The knapper supported large cores on cloth padding on the
laboratory floor, and, once it became smaller than, on average, 1752.1 grams (starting at about
blow 13), the core was held in the non-dominant hand. To better simulate a ‘natural’ knapping
posture (e.g., [70, 71]), flaking was conducted with the knapper on his knees or sitting on a low
seat (19 cm high). Cores were not supported on or braced by the leg in the manner of Brandon
gunflint knappers (see [72]), as commonly practised by modern flintknappers (cf. [40]).

A ‘blow’ is defined here as a strike that removed a flake. Multiple strikes were often neces-
sary to induce fracture, particularly in initial cobble reduction. Flakes sometimes split in a siret
fracture ([74]:34, [156]) or suffered platform collapse. In these cases, the fragments were reas-
sembled and treated as a complete flake. Quantities of ‘shatter’ were produced during reduc-
tion, consisting of spin-off flakes such as eraillures, lances, and detached finials, as well as small
angular pieces and cortex fragments. Shatter measuring greater than 5 mm was weighed after
each blow, and shatter and dust smaller than 5 mm was weighed together at the end of core
reduction. Small flakes were sometimes produced through ‘spontaneous retouch’ caused by the
lateral or distal margins of a flake levering against the core at the moment of flake detachment,
particularly when striking very large flakes using the padded laboratory floor to support the
core. Spontaneous retouching flakes were weighed with the shatter.

Stoneworking is a sport-like activity that integrates human movement with objects. As such,
it is prone to variation in result because of human mis-timing and the vagaries of the objects
themselves (such as inconsistencies in the stone). The possibility of these variations was exacer-
bated by the experimental design because data recording prevented a natural flaking ‘rhythm’

to develop. To gauge the effects of human error and material factors in this study, the knapper
was required to predict blow outcomes in terms of flake size and platform quality. To predict
flake size, the knapper drew onto the core the outline of the largest flake that might be struck
from the selected platform (cf. [75]); this outline became the knapper’s goal. The outline
included the predicted plan shape and boundary of the flake’s platform. Platform quality was
defined as the likelihood that the goal would be achieved given the nature of the material and
platform/mass geometry. The knapper scored the platform configuration on a five-point scale,
with 3 deemed an average chance of success, 5 the maximum chance, and 1 a minimal chance.
After the flake was removed, the knapper scored ‘blow success’ relative to the outline using a
five-point scale, with 3 as meeting the prediction, 5 as substantially exceeding it, and 1 as failure
(because of platform collapse or mis-hits). Table 3 shows that most platforms and blow success
were ranked 3, although on average the actual results were assessed higher than predicted
results.

The accuracy of the knapper’s predictions were evaluated empirically by measuring the dis-
tance between the outside of the predicted outline and the edge of the flake or flake scar at four

Table 2. Sizes of indentors and frequency of use.

Indentor* Length (mm) Diameter (mm) Weight (g) Blows, cobble reduction, N (%) Blows, flake blank reduction, N (%)

1 117.31 59.07 2674 215 (34.1) 0

2 119.23 49.40 1871 175 (27.8) 1 (0.2)

3 125.24 38.15 1218 134 (21.3) 15 (3.1)

4 102.82 31.80 718 72 (11.4) 184 (37.9)

5 100.61 22.21 335 5 (0.8) 285 (58.8)

6 (steel) 98.74 44.40 1265 29 (4.6) 0

*1–5: solid copper bars. 6: steel hammer head. The masses of indentors 1–3 are ‘very heavy’, ‘heavy’ and ‘medium’ [73].

doi:10.1371/journal.pone.0158803.t002
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points: one on each lateral edge at the midpoint of the flake/scar, one at the distal edge, and
one at the point of force initiation. When the knapper under-predicted the result, the flake
undercut the line and it was preserved on the flake’s dorsal surface. When the knapper over-
predicted the result, the line remained on the core. Lateral edge predictions were the most accu-
rate (Table 4) and despite very different core sizes between the cobble and flake blank experi-
ments, flakes were predicted within a consistent 13% margin of error. Distal edge predictions
were less accurate because of unpredicted overstrikes. Platform depth estimates were the most
inaccurate because of an unconscious, and perhaps idiosyncratic, gesture on the part of the
knapper: in cases when the first blow failed to initiate a crack, the second blow was delivered
slightly closer to the platform edge. This shallower strike decreased the size of the potential
flake by placing the crack path closer to the core face, with the result that the crack could be
successfully initiated without increasing the strength of the blow.

Technology of Cores and Flakes

Core attrition
Cores were weighed after each flake removal and no flakes were struck after a core dropped
below the experimental target weight (Table 5). Reduction decreased the initial starting mass
by about 92–95% through, on average, 16 to 22 blows. Core reduction was a continuous process
with each blow composing a discrete ‘reduction interval’. The decrease in core mass, as a pro-
portion of the starting weight, was exponential and strongly correlated with an increase in
reduction interval for both cobbles (r2 = 0.81278) and flake blanks (r2 = 0.84747) (Fig 1). This
is unsurprising because, as a core shrinks, the absolute size of flakes that can be struck from it
declines, and flakes inevitably become an ever-decreasing proportion of the stone’s starting
mass. However, when flake weight is plotted as a proportion of the core mass just prior to the
blow, the strong correlation with reduction interval disappears for both cobbles (r2 = 0.02601)
and flake blanks (r2 = 0.00586) (Fig 2). Although absolute flake sizes decreased with reduction,
a flake’s mass relative to the core from which it was struck averaged 13.6 +/- 8.99% (N = 1103),
reflecting the experimental protocol to maximize flake size. Despite this, blows struck on flake

Table 4. Difference between predicted flake outlines and actual flake boundaries for successful flake removals.

Cobble Flake Blank

Mean Difference in mm Difference as % of flake attribute Mean Difference in mm Difference as % of flake attribute

Lateral margin 11.41 (N = 636) 12.53 * (N = 636) 4.76 (N = 681) 12.73 * (N = 681)

Distal margin 16.47 (N = 315) 16.75 ** (N = 315) 7.40 (N = 343) 21.94 ** (N = 343)

Platform depth 6.8 (N = 310) 32.27 *** (N = 305) 3.98 (N = 344) 40.45 *** (N = 333)

* Percent of corresponding flake’s maximum width.

** Percent of corresponding flake maximum length.

*** Percent of corresponding flake’s platform depth.

doi:10.1371/journal.pone.0158803.t004

Table 3. Platform count per core and platform quality/blow success.

Cobbles, Mean +/- SD Flake Blanks, Mean +/- SD)

Platform quality* 2.48 +/- 0.83 2.53 +/- 0.70

Blow success** 3.04 +/- 1.16 3.21 +/- 0.99

*Assessed by the knapper prior to striking the flake.

**Assessed by the knapper after striking the flake.

doi:10.1371/journal.pone.0158803.t003
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blanks removed significantly larger proportions of core mass than blows struck on cobbles
(p<0.0001, t = 4.2276, df = 1101, SE 0.542). Also, significantly fewer blows were necessary to
reach the target size for flake blanks (p<0.0001, t = 4.3021, df = 57, SE 1.278). The average
mass of the flake blanks chosen for the reduction experiments was similar to the average mass
of cobble cores at the end of reduction (Tables 1 and 5), and the greater efficiency seen in flake
blank reduction is likely a previously unrecognised allometric effect related to core size rather
than blank type (cf. [76, 77]).

Platform counts and persistence
Some 3338 platforms were identified across the 59 reduction experiments and 32.2% of these
were chosen by the random number generator and removed (Table 6). The remaining 67.8% of

Table 5. Summary data on core attrition.

Cobbles, Mean +/- SD Flake Blanks, Mean +/- SD

Starting grams 7984.4 +/- 2729.4 (N = 29) 367.2 +/- 184.6 (N = 30)

Target grams 400 25

Finished core grams 364.0 +/- 48.5 21.7 +/- 3.1

Percent decrease in mass 94.8 +/- 2.1% 92.4 +/- 4.2%

Number of blows to achieve target 21.7 +/- 5.7 16.2 +/- 4.0

Percent of core mass removed per blow 12.59 +/- 8.65% (N = 630) 14.88 +/- 9.26% (N = 485)

doi:10.1371/journal.pone.0158803.t005

Fig 1. Scatterplot showing the decrease in total core mass relative to reduction interval (blow number).

doi:10.1371/journal.pone.0158803.g001
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platforms were either eliminated by undercutting (55.4%) or were retained on the core at the end
of the experiment (12.4%). Platforms sometimes survived up to 20 blows, although most were
eliminated after 3 blows. These figures vary between flake blanks and cobbles because, on aver-
age, flake blank cores tended to have about 4 more identified platforms than cobble cores (Fig 3).
Because a platform on a flake blank was slightly less likely to be randomly selected, it was also
less likely to be eliminated by striking. Conversely, more potential platforms were concentrated
on flake blank cores and a greater number was likely to be eliminated by undercutting.

A greater number of potential platforms were identified on flake blank cores (10.14 +/-
2.58) than on cobble cores (6.66 +/- 2.54). This can be attributed to the angular shape of flake

Fig 2. Scatterplot showing the decrease in individual core mass caused by the removal of a flake, relative to reduction interval (blow number).

doi:10.1371/journal.pone.0158803.g002

Table 6. Platforms identified and eliminated.

Cobbles Flake Blanks

N % N %

Total number of identified platforms 1637 1740

Platforms eliminated by striking 630 38.5 485 27.9

Platforms eliminated by undercutting 797 48.7 1051 60.4

Platforms not eliminated 210 12.8 204 11.7

Platform persistence (median number of blows a platform remained viable)* 3 3

*Non-eliminated platforms removed from the total in this calculation.

doi:10.1371/journal.pone.0158803.t006
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blanks at the outset of reduction and the acute angle between the ventral and dorsal surfaces.
Suitable platforms were identified on flake blank ventral surfaces with slightly greater fre-
quency (52.8%) than on dorsal surfaces (47.2%). The propensity for flakes in the archaeological
record to be retouched from ventral platforms may be because the regularity of the ventral sur-
face allows for contiguous blows, rather than the nature of the platform edge-angle.

Platform creation and elimination
The total number of platforms created and eliminated did not differ significantly between cob-
ble and flake reduction (p = 0.3170, t = 1.0010, df = 2228, SE = 0.061). Platforms were created
and eliminated at about the same rate through the reduction process in both sets of experi-
ments (Fig 4). Although one platform was always eliminated by flake removal, and others were
eliminated by undercutting, this was balanced by the addition of new platforms through
changes in geometrical configurations. In cobble reduction, two platforms tended to be created
and eliminated on average with each blow. Flake blank reduction proved more dynamic, with
on average 3 platforms created and eliminated with each blow (Table 7). In some experiments,
considerably greater numbers of platforms were eliminated than created (or visa-versa), but
this difference never exceeded 5 platforms for cobbles or flake blanks. On other occasions, plat-
forms were not created, or a blow only eliminated the struck platform. Platform stasis like this
was more common in cobble reduction than in flake blank reduction (Table 8), again indicat-
ing that more dynamic platform transformations occurred in reducing flake blanks. This is
likely related to the allometric effects discussed previously, where greater proportions of core

Fig 3. Comparison of platform counts on cores made on cobbles and flake blanks.

doi:10.1371/journal.pone.0158803.g003
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mass were removed per blow on smaller flake blank cores than on larger cobble cores—in turn
resulting in greater platform elimination and creation per blow.

Platform locations
The locations of struck platforms were classified into four possible positions, as shown in Fig 5.
The frequency of the positions on the experimental cores are presented in Table 9. Since the
platforms for the struck flakes were selected randomly, the Table 9 data is also a proxy for the
overall distribution of potential platforms on the experimental blanks.

Fig 4. Proportion of platforms created and destroyed by reduction interval (blow number) for cobble and flake blank reduction.

doi:10.1371/journal.pone.0158803.g004

Table 7. Platform creation and elimination per blow.

Cobbles (N = 630 blows) Flake Blanks (N = 485 blows)

Platforms created per
blow

Platforms eliminated
per blow

Difference per
blow*

Platforms created per
blow

Platforms eliminated
per blow

Difference per
blow*

Mean
+/-SD

2.27 +/- 1.46 2.21 +/- 1.25 1.08 +/- 1.01 2.92 +/- 1.38 3.13 +/- 1.45 1.20 +/- 1.01

Median 2 2 1 3 3 1

Maximum 8 9 5 8 8 5

Minimum 0 1 0 0 1 0

* Difference between the number of platforms created and eliminated, calculated after each blow.

doi:10.1371/journal.pone.0158803.t007
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In the cobble reduction experiments, the first blow was always onto a Position 4 cortical
platform. As reduction proceeded, potential platforms on cortical surfaces decreased in num-
ber without replacement, while suitable platforms on flake scars proliferated (positions 1 to 3).
Most strikes onto cortical platforms occurred within the first 3 blows and they rarely occurred
after 6 blows (Fig 6). Despite the fact that the starting cobbles were entirely covered in cortex,
only 16.4% of the struck platforms in the cobble experiments were on cortical surfaces.

Over half of the platforms in both sets of experiments were located on negative scars (posi-
tions 1–3), and of these, most were in Position 1, close to the edge of the core and the proximal
end of the flake scar (Table 10). This location near the core edge allows the most ready access
to core mass on the face adjacent to the platform. On cobbles, proportionately greater numbers
of negative-scar platforms were located elsewhere (positions 2 and 3), reflecting more diverse
reduction opportunities on globular stones than on relatively flat flakes.

Table 8. Number of instances when a blow failed to create new platforms or eliminate pre-existing
platforms.

Cobbles (N = 630
blows)

Flake Blanks (N = 485
blows)

New platforms were not created by flake removal 50 (7.9%) 10 (2.1%)

Pre-existing platforms were not eliminated by flake
removal*

214 (34.0%) 50 (10.3%)

*Not including the platform that was struck to remove the flake.

doi:10.1371/journal.pone.0158803.t008

Fig 5. Negative scar on a silcrete cobble showing platform positions. ‘Position 1’ platforms are located in
a zone extending from the proximal end to 30% of the scar’s length, ‘Position 2’ are located between 30% to
80% of the scar’s length, and ‘Position 3’ platforms are located on the scar’s distal end, beyond 80% of its
length. Negative scars are always concave and many of the scars produced in the experiments were
markedly so. Because of this factor, and the difficulty of landing percussion blows in a concave surface,
platforms were usually located within the 10% of the scar’s width extending from the scar’s edge. ‘Position 4’
platforms are cortical surfaces; ventral surfaces or dorsal scar remnants from core reduction on dorsal
surfaces of flake blank cores; or small core scar remnants that could not be classified into the other platform
types.

doi:10.1371/journal.pone.0158803.g005
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Flake scar erasure
Scars from the earliest flake removals are progressively undercut and eliminated, or ‘erased’
[78], as reduction proceeds. Table 11 confirms that the final cores in our experiments dispro-
portionately preserve flake scars produced later in the reduction process, although the earliest

Table 9. Positions of platforms randomly selected for striking.

Cobbles* Flake Blanks

N % N %

Position 1 184 34.0 165 34.0

Position 2 78 14.4 49 10.1

Position 3 70 12.9 39 8.0

Position 4, cortical surface 89 16.4 20** 4.1

Position 4, non-cortical surface 121 22.3 212 43.7

Total 542 485

* Not recorded for cobble experiments 1–4.

** A cortical platform was created in the flake blank reduction experiments when a blow was delivered to a

dorsal cortical facet. Unlike cobble cores, which were 100% covered by cortex at the outset of reduction, the

amount of dorsal cortex coverage varied between flake blanks, and as a result the proportion of cortical

platforms selected in flake blank reduction is not considered meaningful.

doi:10.1371/journal.pone.0158803.t009

Fig 6. Frequency of cortical platforms by reduction interval (blow number).

doi:10.1371/journal.pone.0158803.g006
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scars were often preserved on the final cores (cf. [79]). Braun et al. [78] experimentally
explored rates of scar erasure in the reduction of Oldowan-like cores and found that flake scars
were erased more quickly from small cores (<1.0 kg) than from large ones (>2.0 kg). Our
experimental results demonstrate that the likelihood of scar survival is strongly correlated with
reduction interval for both large cobble cores (r2 = 0.96) and small flake blank cores (r2 = 0.90),
but, in contrast to Braun et al.’s [78] results, the rates of scar erasure shown by the regression
lines do not differ significantly (ANCOVA F[1, 17] = 0.84, p = 0.372). On average, each 10%
increase in reduction interval removed 2.23 +/- 1.54% (N = 314) of the scars on cobble cores,
and 2.25 +/- 2.66% (N = 267) of the scars on flake blank cores. Also, the ratio of total reduction
blows relative to scars on final cores for the large cobble experiments (2.01 +/- 0.46, N = 29)
and the flake blanks experiments (1.82 +/- 0.32, N = 30) do not differ significantly (p = 0.0699,
t = 1.8470, df = 57, SE = 0.103).

These results show that, in our experiments, flakes were eliminated at about the same rate
from large and small cores, consistent with the maximisation protocol and the allometric
effects discussed previously. Flake size was directly related to the size of the core, and erasure
rate was relatively uniform and consistent. In contrast, Braun et al.’s experimental goal was the
removal of ‘usable flakes’ ([78]:526, cf. [80, 81]) from cobbles of various sizes, rather than flakes
of maximum size. ‘Usable’, in this case, may reflect the removal of flakes of similar size from
large and small cobbles; given that flakes of standard size would represent a greater proportion

Table 10. Struck platforms on negative flake scars.

Cobbles* Flake Blanks

N % N %

Position 1 184 55.4 165 65.2

Position 2 78 23.5 49 19.4

Position 3 70 21.1 39 15.4

Total 332 253

* Not recorded for cobble experiments 1–4.

doi:10.1371/journal.pone.0158803.t010

Table 11. Scar preservation on final cores, by reduction interval.

Reduction interval (% of core reduction*) Percentage of final cores with scars preserved from
the reduction interval

Cobbles (N = 29) Flake Blanks (N = 30)

0–10 20.7 16.7

11–20 27.6 50.0

21–30 44.8 33.3

31–40 55.2 53.3

41–50 62.1 56.7

51–60 82.8 80.0

61–70 82.8 83.3

71–80 100.0 80.0

81–90 100.0 90.0

91–100 100.0 100.0

* Percent reduction was calculated for each blow based on the total number of blows required to reduce the

core. This was collated into bins to facilitate comparison across reduction events with disparate numbers of

blows.

doi:10.1371/journal.pone.0158803.t011
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of small core mass than large core mass, this might explain why Braun et al.’s [78] rate of flake
scar erasure was greater during the reduction of small cores.

Inevitability of bifacial flaking and bifacial flake scar organisation
A bifacial platform edge is flaked to two adjacent core faces, whereas a unifacial edge is flaked
to one face only. By this definition, a bifacial platform could not transition to a unifacial plat-
form. Bifacial reduction occurred in all 59 reduction experiments, and bifacial edges were cre-
ated when flakes were struck from platforms at the edges of negative scars created by prior
flake removals, particularly in positions 1–2. Platforms in these positions proliferated as new
negative scars were produced, increasing the likelihood of their random selection. Bifacial
reduction was not an outcome of the knapper’s intent to create a bifacial edge, but was instead
an inevitable outcome of identifying potential platforms on surfaces of negative scars created
by prior flake removals.

Unlike globular cobbles, a flake blank consists of two volumes [82]—the dorsal and ventral
surfaces—clearly defined by the blank’s edge. This separation allowed a detailed examination
of the transition from unifacial to bifacial reduction in the flake blank experiments. All core
reductions begin with unifacial reduction (one flake struck to one core face). Fig 7 shows the
frequency of various pathways from this unifacial edge, through combinations of independent
unifacial or bifacial platforms, to one bifacial platform edge. Independent platforms merged
when they extended laterally and overlapped. The most common progression involved the ini-
tial production of two independent unifacial platform edges (and never more than three) fol-
lowed by one of these edges becoming bifacial; subsequent reduction merged them into one
bifacial platform edge. The trend was for platform complexity early in reduction quickly resolv-
ing to one bifacial edge; this occurred within 6 blows from the start of reduction in 75% of the
flake blank experiments, and never required more than 12 blows.

Initial platforms on flake blanks were distributed around the perimeter edge that defined
the two core volumes. This organisation strongly influenced the development of a bifacial edge,
leading to centripetal (‘radial’) scar patterns, with flakes struck from the bifacial perimeter
towards the centre (Fig 8). Radial patterning was produced without a deliberate intention to do
so. In contrast to flake blanks, cobbles lacked a distinct edge and the distribution of potential
platforms at the outset of the experiments tended to be more variable. Also, significantly fewer
starting platforms were identified on the unmodified cobbles (6.38 +/- 2.27) than on the
unmodified flake blanks (10.40 +/- 1.52) (p<0.0001, t = 8.018, df = 57, SE = 0.501). The
removal of the first flake from a cobble (a ‘cobble-opening’ or entame flake ([83]:339–342) usu-
ally created two new platforms, and often more than two, on the negative scar. This prolifera-
tion increased the likelihood that a negative-scar platform would be randomly chosen rather
than a platform on a cortical surface, an effect that tended to increase with each flake removed.
The effect on some cobble cores was the creation of a bifacial edge around only part of the cob-
ble’s periphery, and the repetitive striking of flakes from this bifacial edge as reduction pro-
ceeded. Core ‘choppers’—with a rounded cortical surface opposite a bifacially flaked edge—
were unintentionally created by this process (Fig 9), although this is sometimes considered an
intentional feature of tool design (e.g., [46]). Large bifacial cobble cores with flaking around the
entire periphery were also a common byproduct of the experiments (Fig 10).

Transitions between technological core types
Cores were classified into technological types after each flake was removed. Type definitions
follow Moore et al. [66] and are based principally on the arrangement of flake removals. All
cores produced within the first three blows were classified as ‘assayed objects’. After the fourth
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flake was removed, cores with one platform were classified as ‘single platform’ if the flakes were
struck unifacially to one core face, and ‘bifacial’ if the flakes were struck bifacially to two core
faces. Cores with two or more independent platform edges (i.e., the edges did not overlap) were
classified as ‘multiplatform’. The independent platforms might be unifacial, bifacial, or a mix-
ture of both (e.g., Fig 7).

The cobble experiments produced a different proportion of core types from the flake blank
experiments (Table 12). As discussed previously, the morphology of flake blanks influenced
the rapid establishment of a bifacial platform around the perimeter, resulting in a relatively
greater proportion of bifacial ‘radial’ cores; conversely, the globular morphology of cobble

Fig 7. Frequency and directions of pathways in the development of bifacial edges on coresmade on flake
blanks. Arrows indicate the direction of the transition, and red numerals indicate the number of times a transition
occurred in the experiments. The number of independent platforms are in parentheses.

doi:10.1371/journal.pone.0158803.g007
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cores influenced the development and persistence of independent platforms, resulting in
greater proportions of multiplatform cores. Only 3.4% of the cobble reduction experiments
failed to produce multiplatform cores, compared to 43.3% of the flake blank reduction experi-
ments. Multiplatform cores on flake blanks were mostly produced (and disappeared) within
the first 50% of blows, whereas most multiplatform cores in cobble reduction persisted
throughout reduction.

The cobble and flake blank experiments also differed in the proportions of transformations
between technological core types (Fig 11). In general, flake blank reduction was less dynamic
than cobble reduction. For example, once a core made on a flake blank transformed to a radial
core, it never made the transition to a multiplatform core. This contrasts with cobble reduction,
where 30 cores transitioned from radial to multiplatform. The starting morphology of the
blanks was the key factor: the globular cobbles were characterised by more variation in possible
platform/high mass configurations but, as discussed previously, flake blanks were characterised
by clearly differentiated core volumes at the outset of reduction. This consistent starting config-
uration reduced the variation in platform/high mass configurations for the duration of flake
blank reduction.

Fig 8. Experimental bifacial cores produced from flake blanks and displaying approximate radial
symmetry. The numbers written on the cores denote potential (but unselected) platforms. (A) Silcrete,
experiment 10, after 19 blows. (B) Silcrete, experiment 1, after 22 blows. (C) Silcrete, experiment 26, after 23
blows. Scale 50 mm.

doi:10.1371/journal.pone.0158803.g008
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Fig 9. Experimental cobble core displaying a ‘chopper’morphology. Silcrete, experiment 17, after 17 blows. The rounded
morphology on the side of the cobble prevented the identification of potential platforms in that location, and reduction up to this point in
the experiment progressed bifacially towards this rounded surface. Scale 50 mm.

doi:10.1371/journal.pone.0158803.g009
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Changes in core thickness through the reduction process
Relative changes in core thickness can be gauged by dividing maximum width by maximum
thickness, referred to as the width-to-thickness (W:T) ratio [65]. In our experiments, the proto-
col of maximising flake size and randomising platform selection led to convergence on a simi-
lar W:T ratio for cores made on cobbles and flake blanks. At the outset of reduction, flake
blanks were significantly thinner than cobbles, but the W:T ratios of cores were statistically
indistinguishable at the end of reduction (Table 13). Flake blanks tended to decrease in W:T
ratio from their starting point (becoming relatively ‘thicker’) and cobbles tended to increase in
W:T ratio (becoming relatively ‘thinner’), converging on an average W:T ratio of about 1.8–
1.9.

Fig 10. Experimental bifacial core produced from a cobble displaying approximate radial symmetry.Mudstone,
experiment 6, after 13 blows. Scale 50 mm.

doi:10.1371/journal.pone.0158803.g010

Table 12. Technological core types produced in the experiments.

Core Type* Cobbles Flake blanks All

N % N % N %

Assayed object** 87 13.8 90 18.6 177 15.9

Bifacial radial core 274 43.5 349 72.0 623 55.9

Multiplatform Core 263 41.8 45 9.3 308 27.6

Single Platform Core 6 1.0 1 0.2 7 0.6

Total 630 485 1115

*Core types after [66].

** Cores with more than one independent platform but three or less flake removals were classified as ‘assayed objects’ rather than ‘multiplatform cores’.

Each experiment produced three assayed objects.

doi:10.1371/journal.pone.0158803.t012
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The physics of Hertzian cone formation in conchoidal fracture cause the interior platform
angles on flakes to be a consistent 136 degrees regardless of variation in exterior platform
angles [84]. This consistency is mirrored by negative scars, with a natural tendency for

Fig 11. Frequency and direction of transitions between technological core types. Arrows indicate the
direction of the transition, and numerals indicate the number of times a transition occurred in the experiments.
Cores from the cobble experiments (N = 602) are in blue font, and cores from the flake blank experiments
(N = 455) are in red font.

doi:10.1371/journal.pone.0158803.g011

Table 13. Change in width/thickness from unmodified blank to final core.

Object type Cobbles, Mean +/- SD; CoV, N = 29 Flake blanks, Mean +/- SD; CoV, N = 30 Unpaired t test result, cobbles vs. flake blanks

Unmodified blank 1.42 +/- 0.26; 18.6 2.64 +/- 0.61; 23.0 Significant (p<0.0001; t = 0.9030; SE = 0.122)

Final core 1.75 +/- 0.44; 24.9 1.86 +/- 0.46; 24.6 Not significant (p = 0.3584; t = 0.9260; SE = 0.116)

doi:10.1371/journal.pone.0158803.t013
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platform angles to homogenise as reduction proceeds, and this phenomenon is one of the
‘good tricks’ that modern knappers capitalise on to control the toolmaking process [42]. This
sort of control was eliminated by the experimental design, so the results suggest that, once
flakes begin to overlap at the centre of the core face, a W:T of about 1.8–1.9 may be the natural
result of hard-hammer percussion delivered to non-margin platforms. Modern knappers resort
to special platform preparation to overcome this effect and achieve ‘secondary thinning’ in
bifacial reduction ([65]:35).

Changes in core elongation through the reduction process
The elongation (L/W) of cores made on cobbles at the end of reduction was statistically indis-
tinguishable from cores made on flake blanks (Table 14). Cobble elongation increased slightly
during reduction, while flake blank elongation decreased slightly; the maximum elongation
reached in cobble reduction was 2.00 and in flake blank reduction was 2.08. The final cores
were, on average, 1.34 to 1.33 times longer than wide, and the similarity of these values may
suggest a natural convergence similar to that seen for W:T ratios.

It was previously proposed that elongation might occur by chance through greater attrition
of core width than length ([42]:710), but this was not supported by these experiments. While
cores sometimes became relatively elongated, this was always offset by removal of core ends,
either through the selection of platforms in those positions or through tranchet-like end-lop-
ping by the lateral expansion of flakes.

Mass enhancement and core ‘predetermination’
The Levallois Method [82, 85–87] involves strategic bifacial flaking to isolate core mass on one
face, and then removing the mass with an invasive flake struck from a specially prepared plat-
form. The Levallois flake—the intended outcome of the method—is removed roughly parallel
to the plane of intersection of the two core volumes, as defined by the bifacial edge. The shape
of this invasive flake is conditioned, or ‘predetermined’, by strategic flaking that enhances and
shapes the core mass. Our experimental protocol of random platform selection precluded the
strategic enhancement of core mass like that seen in the Levallois Method. Also, our protocols
denied the knapper the option of manipulating platform angles by platform preparation. Nev-
ertheless, core mass tended to become enhanced naturally by prior flaking, and in some cases
suitably steep platforms were fortuitously situated to allow the invasive removal of ‘enhanced’
mass. In cases where such a platform was randomly selected, and the flake successfully
removed, core forms were produced that possessed morphological attributes commonly attrib-
uted to deliberate ‘predetermination’ of the resulting flake (Fig 12).

This occurred 18 times in 11 of the 59 experiments, or 1.6% of the total number of blows
(Table 15). The configuration for predetermination occurred 3.5 times more often in cobble
reduction than in flake blank reduction, despite the lower odds that a given platform would be
selected by the random number generator. Thicker cobbles were more prone to mass

Table 14. Changes in length/width from unmodified blank to final core.

Object type Cobbles, Mean +/- SD; CoV, N = 29 Flake blanks, Mean +/- SD; CoV, N = 30 Unpaired t test result, cobbles vs. flake blanks

Unmodified blank 1.29 +/- 0.18; 13.9 1.41 +/- 0.24; 17.2 Significant (p = 0.0461; t = 2.0393; SE = 0.059)

Final core 1.34 +/- 0.20; 14.8 1.33 +/- 0.24; 17.9 Not significant (p = 0.7329; t = 0.3430; SE = 0.057)

The core’s maximum dimension is length and width is the maximum dimension at right-angles to length. As a result of this convention, and because these

dimensions were never precisely equal in the experimental datasets, all of the cores were slightly longer than wide.

doi:10.1371/journal.pone.0158803.t014
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Fig 12. Experimental bifacial cores and ‘predetermined’ flakes. Both cores were made on silcrete cobbles. (A) Experiment 7, after
blow 26. (B) Flake struck from the scar on D. (C) Flake struck from the scar on A. (D) Experiment 4, after blow 26. Scale 50 mm.

doi:10.1371/journal.pone.0158803.g012
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enhancement and steep platform configurations than thinner flake blanks. Given that the odds
for selecting a particular platform were a relatively low 1 in 21.7 for cobbles and 1 in 15.2 for
flake blanks, yet 1.6% of those selected platforms resulted in striking a ‘predetermined’ flake,
the appropriate mass configurations must have arisen frequently during the experiments.

Table 15. Number and timing of ‘predetermined’ flake removals.

Cobble Flake Blank All

No. (%) of predetermination configurations 14 (2.2%);
N = 630

4 (0.8%);
N = 485

18 (1.6%);
N = 1115

No. (%) of experiments with predetermination configurations 7 (24%); N = 29 4 (13%);
N = 30

11 (19%) N = 59

Earliest blow number, predetermination configuration 11 10 10

Mean and SD of reduction extent, as a percent of reduction by mass removed, when
predetermination configuration created

87.4 +/- 6.5 93.3 +/- 2.6 88.7 +/- 6.3

Mean and SD of reduction extent, as a percent of reduction by blow count, when predetermination
configuration created

79.0 +/- 14.8 85.1 +/- 15.2 80.4 +/- 14.6

doi:10.1371/journal.pone.0158803.t015

Fig 13. Flake types produced in the experiments. (A-B) Contact removal (‘Kombewa’) flakes produced in the flake blank experiments. The red arrows
and dots mark the percussion axes and points of force application for detaching the flake blanks, and the black diacritical arrows show the platform location
and percussion axes for the contact removal flakes. Flake B was struck burin-like down the edge of the flake blank. (A) Silcrete, experiment 4, blow 1. (B)
Silcrete, experiment 25, blow 5. (C-E) Redirecting flakes produced in the flake blank experiments. The black diacritical arrows show the platform locations
and percussion axes, and the dotted lines mark the part of the core platforms removed by the flakes. C was struck burin-like directly down the edge of the
flake blank, D overstruck the end of the bifacial core, and E spread laterally in a tranchet-like fashion and removed part of the core’s margin. E was broken
by a siret fracture. (C) Silcrete, experiment 12, blow 10. (D) Silcrete, experiment 3, blow 15. (E) Silcrete, experiment 27, blow 6. Scale 50 mm.

doi:10.1371/journal.pone.0158803.g013
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A minimum of 10 blows preceded the configuration for predetermination, but this result is
partly because, by convention (e.g., [82, 85, 87, 88]), the ‘predetermination’ configuration was
recorded only when the relevant core mass was created by prior flake removals (and not by nat-
ural configurations on cobbles or pre-existing dorsal scar configurations on flake blanks). On
average, this point was reached in the final 20% of core reduction, calculated relative to total
blow counts and mass removal (Table 15). (Predetermined Levallois flakes were not produced
until the final ~10% of cobble core reduction, as a proportion of initial starting mass, in knap-
ping experiments by Texier ([73]:213). In our experiments, then, the configuration for prede-
termination was a function of reduction intensity. Three of the cobble experiments were
carried over the weight threshold that ended the experiment by the removal of a ‘predeter-
mined’ flake.

Flake types
The flakes produced during the experiments were classified into three types (after [66]) (Fig
13). ‘Core-edge’ or ‘redirecting’ flakes preserve a former platform edge, with one or more nega-
tive point of force application (PFA) as a dorsal attribute, and were produced when the propa-
gating flake undercut a pre-existing platform ([89]:22) (This definition does not refer to
negative scars from prior reduction from the same platform. If present, these emanate from the
flake’s dorsal platform edge.) In some cases the knapper deliberately targeted the high-mass
platform edge, as discussed below, but in other cases a platform was undercut incidentally
when a flake expanded laterally (e.g., a tranchet-like flake [90] or distally (e.g., an overstruck
flake). A ‘contact removal’ flake (after [66])—a type of ‘Kombewa’ flake [91]—was produced
when a flake undercut the bulb of percussion and positive PFA on a flake blank’s ventral sur-
face. The positive PFA and all or part of the bulb of percussion are preserved as dorsal attri-
butes on the contact removal flake. All other flakes were grouped into the ‘early reduction’
category.

The cobble and flake blank experiments produced these flake types in similar proportions
(Table 16). Contact removal flakes could not be produced from cobbles, and when these are
added to the early reduction flakes struck from flake blanks, the flake types struck from cobbles
and flake blanks do not differ significantly (chi square = 0.377, df = 1, p = 0.54). Since the
blank’s positive PFA must be present as a dorsal attribute to warrant classification as a contact

Table 16. Flake types produced in the experiments.

Cobbles Flake Blanks

Early reduction 475 (77.5%) 355 (74.4%)

Redirecting 138 (22.5%) 100 (21.0%)

Contact removal 0 22 (4.6%)

Total 613 477

Flake type definitions after [66].

doi:10.1371/journal.pone.0158803.t016

Table 17. Elongation of flakes produced in the experiments.

Flakes struck from cobbles,
N = 604

Flakes struck from flake blanks,
N = 471

Elongation (L/W), Mean +/- SD 1.21 +/- 0.62 1.05 +/- 0.54

Elongated flakes (L/W>2.0), N
(%)

37 (6.1%) 32 (6.8%)

doi:10.1371/journal.pone.0158803.t017
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removal flake, a maximum of one could be produced per experiment, and 91% of these were
removed within the first five blows. However, only 22 of the 30 flake blank experiments pro-
duced a contact removal flake. In the other 8 experiments, the blanks’ positive PFAs were not
clearly identifiable on the dorsal surfaces of the resulting flakes. All of the flake blank experi-
ments produced multiple flakes with a dorsal ‘detachment scar’—a remnant ventral surface
from the flake blank preserved on the dorsal surface of the flake [66].

The protocol guiding the experiments required the knapper to maximise flake mass; flake
shape was not a consideration. Because of this, flake shape was not constrained by a deliberate
focus on high mass areas of specific form, as occurs in blade-making. Nevertheless, zones of
high mass were sometimes relatively long compared to their width, and flakes struck from
mass of this shape were sufficiently elongated to be classified as ‘blades’ (Table 17). Average
flake elongation was close to 1.0 for both sets of experimental flakes, and length and width are
weakly correlated for both the cobble and flake blank reduction experiments (Fig 14).

Cortex coverage on flakes
Changes in dorsal cortex coverage on flakes from cobble reduction are shown in Fig 15. Flakes
with substantial amounts of dorsal cortex (>50%) disappeared within the first 9 blows, but
small patches were often retained on cores to the end of a reduction experiment. Flakes entirely
lacking cortex appeared as early as 6 blows but rapidly increased in proportion from about 10

Fig 14. Scatterplot of flake lengths and widths produced in the cobble and flake blank reduction experiments.

doi:10.1371/journal.pone.0158803.g014
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blows. All cortex was eliminated from experimental cobbles cores that sustained 28 or more
blows.

Toth [92] has suggested that the cortex distribution on flakes can reflect hominin handed-
ness because of regularities in the biomechanics of core rotation when striking flakes unifacially
from one platform edge. According to the model, right-handed knappers will create greater
numbers of flakes with cortex on the right margin, and left-handed knappers will create greater
numbers of flakes with cortex on the left margin ([92]:Fig 3). The knapper in our experiments
was right-handed, and asymmetrical distribution of cortex of this sort was noted on 95 flakes,
but the ratio of right-cortex and left-cortex flakes was nearly equal ([46] vs. [49]). This is
because platforms were chosen randomly and therefore reduction moved randomly between

Fig 15. Flake cortex coverage by reduction interval (blow number). Sample sizes decrease towards the right-hand site of the chart because not all cores
sustained the maximum 34 blows.

doi:10.1371/journal.pone.0158803.g015

Table 18. Platform positions for blows that produced burin scars on flake blank cores.

Position N %

1 66 50.8

2 14 10.8

3 15 11.5

4 35 26.9

doi:10.1371/journal.pone.0158803.t018
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the faces of a cobble, resulting in a very different core reduction process than the unidirectional
reduction assumed by Toth’s model. The experimental pattern is closer to the theoretical distri-
bution of right- and left-hand cortical flakes produced by ‘alternate flaking’, where flakes are
struck sequentially to alternate core faces (cf. [47]).

Burin scars and flake types
A burin scar is created when a flake propagates down an edge dividing two core volumes. In
our experiments, the edges of flake blanks were an unambiguous division and served as a land-
mark for tracking burin scar production. Burin scars were created when the blank’s edge
proved accessible from the sides of a prior negative scar, usually a platform in Position 1 or 2
(Table 18). In this case, the edge itself defined the centre of the zone of high mass targeted for
flake removal, although sometimes the edge was located at the periphery of the targeted mass.
If the edge served as a platform prior to this, a redirecting flake was produced, although the
removal of other types of flakes also produced burin scars. The removal of most redirecting
flakes—and nearly a quarter of contact removal flakes—created a burin scar on the core
(Table 19).

Discussion
The earliest stone assemblages are characterized by ‘expedient’ ([49]:38), ‘simple’ ([47]:27), or
‘opportunistic’ ([20]:113) reduction by rote flaking [47, 49], although considerable perceptual-
motor and cognitive skills were required to remove individual flakes [47, 93]. Core reduction
was guided by an imprecise mental visualisation, and no concept of predetermining flake shape
by prior flaking [94]. Pelegrin [47] identifies two reduction formulas, or ‘algorithms’, in these
early assemblages: 1) adjacent flaking from a single platform surface which involved turning
the core between removals (cf. [92]; e.g., [93]); and [2]) alternating bifacial flaking from a single
platform edge which involved both flipping and turning the core between removals. The algo-
rithmic nature of the flaking suggests that the morphology of the developing core was not mon-
itored by the hominin stoneworker, even though core morphologies are distinctive and
repetitive [47]. Raw material shapes strongly influenced approaches to core reduction and/or
the shapes of most discarded cores [20, 47, 95]. Roche [49, 94] views bifacial and certain multi-
platform flaking as intentional core shaping or ‘sculpting’, with the flakes as byproducts, and
thus the cores reflect an early hominin ‘mental template’ ([49]:36, [94]). Bifacial reduction is a
common element of these early hominin assemblages (e.g., [51, 53, 96–99]).

Our results show that bifacial reduction is inevitable when platforms are chosen randomly,
and bifacial edges occurred on all cores within the first 12 blows. Bifacial cores converged on a
W:T ratio of 1.8–1.9 and a L:W ratio of 1.33–1.34. The relatively low L:W ratio and centripetal
scar patterning created centripetal or ‘radial’ cores. Blank shape influenced the shapes of cores
produced early in our experiments (cf. [20]) but morphological and technological convergence
occurred as reduction intensity increased. Although scars sometimes overlapped in a way that
mimic’s Pelegrin’s ([47]:27–28) algorithmic alternate flaking, this was a chance result of ran-
dom platform selection rather than an intention or flaking algorithm. Key features of the

Table 19. Flake types that produced burin scars on flake blank cores.

Flake Type N %

Contact removal (N = 22) 5 22.7

Early reduction (N = 355) 52 14.7

Redirecting (N = 100) 73 73.0

doi:10.1371/journal.pone.0158803.t019
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‘discoidal reduction schema’ described by Boëda [82, 85] were produced in our experimental
assemblage, including 1) two core faces reduced non-hierarchically relative to the plane of core
face intersection (the ‘bifacial plane’); 2) creation and maintenance of peripheral convexities;
and 3) reduction tangential to the bifacial plane, rather than parallel to it. Similarly, a propor-
tion of the experimental cores were multiplatform.

The bifacial handaxe first appears in the archaeological record about 1.75 mya. [100]. Most
archaeologists view these elongated bifaces as intentionally produced core forms created
according to a preconceived plan. Hominin knappers shaped handaxes relative to a bilateral
plane and a bifacial plane, and the manufacture of symmetry in both planes simultaneously is
seen as a significant cognitive breakthrough [8, 17]. The bifacial flaking, sharp durable cutting
edge, circumferential working, broad symmetry, and ‘good prehensile qualities’ of bifacial han-
daxes is seen as evidence for ‘a mental construct’ ([101]:119–120, cf. [46]). Early handaxes or
‘proto-bifaces’ [96] ‘were unbalanced and crudely made’ because ‘the operational procedures
were not yet mastered’ ([49]:42). Some 56 of the bifacial cores in our experiment were suffi-
ciently elongated (Width/Length<0.76) and flattened (Thickness/Width<0.67) to be classified
as ‘handaxes’ in Isaac’s [67] typological scheme for the Acheulean site of Olorgesailie
(Table 20, Figs 16, 17 and 18). Nevertheless, they better resemble ‘proto-bifaces’ than the
refined, symmetrical bifaces that emerged by the Late Acheulean, ca. 700 ka [57]. Late Acheu-
lean handaxes were made using elaborated methods that involved progressive shifts in interme-
diate goals to achieve the ultimate goal of a ‘standardized product’ ([47]:27–28), a process that
was made impossible by our strict experimental design.

The Levallois Method emerged ca. 250–500 ka in Africa [73] and ca. 300 ka in Europe
[102]. According to Boëda’s [82, 85, 87, 103] volumetric definition of the Levallois Method,
Levallois flakes—the intended product of the stoneworker—were struck from one face of bifa-
cial cores while platform shaping flakes were removed from the opposite face: the core faces, or
‘volumes’, were arranged hierarchically. ‘Predetermination’ involved enhancing and shaping
the mass on the principal core face by removing material from the lateral sides and distal end
of the core. The Levallois flake was struck to remove this mass from a platform bevelled by flak-
ing towards the secondary core face, and positioned at the proximal end of the core. The plat-
form was oriented so that the Levallois flake propagated parallel to the plane defined by the
bifacial edge, removing much of the core face [82, 85–87]. Wynn and Coolidge suggest that to
successfully achieve a stoneworking plan of such complexity, the hominin must be capable of
encoding the necessary technical knowledge and to enact this encoded information through a
‘retrieval structure’ triggered by physical cues on the developing core—key elements of ‘long-

Table 20. Comparison of attributes between experimental and Olorgesailie handaxes.

Olorgesailie
handaxes

Experimental handaxes

(Mean +/- SD)* Cobble experiments (Mean +/- SD,
N = 34)

Flake blank experiments (Mean +/-
SD, N = 22)

Total (Mean +/- SD,
N = 56)

Width/Length (Elongation)
(W/L)

0.57 +/- 0.08 0.713 +/- 0.070 0.705 +/- 0.067 0.710 +/- 0.069

Thickness/Width (Th/W) 0.53 +/- 0.12 0.60 +/- 0.12 0.47 +/- 0.08 0.55 +/- 0.12

Maximum Length (mm) 165 +/- 13.9** 159.1 +/- 30.6 76.8 +/- 18.1 126.8 +/- 48.3

Including cores classified as handaxes, cleavers, pick-like handaxes, picks, and triedres. The attributes are those calculated by Isaac [67] for comparison to

other early stone artefact assemblages.

*Isaac did not report measurements on all specimens, but the samples sizes are between 540–1023 ([67]:Table 10).

**Approximately 60 Olorgesailie handaxes measured less than 75 mm long, with the smallest measuring ca. 45 mm ([67]:Figs 35, 58).

doi:10.1371/journal.pone.0158803.t020
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term working memory’ [43]. About 2% of our experimental bifacial cores reflect a Levallois-
like pattern of reduction. The similar traits include 1) an invasive flake struck from a steeply
angled platform and oriented parallel to the bifacial plane, and 2) production of core face con-
vexities by prior flaking. The cores are dissimilar from Levallois sensu stricto [82, 85, 103]
because the experimental design explicitly prohibited treating core volumes hierarchically and
striking ‘predetermined’ flakes from prepared platforms. Nevertheless, the traits that did
emerge in the experimental assemblage are among those highlighted in the Levallois Method
sensu stricto as evidence for the necessity of long-term working memory [1, 43].

Conclusion
Our experiments created a ‘least-effort’ [50] stone artefact assemblage by removing as large a
flake as possible from a randomly-selected core platform. Reduction ‘intent’ was restricted to

Fig 16. Experimental elongated bifacial core classifiable as a ‘handaxe’. The core was produced from
reduction of a silcrete cobble, experiment 4, after 21 blows. Flakes were conjoined to reconstruct this core.
Subsequent reduction produced the ‘predetermined’ flake shown in Fig 12B. Scale 50 mm.

doi:10.1371/journal.pone.0158803.g016
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the perceptions and motor skills necessary to remove a single flake. Higher-order, goal-directed
intentions to produce a specific tool or flake type were explicitly prevented by random platform
selection. Thus, our experimental design explored the interplay of stoneworking constraints
and random choices to see what products would result. Of course, hominin choices were not
completely random, and for that reason it is unsurprising that our outcomes do not replicate
all aspects of early hominin assemblages. Rather, our experiments are a first step towards
understanding the minimal conditions necessary to regularly produce the forms we see in the
early archaeological record.

Despite our restrictive protocols, cores and flakes were produced that display aspects of the
ostensibly ‘intentional’ flaking techniques and tool forms that mark early milestones in the
standard story of technological and cognitive evolution (Fig 19). This included bifacial flaking
that produced centripetally-organised cores, bifacial ‘choppers’ (cores with bifacial edges oppo-
site cortical margins), cores reflecting a discoidal reduction schemata, and core attributes that
mimic those produced by serial flake removal. Multiplatform cores similar to ‘polyhedrons’
were also produced. The shapes of cores changed in patterned ways through the reduction pro-
cess, including the progression towards plateaus in biface width-to-thickness and length-to-
width ratios (1.8–1.9 and 1.33–1.34 respectively). Certain elongated bifacial cores were classifi-
able morphologically as crude handaxes or ‘proto-bifaces’, and attributes suggesting

Fig 17. Proportion of Thickness/Width attributes for experimental handaxes and handaxes recorded by Isaac from Olorgesailie.Olorgesailie data
from [67]:figure 41.

doi:10.1371/journal.pone.0158803.g017
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‘predetermined’ flake removals were created rarely but consistently. Blades and burins
occurred, as well as burinated cores and tranchet-like tools. Although these stone artefact types
and attributes mimic those often assumed to have been produced by goal-directed, intention-
driven stone-flaking, in our experiments they were the outcome of the mechanics that govern
stone fracture combined with a simple flake-removal algorithm applied repetitively to the same
cores. Our results indicate that these types and attributes can be aspects of unintended design
—stone-flaking ‘spandrels’ [42]—and, according to Wynn and Coolidge’s ‘standard of cogni-
tive validity’ [1, 44], quoted at the outset of this paper, they might be considered outcomes of
cognitively simple systems of flaking.

Studying assumed hominin design goals is now a mainstream approach to analysing early
stone tool assemblages, as reflected in stone tool/hominin phylogenetics (e.g., [105–107]) and
morphological taxonomy of artefacts (e.g., [14, 16, 108]); cognitive archaeology (e.g., [4, 17, 43,

Fig 18. Production of experimental handaxes by reduction interval.Cores classifiable as handaxes (N = 56, see Table 20) occurred in 13 (43%) of
the flake blank and 13 (45%) of the cobble reduction experiments. Handaxes occurred earlier in the flake blank experiments—probably influenced by
flake blank starting morphology—but persisted for fewer numbers of sequential blows.

doi:10.1371/journal.pone.0158803.g018
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Fig 19. Experimental cores compared to archaeological specimens. (A) Volcanic, EF-HR, Olduvai Gorge ([96]:131). (B) Silcrete, cobble experiment
4, after blow 21. (C) Quartzite, Maropeng ([104]:9). (D) Volcanic, MFS, Olorgesailie ([67]:196). (E) Mudstone, cobble experiment 6, after blow 13. (F)
Silcrete, flake blank experiment 10, after blow 19. (G) Chert, HWK East, Olduvai Gorge ([96]:105). (H) Silcrete, flake blank experiment 26, after blow 23. (I)
Quartzite, Maropeng ([104]:10). (J) Silcrete, cobble experiment 7, after blow 27. (K) Quartzite DB3, Harts River ([52]:11). (L) Silcrete, cobble experiment 4,
after blow 26. The ‘preferential scar’ is shaded on cores I-L. Scale bars 10 mm.

doi:10.1371/journal.pone.0158803.g019
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46–49]), including brain-imaging studies (e.g., [30–35]); and cultural modelling of stone tools
and hominin behaviour (e.g., [13, 109–114]). Results of studies like these inform general narra-
tives about increases in hominin cognitive abilities in early human evolution (e.g., [2, 3]). How-
ever, our results complicate this picture because some of the patterning identified in these early
assemblages may not reflect intentional ‘design’ in the usual sense.

Nevertheless, we did not produce iconic artefacts such as teardrop-shaped later Acheulean
handaxes and Levallois Method cores sensu stricto, although the necessary conditions for these
types emerged from the experiments. For handaxes, this included bifacial flaking, core elonga-
tion, and key core attribute ratios; and in the case of the Levallois Method, this included the
enhancement of core mass and wholesale removal of this mass parallel to the bifacial plane
(creating a ‘preferential’ flake). Given that, in our experiments, these patterns were an out-
growth of mechanical restrictions inherent to stone flaking, it seems likely that similar pat-
terned byproducts were produced unintentionally by early hominins. Technological change
may have involved hominin recognition of this patterning and enhancing the conditions that
produced it. If so, the abundance of certain types and attributes in the archaeological record
may be more significant than their first appearance, as this may track cognitive strategies to
enhance particular stoneworking results. Developing the comparative ‘least-effort’ baseline of
stoneworking byproducts [50] requires stoneworking experiments with protocols designed
around design space restrictions rather than assumed hominin toolmaking intentions.

Supporting Information
S1 Table. Metric data, experimental cores and flakes. Attribute definitions are given in the
text.
(XLS)
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Acknowledgments
This research benefited significantly from the encouragement and critical comments of Iain
Davidson and three anonymous reviewers.

Author Contributions
Conceived and designed the experiments: MWM. Performed the experiments: MWM YP.
Analyzed the data: MWM. Wrote the paper: MWM. Analyzed the experimental artifacts: YP
MWM.

References
1. Wynn T, Coolidge FL. Beyond symbolism and language: introduction to supplement 1, working mem-

ory. Curr Anthropol. 2010; 51 (S1): S5–S16.

2. Ambrose SH. Paleolithic technology and human evolution. Science. 2001; 291: 1748–1753. PMID:
11249821

3. Klein RG. Archeology and the evolution of human behavior. Evol Anthropol. 2000; 9: 17–36.

4. Coolidge FL, Wynn T, Overmann KA, Hicks JM. Cognitive archaeology and the cognitive sciences. In:
Bruner E, editor. Human paleoneurology. Cham: Springer International Publishing Switzerland;
2015. pp. 177–206.

5. de Beaune SA, Coolidge F, Wynn T, editors. Cognitive archaeology and human evolution. Cam-
bridge: Cambridge University Press; 2009.

Experimental Insights into Early Stone Tools

PLOS ONE | DOI:10.1371/journal.pone.0158803 July 8, 2016 32 / 37

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0158803.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0158803.s002
http://www.ncbi.nlm.nih.gov/pubmed/11249821


6. Nowell A, Davidson I, editors. Stone tools and the evolution of human cognition. Boulder: University
Press of Colorado, 2010.

7. Roux V, Bril B, editors. Stone knapping: the necessary conditions for a uniquely hominin behaviour.
Cambridge: McDonald Institute for Archaeological Research; 2005.

8. Wynn T. The evolution of spatial competence. Urbana: University of Illinois Press; 1989.

9. Davidson I. The finished artefact fallacy: Acheulean hand-axes and language origins. In: Wray A, edi-
tor. The transition to language. Oxford: Oxford University Press; 2002. pp. 180–203.

10. Noble W, Davidson I. Human evolution, language and mind: a psychological and archaeological
inquiry. Cambridge: Cambridge University Press; 1996.

11. Gowlett JAJ. Complexities of cultural evidence in the Lower and Middle Pleistocene. Nature. 1979;
278: 14–17.

12. Gowlett JAJ. Culture and conceptualisation: the Oldowan-Acheulian gradient. In: Bailey GN, Callow
P, editors. Stone Age prehistory: studies in memory of Charles McBurney. Cambridge: Cambridge
University Press; 1986. pp. 243–260.

13. Gowlett JAJ. The vital sense of proportion: transformation, golden section, and 1:2 preference in
Acheulean bifaces. PaleoAnthropol. 2011; 2011: 174–187.

14. Lycett SJ. Acheulean variation and selection: does handaxe symmetry fit neutral expectations? J
Archaeol Sci. 2008; 35: 2640–2548.

15. Lycett SJ, Gowlett JAJ. On questions surrounding the Acheulean ‘tradition’. World Archaeol. 2008;
40(3):295–315.

16. Lycett SJ, von Cramon-Taubadel N. Acheulean variability and hominin dispersals: a model-bound
approach. J Archaeol Sci. 2008; 35: 553–562.

17. Wynn T. Archaeology and cognitive evolution. Behav Brain Sci. 2002; 25: 389–438. PMID: 12879699

18. Edwards SW. A modern knapper’s assessment of the technical skills of the Late Acheulean biface
workers at Kalambo Falls. In: Clark JD, editor. Kalambo Falls prehistoric site. The earlier cultures: Mid-
dle and Earlier Stone Age, volume III. Cambridge: Cambridge University Press; 2001. pp. 605–611.

19. Schick KD, Toth N. Making silent stone speak: human evolution and the dawn of technology. London:
Phoenix; 1993.

20. Toth N. The Oldowan reassessed: a close look at early stone artifacts. J Archaeol Sci. 1985; 12: 101–
120.

21. Toth N. Behavioral inferences from Early Stone Age artifact assemblages: an experimental model. J
Hum Evol. 1987 16: 763–787.

22. Jones PR. Results of experimental work in relation to the stone industries of Olduvai Gorge. In Leakey
M, editor. Olduvai Gorge: volume 5, excavations in beds III, IV and the Masek beds. Cambridge:
Cambridge University Press; 1994. pp. 254–298.

23. Madsen B, Goren-Inbar N. Acheulian giant core technology and beyond: an archaeological and
experimental case study. Eurasian Prehist. 2004; 2(1): 3–52.

24. Pelegrin J. A framework for analysing prehistoric stone tool manufacture and a tentative application to
some early stone industries. In: Berthelet A, Chavaillon J, editors. The use of tools by human and non-
human primates. Oxford: Clarendon Press; 1993. pp. 302–314.

25. Eren MI, Bradley BA. Experimental evaluation of the Levallois ‘core shape maintenance’ hypothesis.
Lithic Technol. 2009; 34(2): 119–125.

26. Eren MI, Bradley BA, Sampson CG. Middle Paleolithic skill level and the individual knapper: an experi-
ment. Am Antiq. 2011; 76(2): 229–251.

27. Eren MI, Lycett SJ, Roos CI, Sampson CG. Toolstone constraints on knapping skill: Levallois reduc-
tion with two different raw materials. J Archaeol Sci. 2011; 38(10): 2731–2739.

28. Bradley BA, Sampson CG. Analysis by replication of two Acheulian artefact assemblages. In: Bailey
GN, Callow P, editors. Stone Age prehistory: studies in memory of Charles McBurney. Cambridge:
Cambridge University Press; 1986. pp. 29–45.

29. Newcomer MH. Some quantitative experiments in handaxe manufacture. World Archaeol. 1971; 3(1):
85–94.

30. Hecht EE, Gutman DA, Khreisheh N, Taylor SV, Kilner J, Faisal AA, et al. Acquisition of Paleolithic
toolmaking abilities involves structural remodeling to inferior frontoparietal regions. Brain Struct Funct.
2014; ( 2014): 1–17.

31. Stout D, Chaminade T. Stone tools, language and the brain in human evolution. Philos Trans R Soc
Lond B Biol Sci. 2012; 367: 75–87. doi: 10.1098/rstb.2011.0099 PMID: 22106428

Experimental Insights into Early Stone Tools

PLOS ONE | DOI:10.1371/journal.pone.0158803 July 8, 2016 33 / 37

http://www.ncbi.nlm.nih.gov/pubmed/12879699
http://dx.doi.org/10.1098/rstb.2011.0099
http://www.ncbi.nlm.nih.gov/pubmed/22106428


32. Stout D, Toth N, Schick K. Comparing the neural foundations of Oldowan and Acheulean toolmaking:
a pilot study using Positron Emission Tomography (PET). In: Toth N, Schick K, editors. The Oldowan:
case studies into the earliest stone age. Gosport: Stone Age Institute Press; 2006. pp. 321–331.

33. Stout D, Passingham R, Frith C, Apel J, Chaminade T. Technology, expertise and social cognition in
human evolution. Eur J Neurosci. 2011; 2011: 1–11.

34. Stout D, Hecht E, Khreisheh N, Bradley B, Chaminade T. Cognitive demands of Lower Paleolithic tool-
making. PLoS One. 2015; 10(4): e0121804. doi: 10.1371/journal.pone.0121804 PMID: 25875283

35. Uomini NT, Meyer GF. Shared brain lateralization patterns in language and Acheulean stone tool pro-
duction: a functional transcranial Doppler ultrasound study. PLoS One. 2013; 8: e72693. doi: 10.
1371/journal.pone.0072693 PMID: 24023634

36. Biryukova EV, Bril B, Dietrich G, Roby-Brami A, Kulikov MA, Molchanov PE. The organization of arm
kinematic synergies: the case of stone-bead knapping in Khambhat. In: Roux V, Bril B, editors. Stone
knapping: the necessary conditions for a uniquely hominin behaviour. Cambridge: McDonald Insti-
tute for Archaeological Research; 2005. pp. 73–89.

37. Bril B, Smaers J, Steele J, Rein R, Nonaka T, Dietrich G, et al. Functional mastery of percussive tech-
nology in nut-cracking and stone-flaking actions: experimental comparison and implications for the
evolution of the human brain. Proc R Soc B. 2012; 367: 59–74.

38. Marzke MW, Shackley MS. Hominid hand use in the Pliocene and Pleistocene: evidence from experi-
mental archaeology and comparative morphology. J Hum Evol. 1986; 15:439–460.

39. Marzke MW, Toth N, Schick K, Reece S, Steinberg B, Hunt K., et al. EMG study of hand muscle
recruitment during hard hammer percussion manufacture of Oldowan tools. Am J Phys Anthropol.
1998; 105: 315–332. PMID: 9545075

40. Williams EM, Gordon AD, Richmond BG. Biomechanical strategies for accuracy and force generation
during stone tool production. J Hum Evol. 2014; 72: 52–63. doi: 10.1016/j.jhevol.2014.03.004 PMID:
24746547

41. Moore MW. ‘Grammars of action’ and stone flaking design space. In: Nowell A, Davidson I, editors.
Stone tools and the evolution of human cognition. Boulder: University Press of Colorado; 2010. pp.
13–43.

42. Moore MW. The design space of stone flaking: implications for cognitive evolution. World Archaeol.
2011; 43(4):702–715.

43. Wynn T, Coolidge FL. The expert Neandertal mind. J Hum Evol. 2004; 46: 467–487. PMID:
15066380

44. Wynn T, Coolidge FL. Implications of a strict standard for recognizing modern cognition in prehistory.
In: de Beaune SA, Coolidge FL, Wynn T, editors. Cognitive archaeology and human evolution. Cam-
bridge: Cambridge University Press; 2010. pp. 117–127.

45. Gowlett JAJ. Technology, skill and the psychosocial sector in the long term of human evolution.
Archaeol Rev Camb. 1990; 9(1): 82–103.

46. Gowlett JAJ. The elements of design form in Acheulean bifaces: Modes, modalities, rules and lan-
guage. In: Goren-Inbar N, Sharon G, editors. Axe age: Acheulean tool-making from quarry to discard.
London: Equinox; 2006. pp. 203–221.

47. Pelegrin J. Remarks about archaeological techniques and methods of knapping: elements of a cogni-
tive approach to stone knapping. In: Roux V, Bril B, editors. Stone knapping: the necessary conditions
for a uniquely hominin behaviour. Cambridge: McDonald Institute for Archaeological Research;
2005. pp. 23–33.

48. Pelegrin J. Cognition and the emergence of language: a contribution from lithic technology. In de
Beaune SA, Coolidge FL, Wynn T, editors. Cognitive archaeology and human evolution. Cambridge:
Cambridge University Press; 2009. pp. 95–108.

49. Roche H. From simple flaking to shaping: stone-knapping evolution among early hominins. In: Roux
V, Bril B, editors. Stone knapping: the necessary conditions for a uniquely hominin behaviour. Cam-
bridge: McDonald Institute for Archaeological Research; 2005. pp. 35–48.

50. Isaac GL. Foundation stones: early artefacts as indicators of activities and abilities. In: Bailey GN, Cal-
low P, editors. Stone-Age prehistory: studies in memory of Charles McBurney. Cambridge: Cam-
bridge University Press; 1986. pp. 221–241.

51. Delagnes A, Roche H. Late Pliocene hominid knapping skills: the case of Lokalalei 2C, West Turkana,
Kenya. J Hum Evol. 2005; 48: 435–472. PMID: 15857650

52. Kuman K. An Acheulean factory site with prepared core technology near Taung, South Africa. S Afr
Archaeol Bull. 2001; 56 (173 & 174): 8–22.

Experimental Insights into Early Stone Tools

PLOS ONE | DOI:10.1371/journal.pone.0158803 July 8, 2016 34 / 37

http://dx.doi.org/10.1371/journal.pone.0121804
http://www.ncbi.nlm.nih.gov/pubmed/25875283
http://dx.doi.org/10.1371/journal.pone.0072693
http://dx.doi.org/10.1371/journal.pone.0072693
http://www.ncbi.nlm.nih.gov/pubmed/24023634
http://www.ncbi.nlm.nih.gov/pubmed/9545075
http://dx.doi.org/10.1016/j.jhevol.2014.03.004
http://www.ncbi.nlm.nih.gov/pubmed/24746547
http://www.ncbi.nlm.nih.gov/pubmed/15066380
http://www.ncbi.nlm.nih.gov/pubmed/15857650


53. de la Torre I, Mora R, Domíngez-Rodrigo M, de Luque L, Alcalá L. The Oldowan industry of Peninj
and its bearing on the reconstruction of the technological skills of Lower Pleistocene hominids. J Hum
Evol. 2003; 44: 203–224. PMID: 12662943

54. de la Torre I. Omo revisited: evaluating the technological skills of Pliocene hominids. Curr Anthropol.
2004; 45(4): 439–465.

55. Sharon G, Beaumont P. Victoria West–a highly standardized prepared core technology. In: Goren-
Inbar N, Sharon G, editors. Axe age: Acheulean tool-making from quarry to discard. London: Equi-
nox; 2006. pp. 181–199.

56. Tixier P-J. The Oldowan assemblage from NY18 site at Nyabusosi (Toro-Uganda). Comptes Redus
de l’Académie des Sciences, Paris. 1995; 320 (2A): 647–653.

57. Texier P-J, Roche H. The Impact of predetermination on the development of some Acheulean chaîne
opératoires. In: Bermúdez JM, Arsuaga JL, Carbonell E, editors. Evolución humana en Europa y los
Yacimeintos de la Sierra de Atapuerca, volume 2. Valladolid: Junta de Castilla y León; 1995. pp.
403–420.

58. White M, Ashton N, Scott B. The emergence, diversity and significance of Mode 3 (prepared core)
technologies. Dev Quat Sci. 2011; 14: 53–65.

59. Bar-Yosef O, Kuhn SL. The big deal about blades: Laminar technologies and human evolution. Am
Anthropol. 1999; 101(2): 322–338.

60. Moore MW. Lithic design space modeling and cognition in Homo floresiensis. In: Shalley A, Khlentzos
D, editors. Mental states: nature, function and evolution. Amsterdam: John Benjamins; 2007. pp. 11–
33.

61. Moore MW. Bifacial flintknapping in the Northwest Kimberley, Western Australia. J Archaeol Method
Theory. 2015; 22(3): 913–951.

62. Greenfield PM. Language, tools and brain: the ontogeny and phylogeny of hierarchically organized
sequential behavior. Behav Brain Sci. 1991; 14: 531–595.

63. Gibson KR. New perspectives on instincts and intelligence: brain size and the emergence of hierarchi-
cal mental constructional skills. In: Taylor Parker S, Gibson KR, editors. ‘Language’ and intelligence in
monkeys and apes: comparative developmental perspectives. Cambridge: Cambridge University
Press; 1990. pp. 97–128.

64. Gibson KR. Overlapping neural control of language, gesture and tool-use. In: Gibson KR, Ingold T,
editors. Tools, language and cognition in human evolution. Cambridge: Cambridge University Press;
1993. pp. 187–192.

65. Callahan E. The basics of biface knapping in the eastern fluted point tradition: a manual for flintknap-
pers and lithic analysts. Archaeol East N Am. 1979; 7:1–180.

66. Moore MW, Sutikna T, Jatmiko, Morwood M, BrummA. Continuities in stone flaking technology at
Liang Bua, Flores, Indonesia. J Hum Evol. 2009; 57:503–526. doi: 10.1016/j.jhevol.2008.10.006
PMID: 19361835

67. Isaac GL. Olorgesailie: archaeological studies of a Middle Pleistocene lake basin in Kenya. Chicago:
University of Chicago Press; 1977.

68. Webb JA., Domanski M. The relationship between lithology, flaking properties and artefact manufac-
ture for Australian silcretes. Archaeometry. 2008; 50(4): 555–575.

69. Hughes P, Hiscock P, Watchman A. Terminological debate in the Upper Hunter Valley: indurated
mudstone versus tuff. Aust Archaeol. 2011; 72:45–46.

70. Jones R, White N. Point blank: stone tool manufacture at the Ngilipitji Quarry, Arnhem Land, 1981. In:
Meehan B, Jones R, editors. Archaeology with ethnography: an Australian perspective. Canberra:
Australian National University; 1988. pp. 51–93.

71. Elkin AP. Pressure flaking in the northern Kimberley, Australia. Man. 1948; 130: 110–113.

72. Binford LR, O’Connell JF. An Alyawara day: the stone quarry. J Anthropol Res. 1984; 40: 406–432.

73. Tryon CA, McBrearty S, Texier P-J. Levallois lithic technology from the Kapthurin formation, Kenya:
Acheulian origin and Middle Stone Age diversity. Afr Archaeol Rev. 2005; 22(4): 199–229.

74. Inizan M-L, Reduron-Ballinger M, Roche H, Tixier J. Technology and terminology of knapped stone.
Préhistoire de la Pierre Taillée: 5. Nanterre: Cercle de Recherches et d’Etudes Préhistoriques; 1999.

75. Nonaka T, Bril B, Rein R. How do stone knappers predict and control the outcome of flaking? Implica-
tions for understanding early stone tool technology. J Hum Evol. 2010; 59(2): 115–167.

76. Baker T. Digital Crabtree: computer simulations of Folsom fluting. In: Clark JE, Collins MB, editors.
Folsom technology and lifeways. Lithic Technology Special Publications No. 4; 2002. pp. 209–226.

77. Patten RJ. Peoples of the flute: a study in anthropolithic forensics. Denver: Stone Dagger Publica-
tions, 2005.

Experimental Insights into Early Stone Tools

PLOS ONE | DOI:10.1371/journal.pone.0158803 July 8, 2016 35 / 37

http://www.ncbi.nlm.nih.gov/pubmed/12662943
http://dx.doi.org/10.1016/j.jhevol.2008.10.006
http://www.ncbi.nlm.nih.gov/pubmed/19361835


78. Braun DR, Tactikos JC, Ferraro JV, Harris JWK. Flake recovery rates and inferences of Oldowan
hominin behavior: a response to Kimura 1999, 2002. J Hum Evol. 2005; 48(5): 525–531. PMID:
15857655

79. Bar-Yosef O, Van Peer P. The chaîne opératoire approach in Middle Paleolithic archaeology. Curr
Anthropol. 2009; 50(1): 103–131.

80. Braun DR, Tactikos JC, Ferraro JV, Arnow SL, Harris JWK. Oldowan reduction sequences: methodo-
logical considerations. J Archaeol Sci. 2008; 35: 2153–2163.

81. Morgan TJH, Uomini NT, Rendell LE, Chouinard-Thuly L, Street SE, Lewis HM, et al. Experimental
evidence for the co-evolution of hominin tool-making teaching and language. Nat Commun. 2015; 6:
6029. doi: 10.1038/ncomms7029 PMID: 25585382

82. Boëda E. Levallois: a volumetric construction, methods, a technique. In: Dibble HL, Bar-Yosef O, edi-
tors. The definition and interpretation of Levallois technology. Monographs in World Archaeology No.
23. Madison: Prehistory Press; 1995. pp. 41–68.

83. Sharon G. Acheulian giant-core technology: a worldwide perspective. Curr Anthropol. 2009; 50(3):
335–367.

84. Crabtree DE. The cone fracture principle and the manufacture of lithic materials. Tebiwa. 1972; 15(2):
29–42.

85. Boëda E. Approche de la variabilité des sytèmes de production lithique des industries du Paléolithique
inférieur et Moyen: chronique d’une variabilité attendue. Techniques et Culture. 1991; 17–18: 37–79.

86. Schlanger N. Understanding Levallois: lithic technology and cognitive Archaeology. Camb Archaeol
J. 1996; 6(2): 231–254.

87. Van Peer P. The Levallois reduction strategy. Monographs in World Archaeology No. 13. Madison:
Prehistory Press; 1992.

88. de la Torre I. Technological strategies in the Lower Pleistocene at Peninj (west of Lake Natron, Tanza-
nia). In: Schick K, Toth N, editors. The cutting edge: new approaches to the archaeology of human ori-
gins. Gosport: Stone Age Institute Press; 2009. pp. 93–113.

89. McCarthy FD. Australian Aboriginal stone implements, second edition. Sydney: Australian Museum
Trust; 1976.

90. Debénath A, Dibble HL. Handbook of Paleolithic typology. Volume One: Lower and Middle Paleolithic
of Europe. Philadelphia: University Museum; 1994.

91. OwenWE. The Kombewa culture, Kenya colony. Man 1938; 38: 203–205.

92. Toth N. Archaeological evidence for preferential right-handedness in the Lower and Middle Pleisto-
cene, and its possible implications. J Hum Evol. 1985; 14: 607–614.

93. Hovers E. Invention, reinvention and innovation: the makings of Oldowan lithic technology. In: Elias S,
editor. Origins of human innovation and creativity. Elsevier; 2012. pp. 51–68.

94. Roche H, Texier P-J. Evaluation of technical competence of Homo erectus in East Africa during the
Middle Pleistocene. In Bower JRF and Sartono S, editors. Evolution and ecology of Homo erectus.
Leiden: Royal Netherlands Academy of Arts and Sciences; 1995. pp. 153–167.

95. Roche H, Delagnes A, Brugal J-P, Feibel C, Kibunjia M, Mourre V, et al. Early hominid stone tool pro-
duction and technical skill 2.34 myr ago in West Turkana, Kenya. Nature. 1999; 399: 57–60. PMID:
10331389

96. Leakey MD. Olduvai Gorge: Volume 3, excavations in beds I and II, 1960–1963. Cambridge: Cam-
bridge University Press; 1971.

97. Harmand S, Lewis JE, Feibel CS, Lepre CJ, Prat S, Lenoble A, et al. 3.3-million-year-old stone tools
from Lomekwi 3, West Turkana, Kenya. Nature. 2015; 521: 310–315. doi: 10.1038/nature14464
PMID: 25993961

98. Schick K, Toth N, editors. The cutting edge: new approaches to the archaeology of human origins.
Gosport: Stone Age Institute; 2009.

99. Semaw S. The world’s oldest stone artefacts from Gona, Ethiopia: their implications for understanding
stone technology and patterns of human evolution between 2.6–1.5 million years ago. J Archaeol Sci.
2000; 27: 1197–1214.

100. Beyene Y, Katoh S, WoldeGabriel G, Hart WK, Uto K, Sudo M, et al. The characteristics and chronol-
ogy of the earliest Acheulean at Konso, Ethiopia. Proc Natl Acad Sci. 2013; 110(5): 1584–1591. doi:
10.1073/pnas.1221285110 PMID: 23359714

101. Ashton N, White M. Bifaces and raw materials: Flexible flaking in the British Early Paleolithic. In: Sor-
essi M, Dibble HL, editors. Multiple approaches to the study of bifacial technologies. Philadelphia:
University of Pennsylvania Museum of Archaeology and Anthropology; 2003. pp. 109–123.

Experimental Insights into Early Stone Tools

PLOS ONE | DOI:10.1371/journal.pone.0158803 July 8, 2016 36 / 37

http://www.ncbi.nlm.nih.gov/pubmed/15857655
http://dx.doi.org/10.1038/ncomms7029
http://www.ncbi.nlm.nih.gov/pubmed/25585382
http://www.ncbi.nlm.nih.gov/pubmed/10331389
http://dx.doi.org/10.1038/nature14464
http://www.ncbi.nlm.nih.gov/pubmed/25993961
http://dx.doi.org/10.1073/pnas.1221285110
http://www.ncbi.nlm.nih.gov/pubmed/23359714


102. Villa P. The Lower to Middle Paleolithic transition. In: Camps M, Chauhan PR, editors. Sourcebook of
Paleolithic transitions: methods, theories, and interpretations. New York: Springer; 2009. pp. 265–
270.

103. Boëda E, Hou YM, Forestier H, Sarel J, Wang HM. Levallois and non-Levallois blade production at
Shuidonggou in Ningxia, North China. Quat Int. 2013; 295: 191–203.

104. Pollarolo L, Susino G, Kuman K, Bruxelles L. Acheulean artefacts at Moropeng in the Cradle of
HumankindWorld Heritage Site, Gauteng Province, South Africa. S Afr Archaeol Bull. 2010; 65(191):
3–12.

105. Foley R, Lahr M. Mode 3 technologies and the evolution of modern humans. Camb Archaeol J. 1997;
7(1): 3–36.

106. Foley R, Lahr M. On stony ground: lithic technology, human evolution, and the emergence of culture.
Evol Anthropol. 2003; 12: 109–122.

107. Lycett SJ. Are Victoria West cores ‘proto-Levallois’? A phylogenetic assessment. J Hum Evol. 2009;
56: 175–191. doi: 10.1016/j.jhevol.2008.10.001 PMID: 19062074

108. Riddle ATR, Chazan M. Stone tools from the inside out: radial point distribution. World Archaeol.
2014; 46(1): 123–136.

109. Hiscock P. Learning in lithic landscapes: a reconsideration of the hominid ‘toolmaking’ niche. Biol The-
ory. 2014; 9: 27–41.

110. Li H, Kuman K, Li C. Re-examination of the morphological variability of East Asian handaxes from a
comparative perspective. World Archaeol. 2014; 46(5): 705–733.

111. McNabb J, Binyon F, Hazelwood L. Large Cutting Tools from the South African Acheulean and the
question of social traditions. Curr Anthropol. 2004; 45(5): 653–677.

112. Pope M, Fussel K, Watson K. Biface form and structured behaviour in the Acheulean. Lithics 2006;
27: 44–57.

113. Shipton C. Imitation and shared intentionality in the Acheulean. Camb Archaeol J. 2010; 20(2): 197–
210.

114. Spikens P. Goodwill hunting? Debates over the ‘meaning’ of Lower Palaeolithic handaxe form revis-
ited. World Archaeol. 2012; 44(3): 378–392.

Experimental Insights into Early Stone Tools

PLOS ONE | DOI:10.1371/journal.pone.0158803 July 8, 2016 37 / 37

http://dx.doi.org/10.1016/j.jhevol.2008.10.001
http://www.ncbi.nlm.nih.gov/pubmed/19062074

