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Many proteins in their unbound structures lack surface pockets

appropriately sized for drug binding. Hence, a variety of

experimental and computational tools have been developed for

the identification of cryptic sites that are not evident in the

unbound protein but form upon ligand binding, and can provide

tractable drug target sites. The goal of this review is to discuss

the definition, detection, and druggability of such sites, and

their potential value for drug discovery. Novel methods based

on molecular dynamics simulations are particularly promising

and yield a large number of transient pockets, but it has been

shown that only a minority of such sites are generally capable of

binding ligands with substantial affinity. Based on recent

studies, current methodology can be improved by combining

molecular dynamics with fragment docking and machine

learning approaches.
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Introduction
Many proteins have small-molecule binding pockets that

are not easily detectable in the ligand-free structures.

These cryptic sites require a conformational change to

become apparent. A cryptic site can therefore be defined

as a site that forms a pocket in a ligand-bound structure,

but not in the unbound protein structure [1��]. It has long

been well-known that proteins are dynamic objects, and

that their binding sites may change conformation upon

ligand binding [2]. However, finding and utilizing cryptic
www.sciencedirect.com 
or hidden binding sites has received growing attention

during the last few years [1��,3�,4,5��,6,7,8,9,10], seem-

ingly motivated by two factors. First, many biologically

relevant drug targets lack appropriately sized pockets in

their unbound structures to support the strong binding of

drug-sized ligands [7,11]. It has been suggested that

cryptic sites can provide previously undescribed pockets,

potentially enabling targeting of proteins that would

otherwise be considered undruggable [7], and thereby

expanding the ‘druggable genome’ [11]. In keeping with

this idea, some of the pockets that bind small molecule

inhibitors of protein–proteins interactions, a class that

include many such challenging targets, are cryptic [12].

Cryptic sites located away from the main functional site of

a protein, but which can modulate the activity of the

protein allosterically, are also potentially useful [13�],
particularly if the main functional site cannot be targeted

with sufficient specificity [14]. Targeting a distal site also

has the potential to give a different pharmacological

profile [15]. The second factor contributing to the

increased interest in cryptic sites is the availability of

improved methodology for identifying such sites, partic-

ularly molecular dynamics and Markov state simulation

methods that are now computationally feasible

[3�,8,9,16,17,18,19]. More specialized computational tools

have also been developed that integrate molecular

dynamics simulations [7,9] with fragment docking [5��]
and machine learning approaches [1��]. Despite this high

level of recent interest in cryptic sites, a review of recent

publications suggests that a number of questions con-

cerning the definition, identification, and druggability of

cryptic sites, and their potential value for drug discovery,

are either not fully answered, or have been answered in

conflicting ways. Here we identify and discuss some of

these questions, with emphasis on problem areas that

need further work.

When is a binding site cryptic?
Intuitively, a binding site is cryptic if it can be identified

in the ligand-bound but not in the unbound structure of a

protein. This definition is far from rigorous, however,

since it depends both on the method of searching for

the sites, and on the particular unbound structure(s)

considered. To develop a benchmark set of proteins with

cryptic sites, Cimermancic et al. [1��] screened over

20,000 unbound–bound protein pairs from the Protein

Data Bank using two pocket detection algorithms,

Fpocket [20] and ConCavity [21]. Both algorithms derive
Current Opinion in Chemical Biology 2018, 44:1–8
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2 Next generation therapeutics
scores that reflect the putative capacity of pockets to bind

small molecules. They averaged Fpocket’s residue drugg-

ability scores and ConCavity’s residue scores over residues

within 5 Å of the ligand, to form a pocket score with values

between zero (no pocket) and 1 (well-formed binding site).

This composite measure primarily depends on the volume

of the pocket, but also includes other factors such as residue

polarity and evolutionary conservation. Cryptic sites were

defined as sites with an average pocket score of less than

0.1 in the unbound form of the protein and greater than

0.4 in the bound form. Using these criteria, together with

manual inspection, Cimermancic et al. [1��] selected

93 pairs in which each unbound structure had a site con-

sidered cryptic due to its low pocket score, and each bound

structure had a functionally relevant ligand bound at the

site. The resulting CryptoSite set is very useful for testing

cryptic site prediction algorithms, and the definition of a

cryptic site that these authors developed could provide the

basis for a community standard as other groups test newly

developed methods.

A potential issue with the approach of Cimermancic

et al. [1��] is that, to determine whether a site can correctly

be considered cryptic, it is important to consider the full

range of conformations available to the protein in the

absence of ligand. Basing the structural comparison on a

single unbound structure ignores the ensemble of con-

formations available to the unbound protein, especially

important at mobile regions such as potential cryptic sites

[16]. This consideration raises the following question:

Can a site be properly considered as cryptic if it is absent

in just one or a very few unbound structures, even if it is

fully formed in other unbound structures? Such behavior

suggests that, although the protein can adopt conforma-

tions in which the pocket is absent, it also has accessible

conformations in which the pocket is present. In some

cases these bound-like conformations may even represent

the most abundant state of the protein in the absence of

ligand. An alternative, more stringent definition is for a

pocket to be considered cryptic only if it is absent in all, or

nearly all, unbound structures of the protein, such that it

cannot be reliably identified in the absence of a bound

ligand, and likely does not exist in any large fraction of the

conformational states available to the unbound protein.

Beglov et al. [22��] have investigated how broader consid-

eration of the conformations available to the unbound

protein would affect the set of cryptic sites identified by

Cimermancic et al. [1��]. To each protein pair in the

CryptoSite set, they added all unbound structures in the

Protein Data Bank having at least 95% sequence identity.

The number of such additional unbound structures varied

from zero to 498 per protein, resulting in an extended

CryptoSite dataset that included 4950 structures rather

than theoriginal 186. Inclusion of theseadditional unbound

structures revealed that bound-like pockets are at least

partially formed in some unbound structures for close to
Current Opinion in Chemical Biology 2018, 44:1–8 
50% of the 93 proteins in the CryptoSite set [22��]. For

example, in the original CryptoSite set the protease beta-

secretase 1 (BACE-1) is represented by unbound and

bound structures 1W50 and 3IXJ. The unbound structure

1W50 has a low Fpocket druggability score because the

loop comprising residues 71–74 is far from the active site,

making the pocket too open to score as druggable

(Figure 1a). The loop is closed down on the inhibitor in

the bound structure 3IXJ, resulting in a well-formed pocket

that binds the isophthalamide ligand with high affinity.

The analysis of 52 structures of unbound BACE-1 in the

extended CryptoSite set reveals that, in these structures,

the pockets in question are almost evenly distributed

between conformations resembling the unbound and

bound forms, with druggability scores varying between

0.2 and 0.6 (Figure 1c). Thus, it is arguable whether this

site should be considered as cryptic.

In many of the 93 proteins the analysis of the structures in

the extended CryptoSite set revealed some degree of

spontaneous shift toward the ligand-bound conformations

at the binding site, but with the distribution of observed

conformations heavily weighted toward the unbound

state [22��]. For example, the original CryptoSite set

includes 2GFC and 2JDS as an unbound–bound pair of

structures for the cAMP-dependent protein kinase known

as Protein Kinase A (PKA). In the unbound structure,

2GFC, the activation loop (which has the sequence SFG

rather than the DFG segment seen in many kinases)

protrudes into the active site, closing the pocket

(Figure 1b). The site opens when an inhibitor binds

(PDB ID 2JDS, see Figure 1b). With few exceptions, in

the unbound structures the SFGloop resides in the partially

hydrophobic outer region of the kinase active site

(Figure 1c). Although the pocket is fully formed in a few

structures, this is because these structures also contain

bound allosteric modulators far from the active site, for

example, myristolic acid in the structure 4DFZ. Thus, it is

probably reasonable to consider this PKA pocket cryptic.

Proteins in which the cryptic site is completely missing in

all unbound structures seem to be rare. A classic example

of this type is TEM b-lactamase, in which an elongated

cryptic site was discovered serendipitously when crystals

revealed two small molecules from the crystallization

buffer bound between helices 11 and 12 [23]. In the

bound structure (PDB code 1PZO) the position of the

shorter helix shifts, opening a substantial crevice

(Figure 1d). However, no opening of the site is seen in

any unbound structure. Engineered variants of the pro-

tein exist in which helix 11 is unfolded, resulting in partial

pocket opening [24], but in the wild-type enzyme the site

is definitely cryptic.

The conclusion as to whether a site is cryptic may also

depend on the resolution of the available structures. An

example is protein tyrosine phosphatase 1B (PTP1B),
www.sciencedirect.com
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Figure 1
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Types of cryptic sites. In all cases the bound structure is colored orange, the bound ligand is shown as yellow sticks, and the unbound structure

superimposed over the bound one is colored cyan. PDB codes are shown in parenthesis. (a) Unbound (1W50) and ligand-bound (3IXJ) structures

of beta-secretase 1 (BACE-1) protease, the latter co-crystallized with a isophthalamide inhibitor. In the unbound structure the binding pocket is too

open, and the loop is closing down on the ligand upon binding. (b) Unbound (2GFC) and ligand-bound (2JDS) structures of cAMP-dependent

protein kinase, the latter co-crystallized with the ATP-competitive inhibitor A-443654. In the unbound structure the activation loop protrudes into

the binding site and would clash with the inhibitor superimposed from the bound structure. (c) Distributions of druggability scores in the

unliganded structures of BACE-1 protease (homologs of 1W50) and cAMP-dependent protein kinase (homologs of 2GFC). Based on the

druggability score, in the BACE-1 protease the pockets are almost evenly distributed between conformations resembling the unbound and bound

forms. In contrast, in the cAMP-dependent protein kinase unbound-like conformations dominate. (d) Unbound (1JWP) and ligand-bound (1PZO)

structures of TEM b-lactamase. The bound structure 1PZO includes two small inhibitor molecules bound between helices 11 and 12.
which has a cryptic allosteric site close to its C-terminus

[25,26]. The unbound structures 2F6V and 1SUG of

PTP1B, with resolutions of 1.7 Å and 1.95 Å, respectively,

have a well-resolved C-terminal helix that covers the

allosteric site, rendering it undetectable by any current

pocket detection algorithm. However, the C-terminal

region is very flexible; in fact, the helix is missing in

several low resolution unbound structures such as 2HNP

and 1T49, and is poorly resolved in 1T48 [25]. Absent the

helix, the allosteric site appears accessible to ligands [27].

These problems demonstrate that the concept of cryptic

sites may be difficult to rigorously define unless criteria
www.sciencedirect.com 
for selecting the ensemble of protein structures to be

considered are first specified.

Cryptic sites for drug discovery
An important practical question concerning cryptic sites is

their usefulness for drug discovery, frequently described in

terms of druggability, a concept used with a number of

different meanings [28�]. We follow the definition of Haj-

duk et al. [29], and define a protein as druggable if it is

capable of binding a ligand with affinity high enough for the

modulation of biological activity. In addition to conven-

tionally drug-like molecules that comply with Lipinski’s

Rule-of-Five (Ro5) [30,31], the ligands considered here
Current Opinion in Chemical Biology 2018, 44:1–8
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include macrocycles, peptidomimetics, and other com-

pounds with molecular weights exceeding 500 Da, but

which nonetheless have some potential for good drug-like

properties [32–34]. Such beyond-Ro5 compounds fre-

quently target protein sites that are large, highly lipophilic,

or highly polar, flexible, flat, or featureless [34]. While these

proteins may be difficult to drug, considering them as

undruggable would lead to missing potentially important

targets. We note that our definition does not consider the

biological significance of the target, which must be estab-

lished independently of its druggability [28�].

Kozakov et al. [35] developed druggabilty conditions

based on the FTMap computational method [36].

FTMap distributes small organic probe molecules of

different sizes, shapes, and polarities on the surface of

the protein to be studied, finds the most favorable posi-

tions for each probe type, clusters the probes, and ranks

the clusters on the basis of their average energy. Regions

that bind several different probe clusters are called con-

sensus sites, and are the predicted binding energy hot

spots [36]. FTMap is available through a free server [36].

It was shown by extensive benchmarking against experi-

mental data that a binding site is potentially druggable if

it harbors a binding energy hot spot that is strong enough

to comprise at least 16 FTMap probe clusters [35]. To

evaluate the druggability of the cryptic sites in the
Table 1

Proteins in the CryptoSite set with validated high affinity cryptic sites

Name Unbounda Boundb

mRNA-decapping enzyme DcpS 3BL9B 3BL7A 

Hepatitis C virus polymerase 3CJ0A 2BRLA 

Hepatitis C virus polymerase 3CJ0A 3FQKB 

Tyrosine kinase domain of C-MET 1R1WA 3F82A 

TetR-like transcriptional regulator 2WGBA 2V57A 

Angiopoietin-1 receptor 1FVRA 2OO8X 

Nicotinic acetylcholine receptor 3PEOG 2BYSJ 

Biotin carboxylase 1BNCB 2V5AA 

Staphylococcal nuclease 1TQOA 1TR5A 

DXP reductoisomerase 1K5HC 2EGHB 

Glutamate Racemase (GluR) 2OHGA 2OHVA 

SARS-CoV main protease 1UK2A 2GZ7A 

Serotonin N-acetyltransferase 1B6BA 1KUVA 

Coagulation factor VII zymogen 1JBUH 1WUNH 

NPC2 lysosomal protein 1NEPA 2HKAC 

Hsp90 (heat shock protein 90) 2QFOB 2WI7A 

Integrin alpha-L 3F74C 3BQMC 

Interleukin-2 1Z92A 1PY2A 

Bcl-xL 3FDLA 2YXJA 

a Protein Data Bank ID of the unbound structure with chain identifier adde
b Protein Data Bank ID of the bound structure with chain identifier added
c 3-letter code of the ligand in the bound structure.
d Affinity as reported.
e Shortest distance between any atom of the protein and any atom of the
f The maximum of the shortest distances between any atom of the protein

maximized over all unbound structures. If this distance is less than the distan

all unbound structures, thus the pocket is not formed without ligand bindi
g Type of binding site: Allo – allosteric, ortho – orthosteric (primary bindin

Current Opinion in Chemical Biology 2018, 44:1–8 
CryptoSite set, Beglov et al., applied FTMap to all

4857 unbound and 93 bound structures in the extended

set [22��]. According to the results, for 81% of the proteins

at least one of the unbound structures has hot spots with

16 or more probe clusters within 5 Å of the cryptic site,

and thus the sites are predicted to be druggable even

when the protein is in this unbound conformation. For

example, the cryptic sites in the unbound structures

1W50 of BACE-1 and 2GFC of PKA have hot spots

containing 17 and 18 probe clusters, respectively. How-

ever, we note that the condition that binding 16 probe

clusters implies druggability was based on the analysis of

traditional drug targets [35], and may over-predict drugg-

ability when applied to cryptic sites [22��]. In particular, it

was found that cryptic sites that are opened by move-

ments of side chains only, generally have low affinities –

in the micromolar range for the best reported ligands –

even when FTMap shows the site to contain a hot spot

comprising more than 16 probe clusters [22��].

While further work is required to establish reliable drugg-

ability criteria for cryptic sites, many such sites are defi-

nitely druggable, having been shown to bind druglike

ligands with high affinity. In Table 1 we list proteins from

the CryptoSite set [1��] that have knownligands that bind at

the site with affinities less than 300 nM, as demonstrated by

low KD, Ki, or IC50 values, depending on what measure was
.

Lig.c Affinity, nMd R-L distance Typeg

Bounde Unb.f

DD1 IC50 = 7.6 2.68 0.57 Allo

POO IC50 = 18 2.57 0.89 Allo

79Z IC50 = 81 2.63 1.15 Allo

353 IC50 = 4.6 2.81 0.62 Allo

PRL KD = 79 2.84 0.48 Allo

RAJ IC50 = 1 2.93 0.45 Allo

LOB KD = 0.3 2.41 2.04 Allo

LZL IC50 = 150 2.73 2.55 Allo

THP Ki � 100 2.84 2.33 Ortho

FOM Ki = 38 2.49 1.69 Ortho

NHL Ki = 16 2.46 0.70 Ortho

D3F IC50 = 300 2.71 1.56 Ortho

CA5 Ki = 22 2.47 0.64 Ortho

5B IC50 = 62 2.74 2.24 Ortho

C3S KD = 30–50 3.47 0.59 Ortho

2 K L IC50 = 58 2.83 2.23 Ortho

BQM IC50 = 2 2.75 1.94 Ortho

FRH IC50 = 60 2.81 1.39 PPI

N3C Ki = 0.5 3.07 2.27 PPI

d to the 4-letter PDB ID.

 to the 4-letter PDB ID.

 ligand in the bound structure.

 and any atom of the ligand superimposed from the bound structure,

ce in the previous column, then the ligand would clash with the protein in

ng.

g), PPI – protein–protein interaction inhibitor.

www.sciencedirect.com
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reported. All of these proteins can therefore reasonably be

considered as druggable. To assure that the analysis cap-

tured only sites that are genuinely cryptic even when all

their unbound structures are considered, the proteins were

subjected to a further test to ensure that all available

unbound structures would clash with the ligand, and thus

the pocket is fully formed only upon ligand binding (this

condition eliminated both BACE-1 and PKA; indeed, for

both of these proteins all unbound structures would have

some clashes with the superimposed ligands).

Eight of the sites shown in Table 1 are allosteric. Since

molecular mechanisms of allosteric communication are

rooted in the dynamic nature of proteins, allosteric modu-

lators frequently bind at flexible regions without pre-formed

pockets [14,19]. Allosteric sites are becoming increasingly

important for drug discovery [3�,9,14,19,37,38], and hence

potential allostery has been a prime motivation for the

analysis of cryptic sites. Table 1 also shows nine orthosteric

(primarybinding)sites.Fiveof these are enzyme active sites.

In most single-chain enzymes the active site is a large cleft

already present in the unbound structure [39]. However, in

some casesenzymefunctionrequireshigh levelofflexibility,

and in unbound structures the site may not be fully open. For

example, staphylococcal nuclease performs relatively non-

specific cleavage of nucleic acids, and thus must be able to

adapt to different substrates. Ligand binding to DXP reduc-

toisomerase leads to domain motion and the closing of a

flexible loopserving asa lid that shields thecontentsof active

site from bulk solvent [40]. It was shown that enzymes with

lid-gated active sites must operate by an induced fit mecha-

nism [41]. Glutamate racemase is a moonlighting enzyme

that serves two distinct functions [42], and the SARS-CoV

main protease cleaves two different peptides. Serotonin N-

acetyltransferasecatalyzes acetyl transfer to a diverse array of

tryptamine analogs. Thus, the ability to bind several sub-

strates or to exclude bulk water from the active site seem to

require substantial flexibility that can render the site closed

in the unbound structure.

The last two items in Table 1 represent binding sites for

small molecule inhibitors of protein–protein interactions,

a target class of increasing importance. Such sites on the

protein target frequently bind a peptide fragment of the

protein partner, and hence are open to a certain degree

[43]. However, enabling a small molecule to compete

with the protein for binding may require expansion of the

pocket to regions that can be considered cryptic. For

example, interleukin-2 is well known to have a cryptic

site [5��,7]. The unbound structure already has a shallow

nonpolar pocket in the region that interacts with the a
chain of the interleukin-2 receptor [44], and the pocket

can bind small molecules with moderate affinity [45].

However, a polar extension of the pocket opens only

when a longer and much higher affinity inhibitor binds

[46]. A similar case is seen in KRAS, which has a small

pocket in its SOS-binding interface [47], capable of
www.sciencedirect.com 
binding weak inhibitors. However, the binding of slightly

higher affinity inhibitors opens a second pocket nearby

[48]. The opening of additional sites by larger ligands is

not limited to protein–protein interfaces. For example, in

the protein methyltransferase DOT1L the expansion of

inhibitor structure reveals additional binding sites that

were not visible even in the SAM/SAH bound structures

[49]. Thus, predicting the potential expansion of existing

pockets by the binding of larger ligands is a very inter-

esting but largely unsolved problem, and leads to a more

general concept of cryptic sites.

Detection of cryptic sites
Some of the earliest reported cryptic sites were found by

serendipity, through detection of distal-site binding of

small molecules, many of which were components of the

crystallization buffer that bound adventitiously [23]. Tar-

geted identification of cryptic sites has traditionally

involved screening libraries of small molecules or frag-

ments [14,50], site-directed tethering [14,51], or the use

of antibodies [52]. These experimental approaches

require substantial effort and frequently have negative

outcomes. Hence, the more recently developed compu-

tational approaches are potentially very important. Bow-

man and Geissler demonstrated that Markov state models

built from hundreds of microseconds of molecular dynam-

ics (MD) simulations can identify prospective cryptic

sites [7]. In particular, their results showed that the known

cryptic site in TEM b-lactamase is at least partially open

for 53% of the simulation time, making it the most

accessible of the transient pockets detected on this pro-

tein. These authors argued that the site is not seen in

unbound crystal structures because the closed conforma-

tion is also a prominent state, and is likely further stabi-

lized by crystal packing. More recently, the Bowman

group designed and tested allosteric modulators binding

to the allosteric site of TEM b-lactamase [3�]. Although

they identified one inhibitor and two activators, the

compounds had only modest effects on TEM activity.

Applying the Markov state method to TEM b-lactamase,

Bowman and Geissler also reported around 50 additional

pockets that were open and most likely accessible more

than 10% of the time [7]. Such sites were distributed

across the surface of the protein and were proposed to

provide viable drug target sites [7]. This result is not

without controversy. Oleinikovas et al. [5��] also per-

formed MD simulations on three proteins, including

TEM b-lactamase, and found that if the runs were started

with the proteins in the open (i.e. bound) conformation,

but without the ligands present, the pockets promptly

closed. However, they observed that adding fragment

sized molecules as probes occasionally caused the re-

opening of cryptic sites. Mixed-solvent MD simulations

that include small molecules such as benzene and iso-

propanol in addition to water have been also used by other

groups to find cryptic sites [4,53]. Thus it appears that
Current Opinion in Chemical Biology 2018, 44:1–8
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even the weak binding of a small ligand can keep some of

the transient surface pockets, identified by MD simula-

tions, open for longer times. However, we strongly

believe that most of these pockets are not druggable.

Our argument is based on the observation that druggable

cryptic sites almost invariably have a strong binding

energy hot spot close by [22��]. The application of

FTMap to the extended CryptoSite set showed that

the number of such strong hot spots on any given protein

never exceeded four [22��]. Furthermore, in addition to

the cryptic site, most proteins also had known (i.e. non-

cryptic) binding sites with ligands binding at one, two, or

sometimes three of these strong hot spots. Thus, based on

the analysis of protein structures with validated cryptic

sites, Beglov et al. concluded that, among the pockets that

are seen to open during MD simulations, only one or two

may be capable of binding a ligand with substantial

affinity [22��]. It is likely therefore that very few of the

dozens of transient pockets seen in some Markov state

simulations [7] provide viable drug targets. This may be

because the opening of these transient sites is usually due

to changes only in side chain conformations, and such

sites typically have low ligand binding affinity [22��].

Conclusions
A binding site is cryptic if it is formed only in ligand-bound

structures, but it is difficult to define the concept more

rigorously unless the ensemble of unbound structures to be

considered is first specified. Cimermancic et al. [1��] devel-

oped a benchmark set that is useful for testing detection

methods,but includesonlypairsofspecificunbound–bound

structures. Nevertheless, the set includes a number of

proteins with genuine cryptic sites that are meaningful drug

targets, demonstrating the value of searching for such sites.

Methods for identifying cryptic sites that are based on MD

simulations need further validation [7], since they identify

many transient pockets that are most likely not druggable

[22��]. Cimermancic et al. [1��] demonstrated that, in addi-

tion to molecular dynamics, reliable cryptic site prediction

requires the combined use of residue physico-chemical

properties, pocket shape, sequence conservation, and frag-

ment docking as features in a machine learning algorithm.
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