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Matrine may be protective against colorectal cancer (CRC), but how it may work is unclear. Thus, we explored the underlying
mechanisms of matrine in CRC. Matrine-related proteins and CRC-related genes and therapeutic targets of matrine in CRC
were predicted using a network pharmacology approach. Five targets, including interleukin 6 (IL-6), the 26S proteasome, tumor
necrosis factor alpha (TNF-α), transforming growth factor beta 1 (TGF-β1) and p53, and corresponding high-mobility group
box 1 (HMGB1) signaling and T helper cell differentiation were thought to be associated with matrine’s mechanism. Expression
of predicted serum targets were verified in a 1,2-dimethylhydrazine dihydrochloride-induced CRC model rats that were treated
with matrine (ip) for 18 weeks. Data show that matrine suppressed CRC growth and decreased previously elevated expression of
IL-6, TNF-α, p53, and HMGB1. Matrine may have had a therapeutic effect on CRC via inhibition of HMGB1 signaling, and this
occurred through downregulation of IL-6, TNF-α, and HMGB1.

1. Introduction

Colorectal cancer (CRC) is a malignant colon or rectal
tumor and the third most common type of cancer,
accounting for ~10% of all cancer cases and ~715,000 pre-
mature deaths annually [1, 2]. Conservative drug treat-
ment, directed toward improving the quality of life and
symptoms, is an important component of CRC therapy.
Chinese herbal medicine has been used as an adjuvant
treatment for CRC, but few reports describe mechanistic
data for these compounds [3–5]. Matrine is a bioactive
component extracted from Sophora flavescens, and a few
studies have suggested that it may have anticancer activity
and may be used as an adjuvant treatment for CRC [6–8].
How matrine exerts an effect, however, is not clear.

Network pharmacology uses systems pharmacology to
help researchers to understand drug mechanisms of action
[9]. Network pharmacology approaches have been used for
drug discovery and design, and the development of bio-
markers for disease detection [9, 10]. In Chinese medicine,
the approach has been used to elucidate mechanisms of bio-
active components of some Chinese herbs [11, 12]. Thus, we
suggest that we can understand how matrine effects CRC
using a predicted component-target network [13].

Using predicted targets of matrine for treating CRC
and a network pharmacology approach, we treated 1,2-
dimethylhydrazine dihydrochloride- (DMH-) induced
CRC rats with matrine and measured target expression
in serum to better understand how matrine may be
applied clinically.
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2. Materials and Methods

2.1. Matrine-Related Proteins. PubChem (http://pubchem.
ncbi.nlm.nih.gov/) was searched for matrine-related
proteins (until November 16, 2015). Because the proteins
could be cross-referenced to other National Center for
Biotechnology Information (NCBI) databases, the proteins
that were tested in bioassays were collected [12]. Nineteen
matrine-related proteins were included in the study (Supple-
mentary Table 1).

2.2. CRC-Related Genes. CRC-related genes were searched in
the NCBI Gene database (http://www.ncbi.nlm.nih.gov/
gene) using the key words “colorectal cancer” (until
November 16, 2015) [12]. Thirty-five CRC-related genes
were included in the study (Supplementary Table 2).

2.3. Network Pharmacological Analysis Using Ingenuity
Pathways Analysis. CRC-related genes and matrine-related
proteins were uploaded into the Ingenuity Pathways Analysis
Platform (IPA, http://www.ingenuity.com), which enabled
the discovery, visualization, and exploration of molecular
interactions to identify the biological mechanisms, pathways,
and functions most relevant to genes or proteins of interest.
The “core analysis” platform in the IPA was used to assess
the uploaded genes and proteins. Scores were negative base
10 logarithms of Fisher’s exact test p value in the pathway
analysis. Significance values for biological functions were
assigned to each network by determining p values for gene
enrichment in the network by comparing these data with
the Ingenuity Pathway Knowledge Base [14].

2.4. Matrine Solution and Reagents. The matrine ampule
(5ml, 80mg) was purchased from Baiyunshan Pharmaceuti-
cal Co. Ltd. (Guangzhou, China; batch number 20151203),
and it was diluted with 10% glucose solution. DMH was
purchased from Puzhen Biological Technology Co. Ltd.
(Shanghai, China; CAS 306-37-6). ELISA kits used in this
study included rat interleukin 6 (IL-6), tumor necrosis fac-
tor alpha (TNF-α), high-mobility group box 1 (HMGB1)
and transforming growth factor beta 1 (TGF-β1) ELISA
kits (Enzyme-Linked Biotechnology Co. Ltd., Shanghai,
China), a rat 26S proteasome ELISA kit (Bio-Medical
Assay Co. Ltd., Beijing, China), and a rat tumor protein
p53 (p53) ELISA kit (BD Biosciences, CA).

2.5. Experimental Rats, Modeling, and Grouping. A total of 32
male Wistar rats (80–100 g; license number SCXK 2016-007)
were obtained from the Experimental Animal Center of the
Beijing Capital University of Medical Sciences (China). All
rats were housed in a temperature-, humidity-, and light-
controlled environment, and food and tap water were
provided ad libitum. The light-dark cycle was 12 hours (light
phase from 06:00 to 18:00). All rats were acclimated in their
cages for seven days prior to any experiments. The rodent
license for the laboratory (number SYXK 11-00-0039) was
issued by the Science and Technology Ministry of China. A
colorectal carcinogenesis model was induced in rats using
DMH once per week (30mg/kg, sc) for 18 weeks [15]. Four
experimental groups (n = 8/group) were established as

follows: healthy controls; CRC model controls; and CRC
model rats given low (LM) or high (HM) doses of matrine.
All animal experimentation was performed under the Pre-
vention of Cruelty to Animals Act (1986) of China and
the NIH Guidelines for the Care and Use of Laboratory
Animals (USA).

2.6. Treatment Schedule. Matrine doses used in the rats were
equivalent to clinically relevant human adult doses based on
an established formula for human-rat drug conversion. After
all rats were acclimatized and grouped, the LM and HM
groups received 15 and 30mg/kg (ip) injections of matrine
solution, every three days for 18 weeks. Meanwhile, all rats
except for controls underwent colorectal carcinogenesis
induction with DMH. Rats were observed daily, and at the
end of the experiment, rats were sacrificed and their periph-
eral blood and colons were collected for analysis.

2.7. ELISA. To determine whether matrine administration
affected expression of predicted target proteins (IL-6, 26S
proteasome, TNF-α, TGF-β1, p53, and HMGB1) in the
serum, protein expression was measured using commercial
rat ELISA kits according to the manufacturer’s instructions.

2.8. Statistical Analysis. Experimental results were expressed
as the means± SD. Statistical differences were analyzed by
one-way ANOVA using SPSS Statistics 23. All statistical tests
and corresponding p values were two sided, and p < 0 05 was
considered statistically significant.

3. Results

3.1. Diseases or Disorders Associated with Matrine-Related
Proteins. Based on IPA analysis, matrine-related proteins
were significantly associated with 22 diseases or disorders
(Figure 1). The top five diseases or disorders, in order,
were cancer, inflammatory responses, gastrointestinal dis-
ease, hepatic system disease, and infectious diseases. These
data suggest that matrine may be a candidate treatment
for cancer.

3.2. Networks Associated with Matrine-Related Proteins. Two
matrine molecular networks were established based on
matrine-related proteins. As shown in Figure 2(a), some
molecules in the network were linked to specific functions,
including T helper (Th) cell differentiation, cytokine com-
munication between immune cells, and crosstalk between
dendritic cells and natural killer cells. Figure 2(b) describes
other specific functions. IPA data show that overall functions
of both networks included cell-to-cell signaling and interac-
tion, inflammatory responses, cellular growth and prolifera-
tion, and free radical scavenging. Thus, matrine may assist
with immune regulation and anti-inflammatory responses.

3.3. Networks Associated with CRC-Related Genes. Two CRC
networks were established based on CRC-related genes.
Figure 3(a) shows that molecules were linked to specific
functions, such as CRC metastasis and the molecular
mechanisms of cancer. Additionally, polyamine regulation
in colon cancer was a functional characteristic of the
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CRC networks (Figure 3(b)). Two CRC networks were
associated with inflammatory and gastrointestinal diseases
and organismal injury and abnormalities. This reflects
the pathogenesis of CRC.

3.4. Merging of the Matrine and CRC Networks. To predict
targets of matrine intervention in CRC, matrine and CRC
networks were compared, network dimensions were reduced,
and the networks were merged with the IPA. As shown in

Figure 4(a), five molecules, including IL-6, 26S proteasome,
TNF-α, TGF-β1, and TP53, were identified as common
linked molecules relevant to both matrine and CRC net-
works. According to the Ingenuity Knowledge Database,
HMGB1 signaling was the most significantly related pathway
for IL-6, TNF-α, and TGF-β1, and Th cell differentiation was
the most significantly relevant function for these proteins. IL-
6, TNF-α, and TGF-β1 were involved in HMGB1 signaling
(Figure 4(b)). Thus, these five highly linked molecules and
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Figure 1: Diseases or disorders associated with matrine-related proteins. Statistical significance gradually decreases from left to right.

TOP1

Ubiquitin
Alpha tubulin

GPT
Eotaxin

Smad2/3
Collagen type IV

MYC

Cbp/p300
CREBBP

TP53
histone deacetylase

Hsp90

Collagen type I
SMAD3 Histone h4 N-cor

Ldh (complex)

Integrin
ActinTNF⁎SMAD7

E, PD (1) myosin-light-chain kinase

chemokine

IL1/IL6/TNFIL1
IL6⁎TIMP1

TSH
FSH

Timp

collagen Lh
elastase Caspase 3/7

PLA2Collagen type II
FC:T helper cell differentiation

FC:Crosstalk between dendritic cells and natural killer cells
FC:Role of cytokines in mediating communication between immune cells

TGFBRIL1BPro-inflammatory Cytokine 
Pdgf (complex)

TGFB1p70 S6k
Tgf beta

PDGF BB
Collagen type III

Histone h3NFkB (complex)

KCNH2
GC-GCR dimer

Rar

peptidase
Histone H1

Complex Transcription regulator
Relationship
Relationship

Cytokine/Growth factor
Enzyme
Group/Complex

(a)

SYK/ZAPsphingomyelinase
ALT

II12 receptor IgG PLC gamma

lfn gamma IL-2RIgaMHC II IgG1

KIR lfn
IL10

Cebp IL12 (family) Notch
IL2

Cyclin E
Rb JUN/JUNB/JUND

Cyclin A NRAS

Pde4
Mek

caspase

Ras
RELA

CXCL3
CrebIFN Beta

NfkB-RelA REL/RELA/RELB PI3K p85
Hsp27 PARP

14-3-3

CaMKII Ikb Il8rPI3K (family)
NfkB1-RelA MTORC2

DNA-methyltransferaseIkk (family)
FC:B Cell development

FC:T helper cell differentiation
FC:Communication between innate and adaptive immune cells

Complex Transcription regulator
Relationship
Relationship

Cytokine/Growth factor
Enzyme
Group/Complex

Akt MAP2K1/2
estrogen receptor

JINK1/2

IFNGMHC CLASS I (family)

CYP
MIR124

Fcgr3

TH1 Cytokine MEF2 Calcineurin A
calpain

Sphk

(b)

Figure 2:Matrinemolecular networks. In each network, molecules are nodes, and a biological relationship between two nodes is represented
by a line. Solid lines between molecules indicate a direct physical relationship between molecules, whereas dotted lines represent indirect
functional relationships. Green symbols represent matrine-related proteins. Yellow symbols indicate the functional characteristics of the
networks.
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HMGB1 signaling were likely associated with the mechanism
of matrine for treating CRC, and they may be potential target
proteins of matrine.

3.5. Inhibitory Effect of Matrine on CRC Growth. Tumor
number, weight, and size for each rat were recorded to eval-
uate antitumor effects of matrine. Table 1 shows that com-
pared to the model group, tumors in matrine-treated
groups decreased. Additionally, tumor number, weight, and
size in matrine-treated groups were fewer, and the HM group
had the best outcome.

3.6. Effect of Matrine on Expression of Predicted Target
Proteins. IL-6, TNF-α, HMGB1, and p53 were increased in
the model group compared to the controls. Figure 5 shows
that after matrine treatment, IL-6 and HMGB1 in the HM
group decreased, and p53 in the LM group decreased. TNF-
α decreased in both matrine-treated groups. The decrease
in TNF-α in the HM group was more significant than that
in the LM group. No significant differences were found
among groups with respect to 26S proteasome and TGF-β1.

4. Discussion

CRC is a leading cause of cancer-related deaths worldwide,
and studies suggest that matrine may have antitumor effects
and could have potential for treating CRC. However, how
this occurs is not clear. A network pharmacology approach

to understand mechanistic aspects of drugs may offer novel
approaches for studying new compounds. We studied the
effect of matrine on rats with CRC using this network phar-
macology approach, and we observed that matrine signifi-
cantly suppressed CRC growth; this was associated with
dysregulation of specific proteins (IL-6, TNF-α, HMGB1,
and p53) and a corresponding pathway (HMGB1 signaling)
and a function (Th cell differentiation). To our knowledge,
this study is the first report about the anti-CRC mechanism
of matrine using network pharmacology.

IL-6 is mainly secreted by T cells and macrophages to
stimulate an immune response and cause inflammation. IL-
6 is critical for tumor microenvironment regulation and
may be a key regulator during colorectal tumorigenesis
via regulation of tumor-promoting inflammation [16–18].
Patients with advanced/metastatic cancer had high IL-6
[19, 20], and IL-6 expression was significantly elevated in
CRC tissues compared to noncancerous tissues and was
associated with invasiveness and lymph node metastasis
[21]. Anti-IL-6 therapy was initially developed for treating
autoimmune diseases, but the role of IL-6 in chronic
inflammation suggests that IL-6 blockade may be feasible
for cancer treatment [22, 23]. TNF-α is a cell signaling pro-
tein involved in systemic inflammation produced chiefly by
activated macrophages. TNF-α plays a pivotal role in malig-
nant cellular proliferation, angiogenesis, tissue invasion,
and metastasis in CRC [24]. A previous study demonstrated
that serum TNF-α may contribute to CRC susceptibility,
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Figure 3: CRCmolecular networks. In each network, molecules are nodes, and a biological relationship between two nodes is represented by a
line. Solid lines between molecules indicate a direct physical relationship between molecules, whereas dotted lines represent indirect
functional relationships. Purple symbols represent CRC-related genes. Yellow symbols indicate the functional characteristics of the networks.
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and anti-TNF therapy was considered for CRC treatment
[25]. In this study, matrine reduced elevated IL-6 and TNF-
α in CRC, which was consistent with previous studies.
TGF-β1 is a protein secreted by most immune cells, and it
contributes to immune system control and performs cellular
functions, including control of cell growth, proliferation, dif-
ferentiation, and apoptosis [26]. A study showed that TGF-
β1 promoted CRC immune escape [27]. TGF-β1 was
increased in peripheral blood of CRC patients and may be
associated with tumor size and location [28, 29]. Matrine
did not affect TGF-β1 expression.

IL-6, TNF-α, and TGF-β1 are involved in HMGB1 sig-
naling. HMGB1 is secreted by immune cells such as

macrophages, monocytes, and dendritic cells, and it acts as a
cytokine mediator of inflammation [30–33]. HMGB1 signals
through the receptor for advanced glycation end-products
(RAGE), a multiligand receptor of the immunoglobulin
superfamily. Cell activation by HMGB1 causes release of pro-
inflammatory cytokines such as IL-6, TNF-α, and TGF-β1
[34]. HMGB1 is key to cancer development, progression,
and metastasis because it activates cancer cells, enhances
tumor angiogenesis, and suppresses host anticancer immu-
nity [35]. HMGB1 targeting has been identified as a potential
therapeutic strategy against cancer development, progres-
sion, and in particular, metastasis [36]. We found that along
with decreased IL-6 and TNF-α, matrine inhibited increases

Table 1: CRC in different groups (mean± SD).

Groups (n) Incidence (%) Number Weight (g) Size (cm3)

Control (8) 0 0 0 0

Model (8) 100 2.63± 0.74 0.89± 0.86 1.09± 0.65
LM (8) 87.5 2.25± 0.71 0.17± 0.21∗ 0.45± 0.50∗

HM (8) 75.0 1.50± 0.76∗∗ 0.15± 0.17∗ 0.28± 0.27∗∗

Note: matrine-administered groups compared to the model group. ∗P < 0 05, ∗∗P < 0 01.
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Figure 4: Common highly linked molecules and their most significantly related signaling pathways and functions in the “matrine-CRC”
merged network. In the network, molecules are nodes, and biological relationships between two nodes are represented by lines. Solid lines
between molecules show a direct physical relationship, whereas dotted lines show indirect functional relationships. (a) The five blue
molecules in the center of the network represent common highly linked molecules. Red molecules represent CRC-related genes, and green
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in HMGB1 in CRC, suggesting that HMGB1 and HMGB1
signaling may be relevant targets for CRC treatment.

p53 is a protein encoded by the TP53 gene, which is the
most frequently mutated gene in human cancers and is a
key to preventing cancer formation [37, 38]. TP53 was
thought to be a potential predictive biomarker for CRC
development and it has been used in the targeted therapy of
CRC [39–41]. Matrine decreased expression of p53 in CRC,
suggesting that targeting p53 might explain how matrine
affects CRC. Proteasomes are critical to the function of
the adaptive immune system by regulating expression of
proinflammatory cytokine TNF-α [42]. Increased protea-
some was correlated with autoimmune disease activity
[43]. Proteasome inhibitors were effective against tumors
in cell culture, inducing apoptosis by disrupting regulated
degradation of progrowth cell cycle proteins [44]. Target-
ing the proteasome may thus be promising for treating

CRC [45, 46]. Our data suggest that targeting the 26S pro-
teasome may explain how matrine affects CRC.

5. Conclusion

Inhibition of HMGB1 signaling characterized by abnormal
expression of specific proteins (IL-6, TNF-α, and HMGB1)
relevant to Th cell differentiation was likely the underlying
mechanism of CRC treatment by matrine. This finding might
facilitate the identification of new targets for CRC treatment
as well as offer information for novel targets and purported
mechanisms for Chinese herbal medicine.
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respectively: #P < 0 05 and ##P < 0 01. LM and HM versus model, respectively: ∗P < 0 05.
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