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Abstract

Purpose of Review CMV DNA polymerase inhibitors such as ganciclovir and foscarnet have dramatically reduced the burden of
CMYV infection in the HCT recipient. However, their use is often limited by toxicities and resistance. Agents with novel
mechanisms and favorable toxicity profiles are critically needed. We review recent developments in CMV antivirals and
immune-based approaches to mitigating CMV infection.

Recent Findings Letermovir, an inhibitor of the CMV terminase complex, was approved in 2017 for primary CMV prophylaxis
in adult seropositive allogeneic HCT recipients. Maribavir, an inhibitor of the CMV UL97 kinase, is currently in two phase 3
treatment studies. Adoptive immunotherapy using third-party T cells has proven safe and effective in preliminary studies. Vaccine
development continues, with several promising candidates currently under study.

Summary No longer limited to DNA polymerase inhibitors, the prevention and treatment of CMV infections in the HCT recipient

is a rapidly evolving field which should translate into improvements in CM V-related outcomes.
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Introduction

In 1989, ganciclovir (GCV) became the first
anticytomegalovirus (CMV) agent approved by the US Food
and Drug Administration (FDA) for the treatment and preven-
tion of CMV infection and disease, followed by foscarnet
(FOS), cidofovir (CDV), and valganciclovir (Table 1). All of
these agents target the CMV DNA polymerase encoded by the
UL54 gene (pULS54) to ultimately inhibit viral DNA synthesis.
While these agents have dramatically reduced the burden of
CMV infection in the hematopoietic cell transplant (HCT) recip-
ient [1], their use is often limited by toxicities such as
myelosuppression and renal injury, and the development of re-
sistance [2]. Therefore, agents with novel mechanisms of action
and improved toxicity profiles are clearly needed. In 2017,
letermovir became the first antiCMV agent with a mechanism
of action other than inhibition of DNA polymerase activity to be
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approved by the FDA. This review will discuss recent develop-
ments in CMV antiviral agents and non-pharmacological inter-
ventions that may augment the ability to prevent and treat CMV
infections in HCT recipients.

Letermovir
Mechanism of Action and Pharmacology

CMYV genomic replication involves a rolling-circle mecha-
nism that produces multiple genomic units linked in a head-
to-tail manner (concatamers) [3]. The viral terminase complex
cleaves concatameric viral DNA into full-length genomes and
then packages a single genome into the viral nucleocapsid as
part of new virion formation [3]. The core terminase complex
is comprised of the proteins pULS51, pULS56, and pULS&9; all
three proteins are necessary for terminase function [4, 5].
Targeting the terminase complex represents an attractive ther-
apeutic option since host cellular DNA replication does not
require terminase functions and all three terminase proteins
are individually essential for viral replication [6]. The first
terminase inhibitors were the benzimidazole D-
ribonucleosides such as BDCRB and TCRB [3]. Clinical de-
velopment was halted after preclinical studies demonstrated
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donor, haploidentical donor, cord blood transplant, ex vivo T
cell-depleted graft, or graft-versus-host disease (GVHD) of
grade 2 or greater requiring > 1 mg/kg/day prednisone (or
equivalent). Letermovir prophylaxis at 480 mg/day (240 mg/
day if co-administered with cyclosporine) was begun at a me-
dian of 9 days after HCT and continued through week 14 post-
HCT, and during this time, weekly CMV PCR monitoring was
performed. Preemptive therapy was initiated upon detection of
viremia according to local practice, with protocol-suggested
viral load thresholds of 150 copies/mL in high-risk patients
and 300 copies/mL in non-high-risk patients. Patients with
detectable viremia prior to randomization were excluded from
the primary efficacy analysis. Letermovir prophylaxis met the
primary endpoint of reduction in clinically significant CMV
infection (requiring initiation of preemptive therapy or CMV
disease) compared with placebo at 24 weeks (17.5% vs
41.8%). Since CMV disease was uncommon in both groups,
this endpoint was largely defined by reduction in the need for
initiation of preemptive therapy; as such, the benefit of
letermovir prophylaxis will depend on the viral load threshold
for initiating preemptive therapy. Importantly, letermovir pro-
phylaxis was associated with a statistically significant reduc-
tion in all-cause mortality at 24 weeks, with this benefit being
predominantly among high-risk patients. As CMV disease
was rare and no single predominant cause of death was iden-
tified [23¢], the reason(s) for the mortality benefit at week 24
remain unclear. The reduction in mortality appeared to corre-
late with the prevention of CMV viremia, raising the hypoth-
esis that the beneficial impact of letermovir prophylaxis may
be related to preventing indirect negative effects of CMV in-
fection [24-26]. Adverse events including gastrointestinal ef-
fects (nausea, diarrhea), myelotoxicity, and nephrotoxicity
were similar in the letermovir and placebo groups. Based on
these results, letermovir was approved by the FDA for prima-
ry CMV prophylaxis in adult CMV seropositive allogeneic
HCT recipients [17].

Resistance

The finding of letermovir resistance mutations in UL56 was
important in elucidating its mechanism of action [10].
Subsequent in vitro studies identified multiple additional
ULS56 resistance mutations, typically located between codons
231 to 369 [27, 28]. Mutations in UL89 and ULS51 conferring
reduced susceptibility to letermovir have also been observed
in vitro [29, 30]. Letermovir-resistant mutants do not display a
significant growth defect compared to wild-type CMYV, even
with mutations which confer complete (>3000-fold) resis-
tance, such as at codon C325 of UL56 [27]. Resistance ap-
pears to evolve more rapidly in vitro compared foscarnet,
indicative of a relatively low barrier to resistance [27].

A single case of breakthrough infection with a letermovir-
resistant strain containing the UL56 V236M mutation during
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low-dose (60 mg daily) letermovir occurred in the phase 2
prophylaxis study [31]. An analysis of resistance during the
phase 3 prophylaxis study was performed, focusing on iden-
tifying resistance-associated mutations in UL56 primarily and
ULS89 secondarily [32¢]. UL56 genotyping was successful in
50 out of 79 patients (63%) who received letermovir prophy-
laxis and experienced CMV infection through week 24. Four
ULS56 resistance mutations were identified in 3 patients (6% of
50 patients analyzed). These 3 patients represented 16.7% of
patients (V= 18) who experienced CMV infection while re-
ceiving letermovir prophylaxis and for whom UL56 genotyp-
ing was successfully performed. One of the 3 patients was
viremic at the time letermovir prophylaxis was initiated (viral
load < 151 copies/mL) and another patient missed 5 doses of
letermovir. Of the four UL56 resistance mutations identified,
two were previously documented resistance mutations
(V236M and C235W), and two were novel mutations
(E237G and R369T) at positions previously demonstrated to
confer resistance in vitro [27, 28]. There were no UL89 sub-
stitutions documented that had previously had been identified
as conferring resistance in vitro [30]; UL51 was not analyzed.
Outside of these studies, cases of breakthrough infection and
disease with letermovir-resistant virus have been reported in
adult and pediatric HCT recipients receiving letermovir pri-
mary or secondary prophylaxis [33-35].

Outstanding Questions

With a novel mechanism of action and proven ability to safely
and effectively prevent CMV infection after HCT, letermovir
represents a substantial addition to the CMV antiviral arma-
mentarium that should demonstrably improve CM V-related
outcomes in HCT recipients. However, important questions
remain that will require additional study, including:

1. Determining the optimal duration of letermovir prophy-
laxis. In the phase 3 prophylaxis study, clinically signifi-
cant CMV infection developed in ~10% of patients (~
20% in those at high risk of CMV) between week 14,
when letermovir was discontinued, and week 24 [22¢¢].
This raises the question as to whether a longer duration of
prophylaxis may be of benefit, as was found for
valganciclovir after high-risk (CMV D+/R-) solid organ
transplant (SOT) [36]. A phase 3 clinical trial will com-
pare 100 vs 200 days of letermovir prophylaxis in CMV
seropositive allogeneic HCT recipients, with the primary
outcome measure being clinically significant CMV infec-
tion through week 28 post-HCT (NCT03930615).

2. Further defining the benefit of letermovir prophylaxis in
high-risk HCT populations. High-risk patients comprised
31% of the total study population in the phase 3 prophy-
laxis study, with haploidentical transplant recipients com-
prising 14.3%, cord blood recipients 4%, and ex vivo T
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cell-depleted recipients 2.5% [22¢°]. Additional study is
needed, with some data already emerging [37, 38], to
define the relative benefit of letermovir prophylaxis in
specific high-risk HCT recipients who were relatively un-
derrepresented in the study but for whom the benefit of
letermovir prophylaxis appeared greatest.

3. Determining whether there is a role for letermovir in pre-
emptive therapy or treatment of CMV disease. The use of
letermovir monotherapy for these indications is not cur-
rently recommended due to the lack of supporting data.
Notably, in the phase 3 prophylaxis study, 48 patients with
detectable CMV viremia (viral load in all cases < 1000
copies/mL) prior to randomization received letermovir,
thereby essentially receiving letermovir as preemptive
therapy; of those, approximately 33% had clinically sig-
nificant CMV infection by week 14 [22e+, 39].
Additionally, concerns exist about the relatively low bar-
rier to resistance in vitro, and emerging reports describe
the development of resistance when used in the setting of
active infection [40-43]. An ongoing clinical trial
(NCTO03728426) will evaluate the safety and efficacy of
letermovir as salvage treatment of CMV infection or dis-
ease.

Given their distinct mechanisms of action, the combi-
nation of letermovir with DNA polymerase inhibitors rep-
resents an attractive possibility for the treatment of CMV
due to the potential for additive or even synergistic anti-
viral activity. In one study, the combination of letermovir
with the DNA polymerase inhibitors ganciclovir, foscar-
net, and cidofovir demonstrated only an additive, not syn-
ergistic, effect in vitro [44]. However, another study found
a small degree of synergy between letermovir and
brincidofovir, an oral prodrug of cidofovir [45]. More
work, both clinical and in vitro, is required to address
the potential utility of letermovir-based combination
therapy.

4. Determining the safety and efficacy of letermovir in pedi-
atric HCT recipients. Studies of letermovir to date have
been limited to adult patients. A phase 2b study of
letermovir in pediatric HCT recipients is underway
(NCT03940586) in order to provide much needed infor-
mation pertaining to optimal dosing, safety, and efficacy
in this population.

Maribavir
Mechanism of Action and Pharmacology
Maribavir is an orally available, benzimidazole L-riboside

ATP competitive inhibitor of the CMV UL97 kinase
(pUL97) [46]. This mechanism of action was revealed

through selection of a resistant virus containing a mutation
in UL97 [46]. pUL97 is a broadly acting kinase that phosphor-
ylates viral and host cellular proteins [47]. Unlike the CMV
DNA polymerase pUL54 or components of the terminase
complex, pUL97 is not absolutely essential for replication in
tissue culture [6]. Instead, mutant viruses deleted of the entire
UL97 gene, or in which pUL97 kinase activity has been ab-
rogated, are viable but display severe growth defects [6,
48-51]. The critical function(s) of pUL97 that contributes to
efficient CMV replication and is affected by maribavir to re-
sult in inhibition of viral replication remains poorly defined.
Maribavir inhibits viral egress from the nucleus to the cyto-
plasm through inhibition of pUL97-dependent phosphoryla-
tion of the nuclear lamina component lamin A/C [52], al-
though the relative contribution of this to maribavir’s overall
antiviral activity remains to be determined.

The antiviral activity of maribavir is greatly affected by cell
culture conditions, with an ECso in human embryonic lung
(HEL) fibroblast cells of ~0.14 uM compared with ~ 13 uM
in human foreskin fibroblast (HFF) cells [53]. The reason for
this difference is not entirely clear, but one possibility is that
cell conditions modulate the activity of cellular kinases which
can compensate for loss of pUL97 activity in the presence of
maribavir [53]. Indeed, the addition of cellular kinase inhibi-
tors reduces the maribavir ECs, in HFFs to values comparable
to HELs [53]. Since maribavir inhibits pUL97 activity and
ganciclovir depends on pUL97-mediated phosphorylation
for its activity, maribavir and ganciclovir are antagonistic
[53]. Maribavir retains activity against most CMV strains re-
sistant to DNA polymerase inhibitors [46, 54, 55] but, similar
to letermovir, is not active against other herpesviruses [55].

Maribavir is available only as an oral preparation and is ~
30-40% absorbed after oral administration [56]. Based on
studies in animals, maribavir is eliminated mainly by biliary
excretion [56, 57]. Maribavir clearance is not affected by renal
impairment [58]. Maribavir is not a significant inhibitor of
major CYP enzymes and does not affect voriconazole expo-
sure [59]. However, maribavir increases tacrolimus exposure
by ~50% [60], and therefore monitoring of tacrolimus and
sirolimus when co-administered with maribavir is recom-
mended [59, 60, 61¢].

Clinical Experience

Phase 1 clinical trials of maribavir evaluating doses up to
1200 mg twice daily showed maribavir to be safe and well
tolerated, with the most common side effects being taste dis-
turbance and headache [56, 62]. Maribavir was then evaluated
in a multicenter, randomized, double-blind, placebo-con-
trolled, dose-ranging phase 2 prophylaxis study in adult
CMV seropositive allogeneic HCT recipients [63]. The doses
of maribavir evaluated were 100 mg twice daily, 400 mg once
daily, and 400 mg twice daily to start at engraftment (between
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14 and 30 days after HCT) and continue for a maximum of
12 weeks after HCT. The primary endpoint was the incidence
and time to onset of CMV infection or disease. All doses of
maribavir demonstrated reduction in CMV infection as deter-
mined by detection of pp65 antigenemia or DNA PCR. CMV
disease occurred in only 3 participants, all of whom were
randomized to receive placebo. Adverse events were more
common in the group receiving 400 mg twice daily compared
with lower doses of maribavir and placebo; these consisted
primarily of taste disturbance (31%) and gastrointestinal dis-
turbances (28%) (nausea, vomiting, abdominal pain, dyspha-
gia). All doses yielded similar trough concentrations but peak
plasma concentrations were ~2.5x higher following 400 mg
doses compared with 100 mg doses, and the 24-h drug expo-
sure was greatest in those taking 400 mg twice daily.

A subsequent phase 3 study evaluated maribavir at 100 mg
twice daily compared with placebo for the prevention of CMV
infection and disease in allogeneic HCT recipients [64]. The
dose chosen was based on the lack of a dose-dependent effect
on the incidence of CMV infection and an increase in adverse
effects noted at the highest dose of 400 mg twice daily in the
phase 2 prophylaxis study [63]. Maribavir was begun follow-
ing engraftment (median of 24 days post-HCT) and adminis-
tered for 12 weeks after HCT. Disappointingly, maribavir pro-
phylaxis failed to show a reduction in CMV infection or dis-
ease compared with placebo at either day 100 or 6 months
after HCT. Similarly, maribavir prophylaxis at 100 mg orally
twice daily did not meet noninferiority compared with oral
ganciclovir for the endpoints of prevention of CMV infection
or disease in high-risk (CMV D+/R-) liver transplant recipi-
ents [65]. The reason(s) for the failure of maribavir in both
studies are unclear [66, 67]. With the negative results of
maribavir prophylaxis in both HCT and SOT recipients,
maribavir was not further pursued for CMV prophylaxis.

Contemporaneous with prophylaxis studies, maribavir was
being used under individual emergency investigational new
drug applications as salvage therapy in situations of resistant
or refractory infection. An initial experience described 6 pa-
tients (5 SOT recipients, 1 HCT recipient) treated with salvage
maribavir at a starting dose of 400 mg twice daily [68]. Five
patients had proven CMV end-organ disease and 4 patients
had ganciclovir-resistant strains. Viral loads at initiation of
maribavir ranged from 7200 to 1,811,171 copies/mL. Four
patients cleared viremia after 641 days of maribavir; one of
these patients was receiving FOS concomitant with maribavir.

A randomized, double-blind phase 2 study in HCT and SOT
recipients with resistant or refractory CMV infections was sub-
sequently performed [61¢]. Patients were randomized to re-
ceive 400, 800, or 1200 mg maribavir twice daily for up to
24 weeks. Forty patients were randomized to each treatment
dose arm; of these approximately 40% were HCT recipients.
64.2% had asymptomatic infection, and end-organ disease was
present in 13.3%. The median viral load at baseline was 3.7
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logo copies/mL. Eighty-six patients (72%) achieved an unde-
tectable viral load. CM V-associated clinical manifestations im-
proved in 24/34 (71%) patients and resolved in 6/34 (18%) by
week 6 of treatment. Twenty-five patients (29%) who cleared
viremia subsequently experienced CMV recurrence while re-
ceiving maribavir; 13 (52%) of these were associated with the
emergence of maribavir-resistant virus (discussed below). The
recurrence rate was lower among HCT recipients (26%) than
among SOT recipients (40%) despite similar rates of virologic
clearance (70% vs 64%, respectively). All efficacy endpoints
were similar across all doses. Altered taste was the most com-
mon adverse effect (65%) but this resulted in treatment discon-
tinuation in only one patient. Overall, this study demonstrated
that maribavir may be a valid option in the setting of resistant
or refractory infection, but the high rate of recurrence while on
therapy and the associated emergence of maribavir resistance
represent cause for concern. A phase 3 study of maribavir in
HCT and SOT recipients with resistant or refractory CMV
infections is underway (NCT02931539).

In parallel, a phase 2, open label study comparing
maribavir to valganciclovir as preemptive therapy (absence
of symptomatic infection or end-organ disease) following
HCT or SOT was performed [69¢]. Patients were eligible if
they had a CMV DNA viral load of 1000 to 100,000
copies/mL in blood or plasma. Patients were assigned to re-
ceive oral maribavir 400 mg, 800 mg, or 1200 mg twice daily
or valganciclovir at a 900 mg twice daily for weeks 1 through
3 followed by 900 mg once daily for up to 12 weeks. The
primary efficacy endpoint was the response to treatment, de-
fined as undetectable CMV DNA in plasma within 3 weeks or
6 weeks after the start of treatment. Overall, 62% and 79% of
patients had an undetectable viral load within 3 weeks and
6 weeks of maribavir treatment, respectively, compared with
56% and 67% for valganciclovir. No dose-depended effect of
maribavir on clearance of viremia was observed. The percent-
age of patients with recurrence of CMV infection at any time
during the trial period was similar between maribavir and
valganciclovir (22% vs 18%). Similar to other studies, altered
taste was the most common adverse effect of maribavir (~
40%), followed by other gastrointestinal adverse effects (nau-
sea, vomiting, diarrhea). Myelosuppression was more com-
mon in those receiving valganciclovir. A phase 3 trial of
maribavir 400 mg twice daily versus valganciclovir for the
treatment of first episodes of asymptomatic CMV infection
in HCT recipients with a plasma viral load of > 1365
International Units (IU)/mL and <91,000 IU/mL is now un-
derway, with the primary outcome measure being clearance of
viremia by 8 weeks of treatment (NCT02927067).

Resistance

The UL97 mutations V353A, L397R, T409M, and H411L/N/
Y emerge in vitro during maribavir selection and confer
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moderate-to-high level (9-fold to >200-fold) resistance [46,
70, 71]. The first report of resistance during clinical use de-
veloped in a patient receiving maribavir as salvage therapy for
CMYV infection and was associated with UL97 T409M and
H411Y mutations [72]. Resistance was not documented in
either the phase 2 or 3 prophylaxis studies in HCT recipients
[63, 64]. Genotypic analysis of maribavir-breakthrough infec-
tions from the phase 2 salvage study revealed de novo resis-
tance mutations in 13 of 25 (52%) (T409M in 10, H411Y in 3)
patients; development of resistance was equal across all
maribavir doses [61¢].

In general, resistance mutations in UL97 that arise during
ganciclovir or maribavir selective pressure do not confer
cross-resistance to the other agent [54, 73]. Surprisingly, how-
ever, one patient in the phase 2 salvage therapy study was
retrospectively found to have a novel UL97 mutation F342Y
after prolonged ganciclovir exposure but prior to beginning
maribavir [74]. This mutation was found to confer GCV resis-
tance and, unique to UL97 mutations selected during GCV
exposure, cross-resistance to maribavir (4.5-fold). The patient
went on to develop a UL97 H411Y mutation and eventually
failed maribavir therapy.

Mutations in another CMV gene, UL27, arise under
maribavir selection in vitro and also during propagation of
UL97-defective strains [75—77], suggesting that mutations in
this gene represent a fundamental mechanism of compensat-
ing for lack of pUL97 kinase activity. However, mutations in
UL27 confer low-grade (~2-3-fold) resistance to maribavir
[75-77] and have not been identified during clinical use.

Filociclovir (Cyclopropravir)
Mechanism of Action

Filociclovir (formerly “cyclopropavir”) is a second-generation
methylenecyclopropane nucleoside analog of 2'-
deoxyguanosine [78]. Filociclovir, similar to GCV, is a
nonobligate chain terminator of DNA synthesis that requires
initial phosphorylation by pUL97, followed by additional
phosphorylation steps performed by cellular kinases to its ac-
tive triphosphate form [79—-82]. Filociclovir ECs( values for
CMV strains are approximately 0.2-0.3 uM, which are ~ 5-
fold less than for GCV [78, 83—85]. The increased potency of
filociclovir compared with GCV in vitro may reflect the find-
ings that filociclovir is a better substrate for pUL97 than GCV
[80, 86] and the CMV DNA polymerase incorporates
filociclovir-triphosphate into DNA more efficiently than
GCV-triphosphate [82]. Filociclovir displays little cytotoxici-
ty at concentrations required to inhibit CMV replication in a
variety of cell types [81] and demonstrated efficacy in a mouse
model of CMV infection [87]. In addition to CMYV, filociclovir
is active against HHV-6 but not HSV'1, HSV2, or VZV [81].

In single-dose studies, oral bioavailability in rats and dogs
ranged from 22 to 46% and 70 to 91%, respectively [88]. In
single-dose rat toxicology studies, filociclovir was well toler-
ated up to 300 mg/kg [88]. Preclinical studies and data from a
single-dose (range 35—-1350 mg) human study suggest that
filociclovir is primarily eliminated via renal excretion [89].
An L-valine ester prodrug, valcyclopropavir, with 95% bio-
availability in mice was synthesized [90] but has not been
further developed for clinical use at this time.

Clinical Experience

A phase 1b ascending dose (100 mg, 350 mg, or 750 mg once
daily for 7 days) trial was conducted in normal, healthy vol-
unteers [89]. No serious adverse events were reported. Drug
exposure plateaued around the 350 mg dose. The mean plas-
ma concentrations exceeded the CMV in vitro 90% inhibitory
concentration (ICy) for doses > 100 mg per day.

Resistance

Filociclovir selection in vitro generates resistance mutations at
canonical UL97 GCV resistance sites M460, H520, and C603
[2, 83, 85]. Filociclovir also selects for novel UL97 mutations
at positions F342 and V356, both of which individually confer
cross-resistance to GCV and maribavir [S1, 91]. Resistance
mutations in the UL54 DNA polymerase also emerge under
filociclovir selective pressure in vitro, some of which result in
cross-resistance to GCV and/or FOS [85].

Conversely, filociclovir has been assayed against a variety
of genotypically defined resistant CMV strains. Mutation at
UL97 codon L595, one of the residues commonly involved in
GCV resistance [2], confers no filociclovir resistance [83, 91].
However, mutations at the other canonical GCV resistance
sites including M460, H520, C592, A594, and C603 [2] result
in 3-20-fold increases in filociclovir ECsq values [83, 91].
Thus, cross-resistance between filociclovir and GCV and/or
FOS may occur depending on the site of mutation.

Brincidofovir

Brincidofovir (CMX001) is an oral lipid conjugate formula-
tion of cidofovir with potent CMV activity [92]. In a phase 3
study in CMV seropositive allogeneic HCT recipients,
brincidofovir prophylaxis for 14 weeks post-HCT did not
meet the primary endpoint of prevention of CMV infection
at week 24 compared with placebo [93+]. Brincidofovir was
associated with significant gastrointestinal toxicity including
acute GVHD and diarrhea [93, 94]. As such, oral
brincidofovir is not being further developed as an antiCMV
agent.
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Vaccine Development

In 1999, the Institute of Medicine, now the National Academy
of Medicine, designated CMV as a highest priority for vaccine
development [95]. This has proven a challenge, and there are
no vaccines currently available for use. ASP0113 was a DNA
vaccine encoding glycoprotein B (gB), which is capable of
eliciting neutralizing antibodies, and the tegument protein
pp65, which is a primary target of T cell responses [96, 97].
Unfortunately, ASP0113 failed to meet primary (overall mor-
tality, CMV disease) or secondary (time to viremia and use of
preemptive therapy) endpoints in a placebo-controlled, phase
3 study in HCT recipients [96]. ASP0113 also failed to meet
the primary endpoint of reducing the risk of viremia through
1 year after transplant compared with placebo in a phase 2
study in CMV D+/R- renal transplant [98].

More recently, vaccine development has focused on incor-
porating the pentameric complex [96, 99]. The pentameric
complex consists of gH/gL/pUL128/pUL130/pUL131, is re-
quired for CMV entry into several clinically relevant cell
types, and elicits potent neutralizing antibody responses that
block entry into those cells [96, 99]. A CMV vaccine candi-
date (V160) incorporating the pentameric complex was con-
structed from the live attenuated CMV AD1609 strain that was
further engineered to be replication-defective in the absence of
a synthetic compound called Shield-1 [100]. Recently, this
vaccine was found to be safe and elicited robust levels of
neutralizing antibodies and T cell responses when adminis-
tered to CMV-seronegative subjects in a phase 1 study [101,
102]. Several other candidate vaccines are currently being
evaluated in phase 1 and 2 trials in adult and pediatric HCT
recipients [96].

Adoptive Inmunotherapy and Passive
Immunization

Adoptive immunotherapy denotes the reconstitution of CM V-
specific T cell responses via the isolation, in vitro propagation,
and transfusion of donor T cells to the recipient [103—106].
Adoptive immunotherapy has been safely used in HCT recip-
ients as an adjunct to antiviral therapy for preemptive therapy
and for the treatment of refractory CMV infection, and pro-
phylactically after HCT, all in relatively small series [105,
107-114].

However, the need to generate specific T cell lines for each
individual patient imposes logistical limitations for broad or
immediate, time-sensitive use [115]. Using partially HLA-
matched, banked third-party cells addresses these limitations
[115]. The safety and tolerability of this approach in the man-
agement of refractory CMV infection or disease has been
demonstrated in several nonrandomized studies [115, 116,
117+]. The majority of patients in these studies exhibited
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clinical and/or virologic responses following T cell infusion
along with continued antiviral therapy. Thus, the incremental
benefit of the transfused T cells is unclear. Randomized stud-
ies are now needed to definitively assess the benefit and safety
of adoptive immunotherapy for the prevention or treatment of
CMYV infection in the HCT recipient [118].

The utility of intravenous immune globulin (IVIG) or
CMV-enriched IgG in the management of CMV disease is
unclear due to the lack of prospective, randomized trials eval-
uating the benefit of adjunctive IVIG compared with antiviral
therapy alone. While not useful in the setting of gastrointesti-
nal disease [119], the addition of IVIG to antiviral therapy in
the management of pneumonia resulted in improved survival
rates compared with historical controls in small studies
[120-122]. However, a more recent, large retrospective anal-
ysis failed to demonstrate such a benefit [123] and therefore,
the role of IVIG in the management of CMV pneumonia re-
mains poorly defined. IVIG is not effective as prophylaxis in
seronegative or seropositive HCT recipients [124—132].

A monoclonal antibody preparation that targets both the
CMV glycoprotein B (gB) and the pentameric complex is in
development [133]. A previous CMV monoclonal antibody
that targeted the CMV gH protein (MSL-109) failed to dem-
onstrate benefit when used as prophylaxis in HCT recipients
[134].

Conclusions and Future Directions

The CMV DNA polymerase inhibitors GCV, FOS, and CDV,
while critical developments in reducing the morbidity and
mortality associated with CMV infection in HCT recipients,
are marked by issues of toxicity and resistance that often limit
their use. The approval of letermovir—a nontoxic, orally
available agent with a mechanism of action distinct from
DNA polymerase inhibition—represents an important step in
expanding the options for CMV prevention and towards the
greater goal of improving outcomes after HCT. Additionally,
the success of letermovir validates terminase inhibitors as a
clinically relevant class of antiviral agents and may open the
door to the development of other terminase inhibitors [135].
As agents with novel mechanisms of action such as
letermovir and possibly maribavir are brought to clinical use,
combination therapy for the treatment of CMV infection and
disease becomes, for the first time, a possibility. In vitro stud-
ies generally support at least an additive effect, if not a syner-
gistic one, of combining letermovir with DNA polymerase
inhibitors or maribavir. Clinical studies are now needed to
determine whether combination therapy for CMV is superior
to monotherapy, as is true for the treatment of viral infections
such as human immunodeficiency virus and hepatitis C virus
[136, 137]. With no other agents besides maribavir and
filociclovir currently in human studies, combination therapy
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with existing agents and perhaps with indirectly acting
antiCMV agents approved for other indications [ 138—153] that
are unsuitable for use as monotherapy should be considered.

Advances in non-pharmacologic interventions will also be
important in mitigating the impact of CMV infection. The
safety of third-party T cells for use in adoptive immunotherapy
demonstrated in initial studies moves this therapeutic inter-
vention further towards becoming a realistic, viable option
for more patients. The development of a safe and effective
CMYV vaccine remains a challenge but promising candidates
are in development.
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