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Abstract—Recently, deep learning-based methods have
emerged as the preferred approach for ultrasound data
analysis. However, these methods often require large-scale
annotated datasets for training deep models, which are
not readily available in practical scenarios. Additionally,
the presence of speckle noise and other imaging artifacts
can introduce numerous hard examples for ultrasound data
classification. In this paper, drawing inspiration from self-
supervised learning techniques, we present a pre-training
method based on mask modeling specifically designed
for ultrasound data. Our study investigates three different
mask modeling strategies: random masking, vertical mask-
ing, and horizontal masking. By employing these strate-
gies, our pre-training approach aims to predict the masked
portion of the ultrasound images. Notably, our method does
not rely on externally labeled data, allowing us to extract
representative features without the need for human anno-
tation. Consequently, we can leverage unlabeled datasets
for pre-training. Furthermore, to address the challenges
posed by hard samples in ultrasound data, we propose a
novel hard sample mining strategy. To evaluate the effec-
tiveness of our proposed method, we conduct experiments
on two datasets. The experimental results demonstrate that
our approach outperforms other state-of-the-art methods in
ultrasound image classification. This indicates the superi-
ority of our pre-training method and its ability to extract
discriminative features from ultrasound data, even in the
presence of hard examples.

Index Terms—Pre-training, self-supervised, ultrasound
image, masked modeling.

Impact Statement—An ultrasound images classification
approach via mask modeling without human annotation.

l. INTRODUCTION

VER the past few decades, multiple medical imaging
modalities have been used to create images of the hu-
man body, such as Computed Tomography (CT), Positron
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Emission Tomography (PET), Magnetic Resonance Imaging
(MRI), and ultrasound, all of which are widely used in various
clinical settings [1]. Compared with other imaging modali-
ties, medical ultrasound imaging has the following advantages:
non-invasiveness, real-time imaging, and cost-effectiveness [2].
Therefore, ultrasound is one of the widespread methods for
visualizing human soft tissue. However, despite sustainable
efforts, the interpretation of ultrasound data remains challenging
in the real-world settings due to contamination from speckle
noise, hidden fields of view, signal dropout, and other imaging
artifacts [3]. The potential applications for efficient and accurate
ultrasound data analysis seem to be evident in many fields [4],
[5], [6].

Classification task is essential for ultrasound interpretation,
which aims to extract representative features and distinguish
different ultrasound signals (either radio-frequency (RF) signals
or ultrasound images), such as tissue classification [7]. Lever-
aging the data-driven classifiers, traditional shallow-architecture
classification algorithms can distinguish different kinds of ultra-
sound data. Ultrasound signal classification has important impli-
cations for many practical applications, from cancer diagnosis
to cardiovascular disease diagnosis [8], [9].

Due to the practical clinical need for ultrasound data interpre-
tation, automatic and accurate classification has drawn increas-
ing interest in the past few years. For example, during natural
speech production, ultrasound tongue imaging (UTI) is one of
the appealing ways for vocal tract modeling [ 10], as it can capture
the tongue movement at a high frame rate (60 Hz or higher).
Moreover, UTI does not expose the speakers to radiation and
the machines are of lower costs presently [11], [12]. Automatic
classification of tongue gesture shapes from raw ultrasound can
facilitate the understanding of speech production, which has
attracted increasing attention during the last years [11], [13].
Previous attempts employed the Principal Component Analysis
(PCA) [14], Discrete Cosine Transform (DCT) [15], AutoEn-
coder [16] for the feature extraction in the UTI, leveraging
the unsupervised learning manner. Since the revolution of deep
learning, convolutional neural network (CNN)-based supervised
learning has been successfully applied in UTI processing [17],
[18], [19], [20]. Generally speaking, supervised deep learning
often requires a large number of labeled examples [21], which is
difficult to obtain in practical settings. The effective utilization of
large-scale unlabeled ultrasound data for representation learn-
ing necessitates comprehensive investigation. In recent years,
self-supervised learning (SSL) has shown significant advance-
ments [22], enabling the learning of informative representations
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from unlabeled data without the need for human annotation.
The SSL paradigm for ultrasound is under-explored in previous
studies.

In this paper, we explore the SSL paradigm for ultrasound
image classification. In the pre-training stage, we proposed three
different mask modeling strategies, with the goal to learn dis-
criminative features which can be further deployed to ultrasound
image classification through a fine-tuning approach. In addition,
due to the low signal-to-noise ratio (SNR) and high speckle noise
of ultrasound imaging [10], [23], [24], imaging artifacts, sensor
noise, acquisition errors, or even mislabeling in the dataset, there
are multiple hard examples in the datasets, and even domain
experts can be easily confused and difficult to draw conclusions.
Here, we aim to design learning strategies to mimic the learning
paths of domain experts. Specifically, our algorithm first picks
out hard examples and then puts them back into the network for
training, gradually improving the network’s ability to distinguish
hard examples. Combining a novel mask modeling-based SSL
with hard example mining, we can improve the classification
performance on ultrasound data.

The subsequent section provides an overview of relevant
literature, discussing related works in detail. Our methodology is
elucidated in Section III. Furthermore, experimental results are
presented in Section IV. Section VI summarizes the methods
employed in this paper and presents an exploratory discussion.

Il. RELATED WORK
A. Ultrasound Classification

Traditional ultrasound classification methods start by ex-
tracting discriminative features from radio frequency (RF) sig-
nals or ultrasound images. In the feature extraction phase,
the researchers propose to use statistical modeling to extract
discriminative features from ultrasound data and differentiate
between different ultrasound data. For example, Grey Level
Co-occurrence Matrix [25] measures how often different com-
binations of pixel intensities occur in an ultrasound image.
Local Binary Patterns (LBP) [26] is a non-parametric method
for extracting the local structural features of an image. Mor-
phological features [27] focus on local characteristics of the
certain ultrasound image region, such as the shape and mar-
gin. Statistical distribution modeling is also used as a feature
in [28]. In order to exploit the complementary information of
different ultrasound data, feature combination and selection are
used in many attempts [29]. It is desirable to build a suitable
classifier automatically. In the classification module, data-driven
machine learning algorithms separate different ultrasound data
by defining optimal decision boundaries in the feature space.
Commonly-used classifiers include Linear Discriminant Analy-
sis (LDA), Support Vector Machine (SVM), Adaboost, Random
Forest, k-Nearest Neighbors (KNN), Neural Networks (NN) and
Bayesian classifiers [30], [31], [32], [33].

Deep learning methods for ultrasound classification have
gained increasing attention in recent years, where the features
are automatically learned by neural networks rather than a-
priori-defined features features [34], [35]. These methods are

rapidly becoming the de-facto solution for ultrasound classifica-
tion tasks, outperforming other traditional shallow architectures-
based methods. Among them, CNN and their variants [36],
[371, [38], [39] are widely-adopted. Long short-term memory
(LSTM) [40] has also been applied which alleviates the vanish-
ing gradient problem of standard deep neural networks. Trans-
former models [41], which are based on self-attention between
image patches, have shown their great potential in ultrasound
image classification. Due to the learnability of deep neural
networks, the performance usually improves with the increase
of labeled samples. Transfer Learning [42], weak-supervised
learning [43] and unsupervised learning [41] have been proposed
to tackle the problem of limited availability of the labeled data.
These methods mainly focus on the ultrasound imaging data of
human breast [41], liver [38], [42], brain [44]. To the best of our
knowledge, how to learn from large-scale unlabeled ultrasound
images is under-explored in the previous studies [45], [46].

B. Self-Supervised Learning

Self-supervised learning methods mainly uses an auxiliary
task (pretext task) to predict its own supervised information from
large-scale unsupervised data. By training the network with this
constructed supervisory information, valuable representations
for downstream tasks can be learned. For example, early self-
supervised learning attempts are based on devising classification
tasks that try to predict the properties of a transformation (e.g.
rotations [47], colorization [48], [49], orderings or relative po-
sitions [50], [51]) applied on the input data.

Contrastive SSL methods, which use the Instance Discrimina-
tion as the auxiliary task, currently achieve state-of-the-art per-
formance in SSL. These methods include CPC [52], MoCo [53],
SimCLR [54], SVAV [55], CMPC [56] and BYOL [57]. The core
idea of contrastive approaches is bringing the representation of
different views of the same image closer (“positive pairs”), and
spreading representations of views from different images (“neg-
ative pairs”) apart [58]. In practice, contrastive SSL learning
methods benefit from a large number of negative samples [52],
[53], [54], [59]. These negative samples can be kept in a memory
bank [59] or queue [53]. SimCLR [54] directly uses negative
samples coexisting in the current batch, and it requires a large
batch size for training purposes. Moreover, contrastive SSL
relies on the construction of positive and negative sample pairs,
and how to construct sample pairs for contaminated ultrasound
image data has not been fully explored [46].

As revealed by recent studies [54], [60], [61], data augmenta-
tions are crucial in the representation learning. Data augmenta-
tions are also useful for the hard example mining. For example,
MoCHi [58] employ a hard negative mixing for contrastive
learning. More recently, masked modeling has evolved as a
new kind of SSL method. These predict or reconstruct the
partially masked parts of the data. For example, MAE [62]
masks random patches of the input image and reconstruct the
missing pixels. MaskFeat [63] masks out a portion of the input
and then predicts the feature of the masked regions. These SSL
approaches play an important role in the pre-training method and
leading performance in downstream tasks. Most closely related
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Provided diagram illustrates the comprehensive flowchart of the proposed framework, encompassing two primary stages: pre-training

utilizing unlabeled datasets and fine-tuning based on labeled datasets. Notably, both stages employ the same encoder but distinct decoders.
During the pre-training stage, we employ a mask modeling-based self-supervised learning (SSL) method to train the neural network, obviating the
necessity for expert labeling. This approach enables the network to learn an optimal representation of ultrasound images. The pre-trained encoder
parameters are subsequently inherited for initialization in the fine-tuning stage. In the fine-tuning stage, the initialized encoder and classification
head are fine-tuned employing a limited number of labeled datasets specific to the ultrasound classification task. To enhance the model’s ability to
differentiate challenging examples, we introduce a novel strategy for hard example mining.

to our work are the semi-supervised contrastive learning method
(USCL) proposed in [45] and the hierarchical contrastive (HiCo)
learning methods for ultrasound data. Despite the efforts that
have been made in self-supervised learning, the applications of
SSL for ultrasound data are under-explored in previous studies,
which is the main goal of this paper.

lll. METHODOLOGY

Fig. 1 shows the overall framework of our proposed method,
which consists of two main stages: the pre-training stage of SSL
using the Transformer architecture, and the fine-tuning stage
using supervised learning with limited labeled datasets. The two
stages adopt the same encoder, but different decoders. For the
pre-training stage, the widely-used SSL approach is explored
to train the neural network without human annotation. After
the pre-training phase, the encoder has learned discriminative
representation of ultrasound images, and its trained parameters
will be inherited to the fine-tuning stage for the initialization of
the network’s parameters.

For the fine-tuning stage, we use the labeled datasets to
fine-tune the initialized encoder and a classification head for the
ultrasound classification tasks. Moreover, to enable the model
to distinguish hard examples, we propose a novel hard example
mining strategy. Compared to the method without pre-training,
our method can improve classification performance, due to the
superior representation abilities.

For SSL from ultrasound data, we aim to address the following
challenges in this paper:

® 1) How to perform representation learning for ultrasound
data based on unlabeled data?

® 2) For hard samples in ultrasound data, how to design
learning strategies to improve the performance of classi-
fication models?

® 3) How to quantitatively and qualitatively evaluate the
effectiveness of the ultrasound data representation?

In the following subsections, we will explain the components
in more detail subsequently.

A. Mask Modeling

Currently, many natural language processing (NLP) tasks
employ the mask modeling for SSL, where a random token of
the sentence is masked and the pre-training goal of the model
is to predict the masked part from the unmasked information,
so that pre-training has the ability to model the contextual
knowledge. Deep neural networks (DNN) like BERT fall into
this category [64], and this approach has achieved promising per-
formance on tasks for NLP. Mask modeling method possesses
commendable representation and generalization capabilities, the
intricacies of which will be expounded upon subsequently.

Compared with NLP tasks, there are certain differences in
the analysis tasks of ultrasound images. First, nearby pixels
are highly correlated in ultrasound data, so even if a pixel is
masked, its value can be inferred relatively easily by analyzing
its neighbors. Moreover, ultrasound data are continuous unlike
tags in NLP which are discrete. However, ultrasound images
are affected by speckle noise and many other imaging artifacts,
how to overcome the influence is still under-explored in previous
studies. Designing a suitable SSL paradigm for ultrasound data
is the main goal of this paper.

In this paper, inspired by mask modeling in NLP, we explore
a pre-training approach for ultrasound images based on mask
modeling. The pre-training strategy for mask modeling aims
to enable deep neural networks to reason about mask parts
using neighborhood information in ultrasound images. Specif-
ically, we tested the effect of different masking strategies on
the performance of the pre-trained model. The mask strategy is
mainly determined by three factors: mask shape, mask ratio and
mask size. Specifically, we mainly tested three different mask
shapes: random patch mask, vertical mask, and horizontal-mask.
Fig. 2 shows an example of masking strategy for an ultrasound
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Raw ultrasound

Fig. 2.

Random mask Horizontal mask

Vertical mask

Mask ratio=0.5

Mask ratio=0.3

Running example of masking strategies for ultrasound data, including random patch level, horizontal masking, and vertical masking. The

first column gives the raw ultrasound data, and the next three columns give different masking strategies. It is worth noting that the first row has a
mask ratio of 0.5 (50% of the original pixels are set to 0), while the second row has a mask ratio of 0.3.

image. It is noteworthy that the selection of hyper-parameters
for the mask involves the mask scale and mask size, which
play a crucial role in defining the level of difficulty during pre-
training. Optimal prediction difficulty is vital for the model to
acquire superior ultrasound data representations. Low difficulty
may induce the model to underfit, whereas excessively high
difficulty may impede convergence. Through our pre-training
experiments, we discovered that the pre-trained model exhibits
remarkable accuracy in recovering the masked portions, even
at high masking ratios (e.g., masking 60% of ultrasound image
pixels). Further verification of this observation can be found in
the subsequent experimental section.

B. Network Architecture

Traditional approaches for ultrasound data interpretation tasks
predominantly rely on domain knowledge, aiming to engineer
task-specific representations (e.g., LBP). However, as previously
mentioned, the manual feature design by domain experts neces-
sitates extensive prior knowledge. Moreover, the performance
of ultrasound classification models is significantly influenced
by the quality of ultrasound data representation. Notably, fea-
ture extraction algorithms often exhibit limited generalization
capabilities [65], [66]. On the other hand, affected by ultra-
sound imaging settings, these factors will further restrict the
performance of the model, that is, the artificially designed
features are not robust. CNNs are considered as one of the
typical architectures for ultrasound image analysis [67], [68].
They employ a hierarchical data representation method, where
high-level feature representation relies on low-level feature
representation. This allows for the extraction of features with
higher-level semantic information, progressing from shallow to
deep abstraction features.

Given that self-supervised training necessitates the acqui-
sition of high-quality, general-purpose representations from
vast amounts of unlabeled data, Transformer-based networks
are considered more adaptable to handling large-scale dataset.
Consequently, in our SSL framework, we adopt ViT-large [69]
as the encoder, leveraging its suitability for this purpose. For

pixel-level prediction as the generator, we utilize a lightweight
Transformer structure as the decoder. It is important to note
that the decoder is exclusively employed during the pre-training
stage and subsequently substituted with a multi-layer perceptron
(MLP) header for classification in the fine-tuning stage. Specif-
ically, the encoder consists of 24-layer Transformer blocks,
and the decoder consists of 8-layer Transformer blocks. Each
block includes a Multi-Head Attention layer, an MLP layer, and
two Normalization layers, in which the Multi-Head Attention
layer is a signature component playing an important role. The
self-attention model establishes the relationship between dif-
ferent elements in a vector through triples (query, key, value),
thus enhancing valuable information and weakening irrelevant
information. The self-attention can be represented as the (1):

yi= > [l z;)g(x;) (1
vj

where z; refers to the query, x; refers to the key, and g(x;) is
an embedding of x; and refers to the value.

Single attention creates only one query and key dependency.
We aim to learn about different dependencies and then combine
these dependencies to capture various ranges of dependencies
within the sequence, thus employing the multi-headed attention
in our practical implementation. To fit the input size of the
Transformer, we first convert the ultrasound image into sequence
data. Suppose we have an ultrasound image = € RT*W>1 we
can divide it into N patches, and each patch with the size
of p x p. The patch can be expressed as z,, € RN*(*) and
N can be calculated as N = If) W which is the length of the
sequence. Then we flatten the patch into a one-dimensional
vector and project it to a smaller vector through a linear layer,
which is called as token. The tokens are fed into the encoder for
subsequent processing.

C. Fine-Tuning With Limited Labeled Datasets

Once the pre-training of the model is performed using un-
labeled ultrasound data, it can be fine-tuned on downstream
tasks. As shown in Fig. 1, the fine-tuning stage aims to further
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optimize the model parameters with the labeled data. In this
phase, we directly utilize the pre-trained encoder network and
learned weights as the network backbone for ultrasound feature
extraction, and then use a randomly initialized linear layer as
the classification head to perform the ultrasound classification
task. Thus, the fine-tuning problem can be regarded as a transfer
learning problem, so the weight adjustment for pre-training is
small, aiming to maintain the representation ability of the pre-
trained model. We evaluate the effectiveness of this pre-trained
algorithm by calculating the accuracy of ultrasound image clas-
sification, which will be further discussed in the experimental
sections.

D. Hard Example Mining

Given the low signal-to-noise ratio (SNR) characteristic of
ultrasound data, the presence of challenging examples in clas-
sification is inevitable. As the pre-trained model undergoes
successive iterations, a substantial number of examples can be
accurately classified by the model. Consequently, our primary
objective is centered around enhancing the classification accu-
racy of hard examples. By enabling the model to allocate more
attention to challenging instances, it holds the potential to further
elevate the overall performance of the ultrasound classification
task.

Standard cross-entropy is commonly used for classification
tasks, as shown in the Equation 2:

Lop == pu(i)logps(i) )
=1

where c is the number of categories, py, refers to the hard label,
ps is the output of softmax function. Standard cross-entropy
treats all samples equally, which may not be suitable when the
categories are not balanced or the examples are not equally hard.

1) Focal Loss: To handle with the issue of standard cross-
entropy, the focal loss is firstly proposed in the object detec-
tion field [70]. The object detection task can be regarded as a
special dichotomous task, where candidate boxes with objects
are regarded as a positive category, while the candidate boxes
without objects are regarded as a negative category. In the object
detection task, there are a large number of negative examples but
only a few positive examples.

To solve the problem of unbalanced positive and negative
examples, [70] proposed the focal loss. This function uses pre-
diction confidence as a measure of the example’s identification
difficulty. As shown in (3), the neural network model can not
only give the category judgment but also output the confidence
degree of the deep models.

(¥, conf) = fo(x) )

where 6 present the parameters of the model, conf presents
the confidence, and ¢’ is the category judgment of the model.
Specially, both conf and y' are calculated from p, the prob-
ability distribution of the model output, e.g., conf = maz(p)
and y' = argmax(p). Hence, the greater the confidence, the
more definitive the model’s categorization judgment, indicating
that the example is relatively easier to identify. Building upon

this understanding, the Focal loss employs confidence as a
criterion for assessing example difficulty and adjusts the weight
of examples within the loss function, as demonstrated in (4):

FL(p) = —(1 —p)*logp “)

where p is the probability of prediction as a positive example, 1
is a hyper-parameter, and a larger . gives greater weight to hard
examples.

Expanding focal loss to multi-classification, the formula is
transformed into the form shown in Equation 5:

FL(pgt,ppa) = — Y (1= par(i) * ppa(i))* log ppa(i)  (5)
i=1
where pg; is the ground truth, p,q is the prediction, ¢ is the
number of category.

2) GHM-C Loss: Due to the contamination of speckle noise,
there also may be outliers in the dataset, and these outliers
will still be wrongly judged when the model has converged. If
the model pays attention to the excessively hard examples, the
convergent model will deviate from the optimal state. In [71],
a new gradient coordination mechanism (GHM) is proposed to
hedge the discordance between examples, which can overcome
the disadvantages of outliers. It utilizes the gradient norm to
represent difficult levels of examples, which is defined as:

g = |ph _ppred| (6)

which measures the difference between the prediction and the
label, and takes values in the range 0 ~ 1. On this basis, for rep-
resenting the distribution of gradient norm, a so-called gradient
density function is defined as formula 7:

N
GD(g) = (19) > 09 9) (7)
A g=1

where € refers to the neighborhood of gradient norm g, g is
the gradient norm of the k-th example, NV is the total number
of examples, and J(gx, g) indicates whether gy, is distributed
in the neighborhood ¢ (defined as (8)), and [.(g) represents the
interval length of the neighborhood (defined as (9)).

(L y-s<a<y+s
Oc(w,y) = {O, otherwise ®)

l.(9) = min (g+ %1) — max (g— %0) )

With the iterations of deep model, the gradient norm (g) grad-
ually approaches to the value 0. When the model gradually
converges, a large number of gradient norms are clustered near
0, a small number of gradient norms are near 1, and only a few
gradient norms are between 0 and 1. The gradient norm near
0 represents easy examples, the gradient norm near 1 refers to
excessively hard outliers, and the others represent moderately
hard examples.

As mentioned above, we can utilize the reciprocal of gradient
density as a weight factor of the corresponding example in the
loss function, so we can increase the weight of the general hard
examples in the loss function, and suppress the weight of the easy



XU et al.: MASKED MODELING-BASED ULTRASOUND IMAGE CLASSIFICATION VIA SELF-SUPERVISED LEARNING 231

examples and outliers. Thus the weight factor and loss function
can be formulated as follows:

N
%= aDi) "
N
Lenv-c =+ Z i Lep(pn()), Pprea(d))
_ XN: LCE(ph(j)appred(j)) an

. GD(yg;)

<.
Il

where N is the total number of examples, Lo g refers to Cross
Entropy loss, py, (j) and pp,q(j) refer to the label and prediction
of the j;;, example. We can see that the reciprocal of gradient
density is treated as a weight factor for Lo g.

Finally, the model is trained to minimize a joint loss function,
including the cross-entropy loss and GHM-C loss:

L=Lcg+aLleum_c (12)

where « is a hyper-parameter used to adjust the weight of cross
entropy and GHM-C.

Based on the pre-training using mask-modeling strategy, we
can utilize the unlabeled ultrasound data. Then we rely on the
labeled data for fine-tuning purposes, combined with new hard
sample mining methods. Combining the above improvements,
our framework will substantially improve the performance of
ultrasound image classification, which will be further verified in
the following experiments.

IV. EXPERIMENTS

In this section, we first conduct experiments on different
ultrasound datasets using the proposed method, and then present
quantitative comparison and analysis. Furthermore, to verify
the generalizability of representation learning for ultrasound
images under different settings, we validate the transferability
of representation learning between different datasets.

A. Datasets

We validate the effectiveness of the algorithm based on two
different ultrasound datasets: ultrasound tongue images and
breast tumor ultrasound images.

1) Ultrasound Tongue Images: As mentioned earlier, ul-
trasound images can characterize tongue movement with real-
time visualization of natural vocalizations [23]. Quantitative
analysis of ultrasound tongue data (UTI) has a wide range of
practical applications, such as silent speech recognition [72] and
speech disorder classification [73], [74]. The performance of ul-
trasound tongue gesture classification based on deep learning has
surpassed traditional feature extraction methods, while however
relying on the labeled data.

In this paper, we evaluate the classification performance of
the proposed framework on UTI data. Specifically, we aim
to classify the data into four categories based on different
articulation positions: (1) bilabial and labial-dental (e.g. /p/,
/bl, Ivl...); (2) dental, alveolar and postalveolar sounds (e.g.
/th/, /d/, i/, /z/...); (3) velar sounds (e.g. /k/, /g/...); (4) the

alveoli approximate /r/. The used dataset comes from the UXTD
of [75] in the publicly available UltraSuite dataset. The UXTD
dataset contains 58 speakers (31 female and 27 male), aged 5-12
years. Based on phoneme boundaries using force alignment, we
extracted the middle part of each available utterance, resulting
in a dataset of approximately 10,700 examples. Then, we split
these data into disjoint training, validation, and test sets. For the
datasets used for self-supervised learning, we utilize all frames
of each available utterance as unlabeled examples and obtain
approximately 460,819 samples. Similar to [11], we evaluate
our method in four different settings: subject-dependent, multi-
subject, subject-independent, and subject-adaptive. In subject-
independent and subject-adapted, for N patients, we create N
datasets. The training subset of each dataset contains sample
data from (N-1) patients, and the testing data of each dataset
contains sample data from another patient. The patients in the
training and test subsets are different. In subject-dependent, each
patient constitutes a separate dataset, and in multi-subject, all
patient data constitute a single dataset. Both these two settings
have a training/validation/test set ratio of 6:2:2. For exam-
ple, assuming that we sampled 100 ultrasound tongue images
from three patients. The training/validation/test dataset division
with subject-dependent, multi-subject, subject-independent, and
subject-adaptive settings are shown in Table I It is noted that
in subject-dependent, subject-independent, and subject-adaptive
settings, we create 3 different datasets. Meanwhile, in multi-
subject, we only create 1 dataset.

2) Breast Tumor Ultrasound Images: Ultrasound imaging
is one of the effective means for early screening of breast can-
cer [76], [77]. In 2018, the American Cancer Society evaluated
the incidence and mortality of 36 cancers in 185 countries around
the world and performed statistical analysis showing that breast
cancer is one of the three major malignant tumors in women,
of which breast cancer accounts for 8.6 million female cancers
24.2% of new cases accounted for 15% of the 4.2 million female
cancer deaths, ranking first in the incidence and mortality of
female cancer [78].

In our experiments, we employ the BUSI-BUI joint
dataset [79], [80] for the classification task. The BUSI datasets
collects breast ultrasound images including women aged 25 to 75
years [80]. The dataset consists of 780 images, including normal,
benign and malignant, with an average image size of 500 x 500
pixels. BUI dataset consists of 250 breast cancer ultrasound
images, with 100 images classified as benign and 150 images
classified as malignant. For dataset creation, we randomly mixed
the two datasets into one dataset and use 5-fold cross validation
method to test models performance, which means 824 images
for the training set, 206 images for the validation set in one fold.

B. Experimental Setting

We train the SSL model using 8 GPUs (NVIDIA A40). For
the pre-training of SSL models, we employ the UTI for the
training purpose, with the input size of 256 x 256. We use
Adamw optimizer, where 5, = 0.9, B2 = 0.95. We set the batch
size to 512, the weight_decay to 0.05, and the learning rate to
6 x e [62]. We take a 16 x 16 pixel block as a unit, and the
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TABLE |
DATASET DIVISION WITH DIFFERENT SETTINGS

Dataset subject-dependent multi-subject subject-independent subject-adaptive
. _ A(100) A(100) B(100) | A(100), A(100), B(100),
Train— | A®0)  B@®O)  C(80) | A+B+C=180 | p100) c(100) €(100) | B(100) C(100)  C(100)
Validation / A+B+C=60 / / / / / /
Test A(20) B(20) C(20) | A+B+C=60 | C(100) B(100) A(100) | C(20) B(20) A(20)
Fine-tune / / / / / C(80) B(80) A(80)

A, B, and C respectively represent the different patients. The number in parentheses indicates the number of data samples sampled
for this patient. For each patient, we sample 100 ultrasound tongue images.

mask pixel ratio is 0.75 for masking (the selection of a mask
pixel ratio of 0.75 is anchored in empirical evidence derived
from the study conducted by [62]). The model undergoes a
comprehensive training regimen spanning 100 epochs, with
the inclusion of a warmup strategy for the initial 40 epochs.
The training process lasted approximately 10 hours. During
the pre-training phase, we exclusively employ a limited array
of online data augmentation techniques, which is performed
with a certain probability during the model training, specifi-
cally random crop and horizontal Flip operations, to cultivate
resilient representations. For the fine-tuning phase, the input
is consistent with the settings of pre-training, using AdamW
optimizer, where 51 = 0.9, 82 = 0.999. We set the batch size
to 128, the learning rate to 5e~*, the weight decay to 0.05.
The model is trained with the early stopping strategy until no
improvement on the validation set, and the maximum epoch is
set as 50. Online data augmentation is also used, including the
random crop and horizontal flip. It is worth noting that many
techniques mentioned above are employed to effectively adjust
the fine-tuning process. Firstly, conservative learning rates allow
for gradual adjustments to pre-trained weights while preventing
significant biases. Additionally, weight decay techniques can
further stabilize the fine-tuning process and prevent overfitting.

C. Competitive Baselines

For quantitative comparisons, we tested the following com-
petitive approaches:

1) Raw UTI+DNN;
2) PCA+DNN;

3) DCT+DNN;

4) Raw UTI+CNN;
5) SimCLR;

6) SimSiam;

7) USCL [45];

8) HiCo [46].

Specifically, the raw UTI input denotes the mean-variance
normalized raw frame. PCA is a linear transformation that trans-
forms high-dimensional data into low-dimensional data, simpli-
fies data and retains the most important features of the data. We
retain the first 1000-dimensional features in our experiments.
In our experiments, the hyper-parameter (1000) is empirically
selected to trade off between dimensionality reduction and infor-
mation preservation. DCT denotes Discrete Cosine Transform,
which is mainly used to compress data or images and can
convert spatial domain signals to the frequency domain. In our

experiments, we retain the 40 x 40 sub-matrix in the upper
left corner of the transformed DCT coefficient matrix, which
is the most important 1,600 feature dimension. When applying
the DCT to an image, it transforms the image from the spatial
domain to the frequency domain, representing the image in terms
of its frequency components. The DCT coefficients represent the
magnitudes of these frequency components. The energy com-
paction property of the DCT means that a majority of the signal’s
energy tends to be concentrated in a small number of DCT coeffi-
cients. In the case of images, the energy tends to be concentrated
in the lower-frequency components, which correspond to large-
scale variations in the image. In a typical DCT coefficient matrix,
the top-left corner contains the low-frequency coefficients, while
the bottom-right corner contains the high-frequency coefficients.
By convention, the top-left corner of the DCT coefficient matrix
corresponds to the lower-frequency components that capture the
most important and visually significant information. In your
scenario, selecting the 40 x 40 sub-matrix in the upper left corner
of the transformed DCT coefficient matrix implies retaining
the coefficients associated with the most significant frequency
components. These components capture the bulk of the energy
and represent the essential visual features of the image.

In our practical implementation, the DNN architecture con-
sists of three hidden layers with inputs being either raw, PCA
or DCT. Each hidden layer is composed of 512 rectified linear
units (ReLU) and softmax activation function. For the CNN
architectures, we use two convolutional layers and max-pooling
layers followed by two fully connected layers. The convolutional
layer consists of 16 filters, with the kernel sizes of 8 x 8 and
4 x 4.

In our experiments, we also test contrasting self-supervised
learning algorithms and we chose SimCLR and SimSiam as
the representative algorithms, due to its versatile representation
abilities. Specifically, SimCLR introduces a learnable nonlinear
transformation between representation and contrastive losses to
improve the model to learn high-quality representations. This
transformation employs a straightforward single-layer archi-
tecture, consisting of a Multi-Layer Perceptron (MLP) with
Rectified Linear Unit (ReLU) activation. The advantage of this
approach lies in its ability to circumvent the loss of critical
features during the calculation of the similarity loss function.
This, in turn, contributes to an enhancement in the quality of
the representation within the preceding layer. The SimSiam
algorithm can obtain a discriminative and meaningful repre-
sentation by directly maximizing the similarity of two views
of an input based on a simple Siamese network without using
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negative samples or momentum encoders. The two branches of
the Siamese network use a shared backbone network (such as
ResNet), one of which is connected with a simple MLP head,
and the other branch has no MLP head. We also compare our
methods with two state-of-the-art ultrasound image classifica-
tion methods: USCL and HiCo. Additionally, the table includes
the performance results of the Vision Transformer model trained
from scratch [82].

D. The Visualization for Pre-Training

In the context of pre-training utilizing unlabeled ultrasound
data, the acquisition of a representation endowed with robust
generalization capabilities assumes paramount significance. In
our experiments, we first validate the effectiveness of the pre-
trained model and then provide a quantitative evaluation of the
proposed framework. Specifically, we randomly select several
UTI data that are not used for training and apply random
masking to the input. Subsequently, using the pre-trained model,
we infer the masked regions of the UTI data. The prediction
visualizations are presented in Fig. 4. The first column displays
the raw UTI data. The second and third columns illustrate the
patch-level random masking and the corresponding predicted
UTI data, respectively. The fourth and fifth columns show the
results obtained from the horizontal mask, while the sixth and
seventh columns correspond to the results obtained from the
vertical mask modeling.

From a visual analysis of the image, the pre-trained model
demonstrated satisfactory reconstruction performance when

predicting occluded areas, irrespective of the particular occlu-
sion strategy used during the pre-training phase of the ultra-
sound image representation. Notably, even with a considerably
high masking rate applied to ultrasound images, the pre-trained
model consistently infers the contents of the masked portions
with precision. Experimental findings highlight a distinctive
characteristic of our pre-trained model, whereby it exhibits
inherent capabilities for neighborhood modeling and inference
within ultrasound images, distinguishing it from many exist-
ing methods. To a certain extent, the visualization outcomes
suggest that our pre-trained model effectively learns and cap-
tures features associated with masked regions and contextual
information.

E. Quantitative Comparison

Table II provides a quantitative comparison between differ-
ent methods, including the proposed methods and competitive
baselines, in terms of their performance on two datasets: UTI
dataset and BUSI-BUI dataset.

As can be seen from the table, the pre-training methods com-
bined with fine-tuning (including SimCLR [53], SimSiam [81],
HiCo [46], and our methods with different masking strategies)
provide better performance than supervised learning. This is
mainly because that the labeled data for real ultrasound images
is usually limited, so that supervised learning usually could
not achieve a satisfactory performance. In our approach, we
learn a representation with good generalization by using a large
amount of unlabeled data through the SSL approach. It is worth
noting that our method outperforms other competitive methods.
Unlabeled data are not employed in the supervised methods (row
2 torow 5), while self-supervised approaches learns patterns and
structures in unlabeled data. We present the performance based
on three different masking-reconstruction strategies, among
which the method based on vertical masking has the best perfor-
mance. For the UTI data, our framework leveraging the random
patch masking strategy can provide higher accuracy than other
competitive methods in the “subject-dependent” scenario, which
is 2.19% higher than HiCo (which is the previous state-of-the-
art method). In the “multiple-subject” setting, all of our three
methods outperform other methods, with at least 6.69% higher
accuracy. In the “subject-independent” scenario, the vertical
masking slightly performs better than the horizontal masking
by 0.24%. Our patch masking method outperforms previous
HiCo [46] by 8.35%. In the “subject-adaptive” scenario, the
method based on contrastive SSL also achieved satisfactory
performance, and the accuracy of SimCLR, SimSiam, USCL and
HiCo reaching 87.46%, 85.50%, 82.59%, and 84.69%, respec-
tively. Compared to the second-best method (HiCo), our method
improves the average accuracy by 5.2%. For the BUSI-BUI
dataset, our framework surpasses SimCLR, SimSiam, HiCo,
and USCL by significant margins of 13.04%, 1.08%, 1.64%,
and 2.14%, respectively.

The proposed framework based on mask modeling achieves
higher classification accuracy on both UTI and BUSI-BUI
datasets compared to recently proposed contrastive SSL
methods. We attribute this performance boost primarily to
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Fig. 4.

Prediction visualizations using the pre-trained model. The first column gives the original ultrasound image. The second and third columns

give the patch-level random masking and the predicted ultrasound image respectively; the fourth and fifth columns give the results based on the
horizontal mask, and the sixth and seventh columns correspond to the results based on the vertical mask modeling.

TABLE Il
QUANTITATIVE COMPARISON BETWEEN OUR PROPOSED METHODS AND COMPETITIVE BASELINES
UTI dataset BUSI-BUI dataset
Subject-  Multiple- Subject- Subject- Mean Mean
Method . .

dependent  subject  independent adapted accuracy accuracy

Raw UTI + DNN 62.15% 69.62% 54.15% 69.26%  63.80% 67.47%

PCA + DNN | 57.78% 66.30% 55.14% 68.37%  61.90% 67.25%

DCT + DNN | 68.38% 71.91% 55.36% 67.76%  65.85% 69.41%

Raw UTI + CNN | 66.56% 74.70% 59.42% 72.67%  68.34% 72.35%

SimCLR [53] | 45.29% 77.02% 70.14% 87.46%  69.98% 74.60%

ViT (from scratch) [69] 40.71% 60.71% 48.79% 45.45%  48.90% 71.3%

SimSiam [81] 82.79% 78.31% 71.41% 85.50%  79.50% 86.56%

USCL [45] | 83.45% 76.26% 74.57% 82.59%  79.22% 85.50%

HiCo [46] | 84.41% 77.38% 75.68% 84.69%  80.54% 86.00%

Our method (Patch masking) 86.60 % 85.46% 84.03% 89.13%  86.31% 87.64%

Our method (Horizontal-masking) 83.11% 85.00% 84.94% 90.00%  85.74% 85.10%

Our method (Vertical-masking) | 85.00% 85.85% 85.18% 89.57%  86.40% 85.51%
TABLE Il performed well across these three metrics, demonstrating its
RESULTS OF F1-SCORE, RECALL, AND PRECISION ON BUSI-BUI DATASET effectiveness. Firstly, for vertical and horizontal masking, we
Mothod Fi-Score T Recall | Precision observed their performances to be very close, both outperform-
SimCLR 52.60% | 54.93% | 52.99% ing the SimSiam method by approximately 3 percentage points.
SimSiam 79.01% | 78.51% | 80.24% This indicates that whether masking in the vertical or horizontal
Our method (Vertical-masking) | 82.86% | 81.19% | 85.39% direction, our method can better capture key features in images,

Our method (Horizontal-masking) | 83.13% | 82.08% | 84.74% . . . . .

Our method (Patch-masking) 82.48% | 81.04% | 84.61% thus improving classification accuracy. This also reflects the

mask-based reconstruction methods that enable the model to
reason about neighborhood information, which is important for
ultrasound image interpretation. As our approach incorporates
a hard example mining strategy, we will conduct a series of
ablation experiments to analyze the impact of each strategy on
performance in the subsequent sections.

Apart from accuracy, we also validated the model’s per-
formance on other metrics, as shown in Table III. From the
perspectives of F1 score, recall, and precision, our method

effectiveness of our method in capturing different directional
features in images. Additionally, for patch masking, we noted
its performance to be slightly lower than vertical and horizontal
masking, but still significantly better than the SimCLR method.
This suggests that although patch masking may lose some local
information, it still provides sufficient contextual information
to effectively learn image features. Overall, our experimental
results demonstrate that our method performs well under differ-
ent types of masking, confirming its robustness and versatility.
These results provide strong support for the feasibility of our
method in practical applications.
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TABLE IV
ABLATION STUDIES FOR HARD EXAMPLE MINING METHODS, USING THE
PROPOSED FRAMEWORK

Cross Entropy Loss | Focal loss | GHM-C Loss | Accuracy
v 82.62%

v 83.90%

v 84.94%

v v 85.46 %

It is worth noting that in this ablation experiment, we evaluate the classifi-
cation performance based on the multiple-subject scene and use the
random patch masking measurement.

——SimCLR —#—SimSiam
UsCL —HiCo

=¥=Our method (patch masking)
90.00%
80.00%
70.00%
60.00%
50.00% \
40.00%

100% 50% 10% 5% 1%

Fig. 5. Classification performance under few-shot settings. The hori-
zontal axis denotes the percentage of the labeled datasets which are
utilized for the fine-tuning purpose. The horizontal axis denotes the
classification accuracy.

In the multi-subject scenario of the UTI classification task,
we compare various hard example mining strategies, and the
corresponding results are presented in Table IV. From the table,
it is evident that both the focal loss (83.90%) and GHM-C
(84.94%) outperform the standard cross-entropy loss (82.62%)
in terms of performance. Notably, the combined utilization of
focal loss and GHM-C achieves the highest accuracy of 85.46%,
further validating the effectiveness of our proposed hard exam-
ple mining method. The integration of mining and analysis of
challenging samples resulted in a 2.84% increase in accuracy
compared to the standard cross-entropy loss. This improvement
bears significant practical significance for the interpretation of
ultrasound data.

F. Few-Shot Settings

For many ultrasound image classification tasks, we often
need to fine-tune the deep models under few-shot settings. In
the few-shot scenarios, the deep models are confronted with
more challenges. To further verify the superior performance
of our pre-trained model, we fine-tune the model by randomly
sampling the training set of ultrasound classification and reduced
the scale of the labeled data set for fine-tuning to 50% and 10%,
5% and 1% of the original data set, respectively. We then use the
sampled dataset to train and evaluate performance with different
algorithms. The experimental results of quantitative analysis are
shown in Fig. 5.

It can be seen that the classification results of our proposed
framework are less adversely affected by few-shot scenarios,
while other algorithms are more sensitive to the reduction of
samples. Analyzing the underlying reasons, we posit that our

pre-trained model can acquire more robust representations and
deliver superior performance on designated tasks, even when
provided with limited training samples. On the other hand, the
unlabeled ultrasound data can be fully utilized based on pre-
training and fine-tuning paradigms.

V. DiISCUSSION

In this work, we propose a masked modeling-based pretrain-
ing method specifically designed for ultrasound images. We
examine the effectiveness of the proposed model by leveraging
two different types of ultrasound datasets: ultrasound tongue and
breast tumor ultrasound datasets. Additionally, we investigate
three different masking strategies: random masking, vertical
masking, and horizontal masking. The proposed framework
consists of two stages: pretraining on unlabeled datasets and
fine-tuning on labeled datasets. In the pretraining stage, we em-
ploy a masked modeling-based SSL approach to train the neural
network. During fine-tuning stage, we fine-tune the encoder and
classification head using a limited number of labeled datasets
specific to ultrasound classification tasks, while introducing a
novel hard example mining strategy. The model achieves an
accuracy and F1 Score of 87.64% and 82.48%, respectively,
on the BUSI-BUI breast cancer classification dataset.

The absence of annotated data presents a formidable chal-
lenge for medical practitioners, particularly in the field of ultra-
sound imaging, where annotating detailed information for low
signal-to-noise ratio ultrasound images proves to be arduous.
To tackle this hurdle, we employ self-supervised learning to
extract features from ultrasound images without relying on
annotations. Moreover, given the inherent low signal-to-noise
ratio in ultrasound images, the presence of challenging sam-
ples in classification tasks is inevitable. Hence, we introduce a
novel hard example mining strategy to mitigate this challenge.
Leveraging self-supervised learning for feature extraction from
ultrasound images leads to a significant enhancement in accu-
racy scores. Our study demonstrates that ViT, initialized with pa-
rameters acquired through self-supervised learning, outperforms
ViT pretrained with ImageNet parameters. This underscores
the notion that manual augmentation of annotated data volume
is dispensable when employing self-supervised learning. Our
framework is well-suited for ultrasound image learning and
possesses sufficient versatility to address the issue of inadequate
annotation in various other medical image types.

VI. CONCLUSION

Pre-training using large-scale unlabeled data has become
a dominant paradigm in the field of artificial intelligence.
However, previous studies have not fully explored the potential
of utilizing large-scale unlabeled ultrasound data. In this paper,
we investigate the application of the masking-reconstructing
strategy-based semi-supervised learning (SSL) paradigm for
ultrasound image classification tasks. Our aim in the pre-training
stage is to develop three different mask modeling strategies that
enable the deep model to learn representations with strong
generalization ability. Ultrasound images pose unique
challenges due to their low signal-to-noise ratio (SNR) and
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high speckle noise, resulting in the presence of numerous hard
examples in the dataset. These hard examples can be perplexing
even for domain experts, making it difficult to draw conclusive
classifications. To address this issue, we propose a hard example
mining strategy that mimics the learning process of domain
experts. By combining the mask modeling-based SSL approach
with hard example mining, our method significantly enhances
the classification performance of ultrasound data. Furthermore,
we assess the transferability of our learned representations
on different datasets and evaluate their generalization ability
in few-shot learning scenarios. It is important to note that
our proposed method can also be extended to ultrasound
radiofrequency (RF) signals. In future work, we plan to explore
a multi-representation pre-training approach that combines
ultrasound RF signals and ultrasound images, thus further
enhancing the robustness and effectiveness of our method.
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