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Over the years, the manipulation and clinical application of drug-delivery nanosystems
for cancer diseases have attracted a rapid growth of academic research interests,
and some nanodrugs have been approved for clinic application. Although encouraging
achievements have been made, the potency of nanomedicines in cancer treatment is far
from satisfaction, and one significant reason is the inefficient penetration of nanoparticles
into solid tumors. Particle size is one of the most significant features that influence
diffusion ability of the drug-delivery system in tumors. Size-shrinkable drug-delivery
nanosystems possess a size-switchable property that can achieve passive targeting
via the enhanced permeability and retention (EPR) effect and transform into ultrasmall
particles in tumors for deep penetration into tumors. The tumor microenvironment
is characterized by acidic pH, hypoxia, upregulated levels of enzymes, and a
redox environment. In this review, we summarize and analyze the current research
progresses and challenges in tumor microenvironment responsive size-shrinkable drug-
delivery nanosystems. We further expect to present some meaningful proposals and
enlightenments on promoting deep penetration into tumors of nanoparticles.

Keywords: tumor, microenvironment responsive, size-shrinkable, drug delivery, nanosystems

INTRODUCTION

Cancer is one of many major causes for mortality worldwide. Chemotherapy is a clinically practiced
approach for treating cancer. In the past decades, the manipulation and clinical application of
nanosized drug-delivery systems for the delivery of therapeutic and diagnostic payload for cancer
diseases have attracted a rapid growth of academic research interests. Nanoparticles with sizes
ranging from 1 to 100 nm have been confirmed the enhanced efficacy against cancers (Luo Q. et al.,
2016; Kou et al., 2018a,b; He J. et al., 2019), and Doxil, Abraxane, and Genexol-PM have been
approved for clinic treatment of cancers. Currently, organic and inorganic nanoparticles including
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liposomes, micelles, dendrimers, gold nanoparticles, lipid
nanoparticles, albumin, magnetic nanoparticles, quantum
dots, graphenes, and graphene oxides proceed to flourish in
nanomedicine laboratories all over the world. Nanoparticles can
accumulate and retain in tumors from circulating blood with
leaky blood vasculatures, this process is referred to as enhanced
permeability and retention (EPR) effect. In addition, tumor-
specific ligands or antibodies, endogenous stimuli [e.g., acidic
pH (Choi et al., 2020), hypoxia (Deng et al., 2018), enzymes
highly expressed in tumors (Xiang et al., 2013), redox status
(Sun et al., 2018), high concentration of glutathione/reactive
oxygen species (ROS) (El-Sawy et al., 2018)] and external stimuli
[e.g., temperature (Al-Ahmady et al., 2018), light (Zhang et al.,
2018), magnetic field (Bocanegra Gondan et al., 2018), and
ultrasound (Dwivedi et al., 2020)] were utilized to facilitate
nanoparticles to achieve active tumor targeting. Although
encouraging achievements have been made in tumor-targeting
drug-delivery nanomedicines in recent years, the efficacy of
nanomedicines in cancer treatment is far from satisfaction.
Cancer cells can’t be effectively scavenged by nanodrugs leading
to recurrence and metastasis of cancers, and the overall survival
for patients has not been significantly improved in many cases,
and one explanation for the phenomenon is the inefficient
penetration of nanoparticles into solid tumors (Barenholz, 2012;
Niu et al., 2018).

Solid tumors are characterized by a high density of
extracellular matrix, elevated interstitial fluid pressure, and
abnormal vasculature, as well as impaired lymphatic drainage.
These unique histology characteristics constitute huge obstacles
for nanodrugs to penetrate into the tumor, especially its core
area and spatial diffusion through tumor (Yang et al., 2018),
leading to failure in effective delivery of nanoparticles into
the tumor far away from vasculature and weakened antitumor
potency. On the other hand, size is one of the most significant
features that influences diffusion ability of the drug-delivery
system in the tumor, owing to the distribution distance that is
inversely proportional to the diameter of nanoparticles (Huang
et al., 2012). Although larger nanoparticles with diameters of
approximately 100–150 nm possess the advantages of passive
tumor targeting via the EPR effect, improved pharmacokinetics
profile, and prolonged blood circulation, they are inferior in
deep diffusion in tumors due to huge distribution obstacle
(Hu et al., 2018c; Yang et al., 2019). On the contrary,
ultrasmall size nanoparticles of below 20 nm (Huo M.
et al., 2017) or 10 nm (Yang et al., 2019) exhibit relatively
higher penetration capability and interstitial transport. However,
ultrasmall nanodrugs are rapidly eliminated from circulating
blood through renal filtration, resulting in ineffective tumor
accumulation (Hu et al., 2018a). To solve the dilemma, an ideal
drug-delivery vehicle should possess a size-switchable property
that is of large diameter in systemic circulation to achieve
passive targeting via the EPR effect and transform into ultrasmall
particles in tumors by stimulus to deeply penetrate into tumor.

Compared to normal tissue, the tumor microenvironment
shows unique properties, such as acidic pH, upregulated
certain enzymes, hypoxia, redox environment, and ROS. The
tumor microenvironment responsive drug-delivery systems

utilize the histology characteristics of tumors, thus realizing
an effective approach for site-specific release of therapeutic
and diagnostic drugs. Unlike external physical stimuli such as
light and ultrasonic, endogenous stimuli are readily available,
and no additional instrument and extracorporeal stimulus
are needed. In this review, we summarize and analyze the
current research progresses and challenges in the tumor
microenvironment responsive size-shrinkable drug-delivery
systems, especially many novel multistrategy approaches based
on the tumor microenvironment response conjugated with other
stimulus are discussed.

ACIDIC PH RESPONSIVE SIZE
SWITCHABLE NANOVEHICLES

Due to the biological environment of tumor tissue of relative
low pH value, pH-responsible linkage could be designed and
incorporated into the nanoparticle for the purpose of formulating
a size-shrinkable drug-delivery system. It can provide a new and
effective modality for tumor-targeting delivery, and several types
of these nanoparticles were developed.

One method for improving the targeting delivery efficiency
of nanoparticles for cancer therapy is to develop nanovesicles
with changeable sizes and surface characteristics, such as
Zeta potential, poly(ethylene glycol) (PEG) shielding or
deshielding, and conjugating of different targeting moieties
to reach the desired targets. Chen and colleagues designed
size-shrinkable nanoparticles with core-shell structure by
electrostatic interaction. Dimethylmaleic anhydride-modified
methoxy poly(ethylene glycol)-block-poly(L-lysine) as the shell
of the nanoparticle was negatively charged with a pH-sensitive
bond, and the core was positively charged with a disulfide cross-
linked polypeptide. The nanoparticles underwent remarkable
size reduction from approximately 145 to 40 nm, and surface
charge reversed from negative to positive at an acidic tumor
microenvironment. The nanoparticles could penetrate about
four times deeper than that of the non-transformable one,
and almost eradicated the xenografted carcinoma in mice
(Chen et al., 2017).

Chemotherapy is one of the effective strategies to fight against
cancer. However, multidrug resistance may pump these drugs
such as doxorubicin (DOX) out of the target cells and thus reduce
their therapeutic efficiency (Bock and Lengauer, 2012; Flemming,
2015; Liu et al., 2017). To overcome this unwanted effect, some
nanoparticles were designed to deliver these therapeutic drugs
to the target sites directly. It is reported that most of anti-
cancer drugs such as DOX need to be released in nucleus to
induce nuclear DNA damage. Diameter is the key for optimizing
these delivery systems to tailor the size of nanoparticle large
enough to accumulate in tumor tissues and with the right size
to pass nucleopores, which was reported as 39 nm in diameters
to entry the nuclear and release drugs (Pante and Kann, 2002).
One size-changeable polymer micelle was reported to solve this
problem. Poly(ethylene glycol)-polylactide-ss-polyethylenimine-
2,3-dimethylmaleic anhydride (mPEG-PLA-ss-PEI-DMMA) was
synthesized to form a micelle. PEG block was used to shield
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the positive charges of polyethylenimine (PEI) and prolong the
circulation time in vivo. PEI functions as a pH-responsible block
to enlarge size change when accumulated in biological acidity
tumor tissues by EPR effects, and it also facilities endosome
escape by the proton sponge effect (Zhu and Mahato, 2010;
Guo et al., 2015; Lee et al., 2017; Vermeulen et al., 2018).
From the results, it can be concluded that the particle sizes
increased from 42.1 nm to 87.9 nm with the decrease of pH
values. The degradation of disulfide bonds in appearance of
intracellular glutathione may remove the PEI block and thus
produce the relative smaller-sized poly(ethylene glycol)-poly(-
caprolactone) (PEG-PCL) with optimized molar ratio to form
micelles to go across the nucleopores and release its payloads
(Guo et al., 2015).

For deep tumor penetration, a reversible swell-shrinking
nanogel was used as a nanoparticle tailor for a desired size.
It consists of N-lysinal-N′-succinyl chitosan with an isoelectric
point around 6.0 to offer an acid-triggered charge reversal
capability, poly(N-isopropylacrylamide) and negatively charged
macromolecule bovine serum albumin. This structure can
provide the possibility of the pH-responsive swelling and
shrinking process, which may keep the nanoparticle stable in pH
7.4, swelling in the endosome for rapid escape from endosomal
with pH value of 4.0 to 5.0, shrinking back to its original in cytosol
with pH 6.8 to 7.4, to repeat the process for neighboring diseased
cells (Ju et al., 2014).

HYPOXIA-RESPONSIVE
SIZE-SHRINKABLE NANODRUGS

Hypoxia is a hallmark feature of the tumor microenvironment
resulted from an imbalance between overwhelming consumption
of nutrient and oxygen by rapidly growing cancer cells and
an inadequate supply of oxygen by the aberrant angiogenesis
and impaired blood vessels (Saikolappan et al., 2019). The
oxygen partial pressure (pO2) decreases from vasculature to
the core of the tumor, and comparing with 46–76 mmHg pO2
in healthy tissues hypoxia area with pO2 of below 10 mmHg
is created (Yao et al., 2018). Due to the significant role of
hypoxia in cancer multidrug resistance, angiogenesis, invasion,
and metastasis (Wilson and Hay, 2011), persistent efforts have
been put forward to develop a targeting hypoxia region or
hypoxia responsive nanoparticles. Xie et al. fabricated a hypoxia-
responsive size-shrinkable nanoparticle for co-delivery of DOX,
siRNA, and a ROS probe to increase penetration into the
tumor (Xie et al., 2018). The size-switchable nanovehicle was
designed by conjugation of the polyamidoamine (PAMAM)
dendrimer, which was a globular-shaped macromolecule with
an ultrasmall size to PEG 2000 via a hypoxia-sensitive linker
azobenzene (AZO) (Figure 1). The DOX and probe were loaded
into the hydrophobic core of PAMAM, and a hypoxia-inducible
factor 1α (HIF-1α) siRNA was bound to the periphery of
the PAMAM dendrimer via electrostatic interactions between
anionic siRNA and amine groups on the surface of PAMAM.
Once reaching the hypoxic microenvironment, the PEG was
cleaved from the PAMAM surface due to the degradation of AZO

to aminoaromatics, resulting in the emancipation of ultrasmall-
size PAMAM of 5.4 nm and deep penetration of the payloads.

ENZYMES-RESPONSIVE
SIZE-CHANGEABLE NANODRUGS

The tumor microenvironment expresses upregulated levels
of enzymes in many kinds of tumors, such as matrix
metalloproteinase (MMP) and hyaluronidase (Ding et al., 2014;
Hu et al., 2014). A tumor-associated enzyme-triggered drug
release is one of the most specific and potent strategies to realize
effective delivery of drugs to tumors.

Matrix Metalloproteinases-2 Triggered
Size Reduction
Matrix metalloproteinase-2 (MMP-2), a family of proteolytic
enzymes, exhibits a critical role in carcinoma angiogenesis,
progression, metastasis, and invasion through degrading
structural components of the extracellular matrix (Egeblad
and Werb, 2002; Kessenbrock et al., 2010). MMP-2, which is
secreted by cancer cells and tumor stromal cells, is considered as
a biomarker in many types and grade of cancers (Stankovic et al.,
2010; Gialeli et al., 2011; Zhu and Torchilin, 2013), and MMP-2
has been generally accepted as a target for active targeting
for tumors. Several strategies have been proposed to fabricate
MMP-2-responsive size-shrinkable nanoparticles.

Gelatin, a most extensively used natural polymer, is the
substrate of MMP-2 (Akkoc et al., 2017), and degradation
of gelatin nanoparticles by MMP-2 is applied in design of
MMP-2 sensitive-size tunable nanovehicles. The surface-carrying
strategy is tethering ultrasmall nanoparticles to the periphery
of large nanoparticles to form a nanocomplex with raspberry-
like structure (Li J. et al., 2015; Ruan et al., 2015a; Huo
M. et al., 2017). Gelatin nanoparticles with size of about
150–200 nm (Madkhali et al., 2019), and surface-carrying
strategy, is applied to link small nanovehicles, for example,
gold nanoparticles, quantum dots, and dendrimers to the
surface of gelatin nanoparticles. Cun et al. (2016) developed
a size-shrinkable nanoparticle through fabricating DOX-loaded
nanogold onto gelatin nanoparticles via PEG (Figure 2), and
nanocomplex decreased from more than 117.8 nm to less than
50.0 nm and released gold nanoparticles under the stimulus
of MMP-2. However, the drug-loaded nanogold with size of
approximately 50 nm is to large for potent deep penetration
into the tumor. In order to enhance tumor penetration, the
tumor was pretreated with losartan to deplete tumor collagen,
which was the main ingredient of the tumor extracellular
matrix. The size-changeable nanovehicles showed striking tumor
penetration efficiency and tumor-inhibition potency. Many types
of MMP-2-triggered gelatin nanoparticles carrying nanogold
on its periphery were reported (Cun et al., 2015; Ruan
et al., 2015a,b). Hu et al. (2015) connected arginine-glycine-
aspartic acid peptide-conjugated dendritic poly-L-lysine loaded
with DOX to gelatin nanoparticles to establish an MMP-2-
sensitive size-shrinkable drug delivery system. This multistage
nanovehicle shrank from 200 to 30 nm and showed higher tumor
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FIGURE 1 | Schematic illustration of the transport path for a hypoxia responsive size-shrinkable nanoparticle PEG-AZO-PAMAM (PAP) for co-delivery of doxorubicin,
siRNA, and a ROS probe to increase penetration into tumor. (I) Blood circulation: PAP was efficiently transported to the tumor site via long circulation time of PEG in
blood and the EPR effects. (II) Tumor microenvironment: AZO was degraded in hypoxic tumor microenvironments, and PEG was removed to realize size shrinkage
and expose positively charged PAMAM that help to penetrate into the tumor core. (III) Within the tumor cells: Through the proton pump effect, PAMAM escaped
from endosomes to release DOX and siRNA. (IV) An increased level of ROS induced by DOX. (V) Fluorescence imaging: The elevated ROS level induced by DOX
could trigger the “turn-on” of fluorescent probe (reproduced with permission from Xie et al. (2018). Copyright 2018 Elsevier).

retention and deeper penetration than gelatin nanoparticles
or dendrimers. An MMP-2-sensitive nanoparticle with a core
composed of gelatin and a surface covered with quantum
dots was engineered, the core of 100 nm gelatin nanoparticles
was degraded, and 10-nm quantum dots were released from
their surface (Wong et al., 2011). The multistage nanovehicles
demonstrated both the long circulating half-life, which was
necessary for EPR effect, and deep tumor penetration into a dense
collagen matrix.

The Trojan horse strategy—hiding small nanoparticles,
referred to as Greek soldiers inside the large nanoparticles and
releasing of small nanoparticles under certain trigger—was
also utilized in fabrication of MMP-sensitive size-tunable
nanoparticles. Xia et al. (2019) developed a size-shrinkable
gelatin-based vehicle in which the bovine serum albumin
nanocomplex was encapsulated in gelatin nanoparticles for
photodynamic therapy (Figure 3). Upon cleavage, due to
the presence of MMP-2, the released small-size vehicles
delivered drugs deeply into tumor hypoxic region. Paclitaxel
loaded and Pluronic R© F127-modified porous hollow magnetic
subnanocarriers were further assembled through gelatin
conjugation to form a core-shell structure with multiple
subnanocarriers entrapped in a gelatin matrix, and the core-
shell non-vehicles were enzymatically degraded from about
140–160 nm to ∼20 nm by MMP-2 (Lai et al., 2018). Losartan
was loaded in gelatin nanoparticles to decrease collagen in
extracellular matrix, and magnetic nanoparticles liberated
from core-shell nanovehicles showed deeper penetration.
Small polyamidoamine (PAMAM) dendrimers (∼5 nm) were
encapsulated in large gelatin nanoparticles (∼200 nm), the
multistage nanocarrier was stable during systemic circulation,
and PAMAM dendrimers were released in response to high
MMP-2 enzymes in tumor microenvironment (Fan et al., 2017).

This multistage nanovehicle exhibited great potential in
improving anticancer efficacy.

The “peeling onions” strategy is that the outer shell
layer of nanoparticles is cleaved in response to external of
internal stimuli and is an approach for the design of size-
tunable nanovehicles. Conjugation of the terminal glucose of
hyaluronic acid to the amidogen on PAMAM surface via
an MMP-2-responsive peptide (PLGLAG) to form MMP-2-
sensitive size-shrinkable nanovehicles (Han et al., 2017). The
nanoparticles experienced a dramatic and quick size shrink
from an initial size of ∼200 nm to ∼10 nm because of
cleavage of PLGLAG in the presence of MMP-2 (Figure 4).
The nanoparticles achieved fast diffusion, deep penetration, and
improved therapeutic efficacy.

Clusters of ligands targeting the chemokine (C-C motif)
ligand 28 (CCL28)-modified tungsten-oxide nanoparticles were
covalently bound via an MMP-2-cleavable peptide Pro-Leu-Gly-
Val-Arg-Gly (Huo D. et al., 2017). The half-life of a cluster of
tungsten-oxide nanoparticles in blood was increased compared
to that of tungsten-oxide nanoparticles because of the enlarged
size of approximately 33 nm. Once the clusters of nanoparticles
accumulated inside the tumor due to the EPR effect, upregulated
content of MMP-2 in the tumor microenvironment destructed
the clusters to release small nanoparticles (∼5 nm), which deeply
penetrated into the hypoxia region of the tumor.

Hyaluronidase
Hyaluronic acid (HA), a natural non-sulfated glycosaminoglycan,
consists of alternating units of D-glucuronic acid and N-acetyl-
D-glucosamine connected through β-1,3- and β-1,4-glycosidic
bonds (Dosio et al., 2016). HA is the content of many human
organs such as body fluids, the extracellular matrix, and
connective tissues (Vizoso et al., 2004; Yin et al., 2006). Due
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FIGURE 2 | Elucidation of the dual strategy of combination of size shrinkable nanoparticles with collagen depletion by losartan. (A) Losartan treatment reduced the
collagen level of xenografted tumor, leading to deeper penetration of DOX-loaded nanogold onto gelatin nanoparticles. (B) MMP-2-triggered size shrunk and
low-pH-induced DOX release in tumor (reproduced with permission from Cun et al. (2016). Copyright 2016 Elsevier).

FIGURE 3 | (A) Schematic illustration of atovaquone (Ato) and indocyanine greenbovine (ICG) serum albumin nanocomplex encapsulated in gelatin nanoparticle for
enhancing the tumoricidal effect exerted by photodynamic therapy treatment. Once entered into tumor, the gelatin nanoparticle was ruptured with the assistance of
MMP-2, releasing ICG serum albumin nanocomplex and Ato. (B) A schematic showing the broad influence of Ato on oxidative phosphorylation, and the mechanism
underlying the reverse of hypoxia as assisted by Ato and ICG serum albumin nanocomplex encapsulated in gelatin nanoparticle (reproduced with permission from
Xia et al. (2019). Copyright 2019 John Wiley and Sons).

to its biocompatibility, biodegradability, non-toxicity, and non-
immunogenicity properties and its overexpressed receptor cluster
of differentiation (CD) protein CD44 on many tumor cells,
HA is widely applied in antitumor drug, deoxyribonucleic acid
(DNA), and siRNA delivery (Luo et al., 2019). Hyaluronidases,
the specific enzymes for degradation of HA, are demonstrated
to be associated with tumor progress (McAtee et al., 2014) and
20–1,000 times higher in many cancers than in health organs
(Lokeshwar et al., 2001; Benitez et al., 2011). Scientists utilized the
high content of hyaluronidase in the tumor microenvironment to
design hyaluronidase-responsive size-changeable nanovehicles.

Huo et al. encapsulated PAMAM dendrimers into HA
nanoparticles using the Trojan horse strategy. The HA/PAMAM
nanosystems with a large scale of about 197 nm were stable

during systematic circulation, and once reaching the tumor
site, they were degraded by the highly expressed hyaluronidase.
PAMAM dendrimers with a small size of 5.77 nm and positive
charge were released (Huo M. et al., 2017). A small-sized dendri-
graft-L-lysine dendrimer conjugated with DOX and indocyanine
were wrapped into nitric oxide (NO) donor-modified hyaluronic
acid nanoparticles, and the multistage-responsive nanoparticles
could be rapidly degraded from approximately 330 nm to
smaller sizes, most of which were at 35–60 nm after incubation
with hyaluronidase (Hu et al., 2018c). Hu et al. (2018b)
engineered an intelligent nanoparticle with dendrigraft poly-
L-lysine dendrimer loaded DOX and photothermal agent
indocyanine green as core and near-infrared (INR) laser-sensitive
NO-donor-modified HA shells. Synergistic deep penetration was
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FIGURE 4 | Schematic illustration of size shrinkage of the HA-PLGLAG-PAMAM from 200 to 10 nm triggered by MMP-2, a protease highly expressed in the tumor
extracellular matrix, thus achieving deep penetration into tumor and improved therapeutic efficacy (reproduced with permission from Han et al. (2017). Copyright
2017 American Chemical Society).

achieved through degradation of HA shells by hyaluronidase
and improved EPR effect by laser-enhanced NO release upon
strong hyperthermia effect of indocyanine green (Figure 5).
Liu et al. (2018) employed HA and cationic bovine serum
albumin-protected gold nanocluster to successfully construct
size-reducible nanoplatform, and 200 nm of the nanovehicle
with optimal EPR effect was screened out for further loading
drug for chemo-photothermal therapy. Series of hyaluronidase
triggered size-reducible HA-coated cationized gold nanoclusters,
which was further shielded with red blood cell membranes
in different initial diameters, were synthesized, and the size-
reducible nanoparticles could be hydrolyzed into the small cores
in the presence of hyaluronidase. The optimal initial size of
150 nm was filtered (Yu et al., 2019). A “cluster bomb” containing
HA nanogels core loading DOX and transient receptor potential
ankyrin 1 (TRPA-1) inhibitor and tumor homing peptide
tLyp-1 (CGNKRTR) modified distearoyl phosphoethanolamine-
(polyethylene glycol) 2,000 (DSPE-PEG2000) micelles, which
were carried on the surface of nanogels was designed (Wang et al.,
2020). The nanogels were cracked into HA fragments triggered
by high hyaluronidase in the tumor microenvironment, and
exposure of HA target and reduction of nanoparticle size were
realized. Benefiting from the small particle diameter and targeting
ability of HA and ligand modified on micelles, the HA fragments
carrying micelles on periphery achieved deep penetration into
the tumor.

REDOX-ENVIRONMENT-RESPONSIVE
SIZE-TUNABLE NANOVEHICLES

Glutathione-Triggered Size Reduction
The intracellular glutathione concentration in the tumor
microenvironment is in the range of 1–10 mmol/L, which is many

times higher than that in the extracellular of healthy organs (Li
Z.Y. et al., 2015; Wang et al., 2018). The significant difference
in the reductive potential between cancer and normal tissues
has been utilized as a promising strategy to achieve reduction
responsive drug delivery into tumor (Luo C. et al., 2016; John
et al., 2017). The disulfide bond is such a bioreducible linkage that
is easy to degrade in the reductive potential environment (Chen
et al., 2015; Uthaman et al., 2018).

Wang et al. conjugated amphiphilic blocks Pluronic P123
to charge-reversible blocks 2,3-dimethylmaleic anhydride
(DMMA)-polyethylenimine (PEI) via the disulfide bond to
fabricate a size-reducible hybrid micelle, and a dexamethasone-
modified Pluronic P123 amphiphilic block was applied to target
nuclei and dilate nuclear pores (Figure 6). The two unimers
self-assembled into a core-corona nanostructure, the cleavage
of disulfide group occurred quickly in glutathione-elevated
cancer cells followed by size reduction due to detachment
of polyethylenimine from the micelle corona (peeling onion
strategy) (Wang et al., 2017). A novel multifunctional size-
switchable nanovehicle based on carboxylic functionalized axial
ligands of Pt(IV) complexes as linker to integrate ZnFe2O4
nanoparticles on the surface of upconversion nanoparticles was
developed for synergistic cancer therapy including photodynamic
therapy, chemotherapy, and Fenton reaction (Bi et al., 2018).
The original size of the nanosystem was about 100 nm, which
was beneficial for the EPR effect and tumor accumulation, and
in the tumor microenvironment Pt(IV) prodrug as a linker
was broken, owing to the reducing property of glutathione,
switching to upconversion nanoparticles of 25 nm and ZnFe2O4
of 7 nm. Guo et al. (2015) applied a novel size-changeable
polymer micelle to form a core-corona structure, and the two
end of poly lactide as the core material was conjugated with
methoxy polyethylene glycol and polyethylenimine through
disulfide group, respectively. The two hydrophilic polymers
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FIGURE 5 | (A) Schematic design of hyaluronidase-triggered size-shrinkable HA shells, which were modified with NIR laser-sensitive NO donor (HN), small-sized
dendrimeric prodrug (IDD) of DOX as chemotherapy agent and indocyanine green (ICG) as photothermal agent into a single nanoparticle. (B) Synergistic effects for
deep tumor penetration and therapy effects were realized via rupture of HA shells triggered by hyaluronidase and improved EPR effect by laser-enhanced NO release
upon strong hyperthermia effect of indocyanine green (reproduced with permission from Hu et al. (2018b). Copyright 2018 Elsevier).

FIGURE 6 | Schematic illustration of a size reducible core-corona nanostructure that was self-assembled by two unimers of conjugated Pluronic P123 to DMMA-PEI
(PSPD) via disulfide bond and dexamethasone modified Pluronic P123 (P123-Dex). The core-corona nanostructure efficiently delivered DOX into the nucleus of tumor
cells through exploiting acidic pH and intracellular redox potential, as well as the ability of dexamethasone to target and dilate nuclear pores (reproduced with
permission from Wang et al. (2017). Copyright 2017 John Wiley and Sons).

were used as the corona material. The degradation of disulfide
bonds as linker between poly lactide and polyethylenimine
was triggered by intracellular glutathione, resulting in the

deshielding of polyethylenimine corona and size reduction
without demicellization. The smaller micelles were capable of
access to the nucleus due to the reduced size (Guo et al., 2015).
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Reactive Oxygen Species
The level of ROS, including superoxides (O2

−), hydroxyl radicals
(OH•), hydrogen peroxides (H2O2), and singlet oxygen (1O2),
are approximately 100 times higher in cancer cells than that
in normal cells because of their constant production as the
byproducts by mitochondria in aerobic cells during energy
production (Ngo et al., 2015; Mo and Gu, 2016). Based on
the high content in cancer, many ROS responsive nanocarriers
for site-specific drug delivery and release were reported.
ROS-responsive groups, such as ferrocenyl, arylboronic ester,
thioether, thioketal and selenium units, are commonly employed
in development of ROS-stimulated nanovehicles (Sun et al.,
2017; Luo et al., 2018). The ROS-sensitive linkers are degraded
or switched from hydrophobic to hydrophilic in response
to oxidization of ROS, resulting in nanocarriers intracellular
disassembly and corresponding payload release (Saravanakumar
et al., 2017; He Y. et al., 2019).

Cao et al. (2018) have developed ROS-responsive polymeric
nanocarrier to realize remotely controlled drug release by light-
activated size shrinkage. With the assistance of an amphiphilic
copolymer poly(ethylene glycol)-b-poly(ε-caprolactone), a ROS-
responsive poly(thioketal phosphoester) self-assembled to form
a ROS-sensitive polymeric nanovehicle encapsulating chlorin
e6 and DOX. Under the red-light irradiation, thioketal
linker was cleaved by the ROS produced by encapsulated
chlorin e6, resulting in rapid degradation of nanovehicle core
and size shrinkage.

CONCLUSION AND PERSPECTIVES

Over the years, many significant progresses have been achieved in
enhancing deep penetration of nanoparticles into tumors. Recent
advances in the field of the tumor microenvironment triggered
size-shrinkable drug-delivery nanosystem, which utilized the
unique profiles of the tumor microenvironment such as low
pH, hypoxia, upregulated expression of certain enzymes, redox
species, and reactive oxygen levels are summarized in this review.
However, great challenges are faced in the scientific research and
especially in clinical application.

First, the heterogeneity of cancer is relatively complex and
highly varied among different tumors, pathology, and clinical
stages (Alizadeh et al., 2015; Singh et al., 2015). The influence
factors on hampering penetration capability of nanoparticles
are very complicated rather than only size dependence.
Therefore, design of the tumor microenvironment stimulated
size-switchable nanoparticles and combination with different
treatment strategies should be based on further basic research

in tumor biology, pathology, and clinical stage. Second, the
biocompatibility, biodegradability, and safety for size-shrinkable
nanoparticles and other multistage vehicles in vivo and in vitro
should be carefully evaluated (Sanna et al., 2014; Hjorth et al.,
2017). Last but not least, druggability also should be highly
concerned in development of size-shrinkable nanoparticles. The
pharmaceutical industry favors the “keep it simple, stupid” (KISS)
principle (Crommelin et al., 2020). Manufacture techniques
for complicated and smart size-shrinkable nanoparticles are
difficult to scale up from laboratory scale to industry scale.
In 2019, Clinicaltrials.gov exhibited no trial in progress, which
is searched for the disease “cancer” and the other term “size-
shrinkable nanoparticle.” Aiming at improving the prospect
of clinical application, size-tunable nanosystem with simple
structure should be developed.

In conclusion, there are great challenges for treatment
of cancer, and the strategy of tumor-microenvironment-
responsive size-changeable nanovehicles have demonstrated
encouraging achievements in scientific research fields of
promoting penetration into tumors of nanoparticles. We look
forward that more simple size-shrinkable nanocarriers based on
further basic research in tumor biology, pathology, and clinical
stage are developed and translated into clinic in the recent future,
and more patients benefit from nanotechnology.
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