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Retinal ganglion cells, the sole output neurons of the retina, exhibit surprising diversity.

A recent study reported over 30 distinct types in the mouse retina, indicating that

the processing of visual information is highly parallelised in the brain. The advent of

high density multi-electrode arrays now enables recording from many hundreds to

thousands of neurons from a single retina. Here we describe a method for the automatic

classification of large-scale retinal recordings using a simple stimulus paradigm and a

spike train distance measure as a clustering metric. We evaluate our approach using

synthetic spike trains, and demonstrate that major known cell types are identified in

high-density recording sessions from the mouse retina with around 1,000 retinal ganglion

cells. A comparison across different retinas reveals substantial variability between

preparations, suggesting pooling data across retinas should be approached with caution.

As a parameter-free method, our approach is broadly applicable for cellular physiological

classification in all sensory modalities.
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INTRODUCTION

It is well established that the retina has multiple, functionally complementary populations of
retinal ganglion cells (RGCs), which together transmit visual information to various central visual
areas (Roska and Werblin, 2001). Strikingly, the stratification of RGC dendrites in the inner
plexiform layer predicts response polarity and kinetics extremely well. In addition, the retinotopic
organization of RGCs is such that each type independently covers the visual space through
receptive field tiling as regular mosaics. The retina is among the first neural systems where a clear
correspondence between morphology, physiology and function of different cell types has been
established (Wässle et al., 1981; Rockhill et al., 2000; Sun et al., 2002; Badea and Nathans, 2004;
Kong et al., 2005; Völgyi et al., 2009; Masland, 2012; Jones et al., 2015; Sterling and Laughlin, 2015),
an organizing principle that likely exists in other neural systems as well. The actual classification
of RGCs typically requires a combination of measures of their cellular physiology, light responses,
morphology and, more recently, their gene expression patterns and connectome (Helmstaedter
et al., 2013; Macosko et al., 2015; Sanes and Masland, 2015; Krieger et al., 2017; Rheaume et al.,
2018).

Despite such well defined principles, in practice classification of RGC types has been challenging
because it is difficult to implement all criteria in a single experiment. Classification is particularly
challenging when attempted solely based on light responses. In previous studies, features were
extracted from responses to a set of stimuli designed to reveal the main spatial and temporal
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receptive field properties, as well as specific properties such
as direction selectivity (DS). Using this approach, Farrow and
Masland (2011) found 12 distinct types, which mirrors a similar
number of morphological types identified through unsupervised
clustering (Kong et al., 2005). Moreover, consistent patterns
in spike trains have been shown to allow distinction between
major RGC types (Zeck and Masland, 2007). Numerous, more
detailed studies have since refined and extended this picture,
but without reaching a clear consensus. Recently (Baden et al.,
2016), combining clustering, dimensionality reduction of peri-
stimulus time histograms (PSTH) and other response criteria and
morphological information, reported at least 39 distinct RGC
types.

Previous studies thus appear to suggest that light responses
alone do not contain sufficient information for reliable RGC
classification unless a careful stimulus ensemble is designed
to evoke optimal responses, in particular for specialized RGCs
such as DS cells. Yet, if different RGC types have distinct
cellular physiological properties, light responses, and systematic
differences in their presynaptic input neurons, it may be possible
to use a sufficiently rich stimulus to evoke responses to unmask
their distinctive functional features. Here we propose that it is
not necessary to use stimuli that optimally excite the receptive
field of each RGC type. Instead, we expect that these cellular
differences cause perhaps subtle, but detectable differences in
the light responses even to non-optimal stimuli. The actual
identity of each RGC type, including specific properties such
as DS, can then be confirmed post-hoc using more specific
stimuli.

A main caveat in previous studies was that RGC recordings
frommultiple preparations were pooled together to obtain a data
set of sufficient size. Large scale, high density microelectrode
arrays (MEAs) now make it possible to record large populations
comprising thousands of cells from a single retina (Maccione
et al., 2014; Portelli et al., 2016; Hilgen et al., 2017a,b). This
reduces contaminating effects of variability between animals
and experimental conditions, and allows precise control of
stimulation for all recorded neurons.

Extending an idea first presented by Zeck and Masland
(2007), here we present a method for clustering RGCs based
on spike distance measures, which is particularly suited for
high density recordings. Its main advantage is that it is a
parameter-free distance measure for clustering. We first validate
the method using synthetically generated RGC spike trains.
The results show that the methods using the parameter-free
spike distances compare favorably to clusterings based on
feature vectors, especially in the presence of low to medium
levels of noise. On recorded RGC data, the method is able to
distinguish many distinct RGC types, as confirmed by assessing
response properties during stimulation that was not part of
the data used for clustering. A comparison between different
retinas shows that similar types can be identified, but that
heterogeneity between preparations prevents the use of pooled
data. Together our work suggests a new strategy for consistent
identification of RGC types, and potentially of neurons in other
sensory systems where appropriate stimulation paradigms can be
designed.

METHODS

All code to reproduce the experimental data analysis presented
in this paper, and an example data set is available at
https://github.com/mhhennig/rgc-classification. This repository
contains additional analysis, and hopefully provides a starting
point for refinement and extension of the methods presented in
this paper. We therefore encourage the reader to explore this
resource, and to contribute to its improvement.

Spike Train Distance Based Clustering
ISI Distance
This measure is sensitive to dissimilarity in the inter-spike
intervals (ISI) of two spike trains (Kreuz et al., 2007). The
instantaneous ISI distance is the ratio between the ISIs, adjusted
so that the distance is symmetric:

DISI(t) =

{

vxISI(t)/v
y
ISI(t)− 1, if vxISI(t) ≤ v

y
ISI(t)

−(v
y
ISI(t)/v

x
ISI(t)− 1), otherwise

(1)

where vxISI(t) and v
y
ISI(t) are the instantaneous inter-spike interval

values for spike trains x and y, respectively.

SPIKE Distance
The SPIKE distance compares the distances between the
preceding and following spikes of the two spike trains (Kreuz
et al., 2011, 2013). First, the interval between the previous and
following spike pairs are computed as

{

1tP(t) = t
(1)
P (t)− t

(2)
P (t)

1tF(t) = t
(1)
F (t)− t

(2)
F (t),

(2)

where 1 and 2 indicate the first and second spike train, and P
denotes the spike pair before or at time t, and F the pair at or
following t. Then a weighted average is computed as

DS(t) =
||1tP(t)|| < x

(n)
F (t) >n +||1tF(t)|| < x

(n)
P (t) >n

< x
(n)
ISI (t) >2

n

, (3)

where < x
(n)
T (t) > is the average of the intervals x

(n)
T (t) =

t − t
(n)
T (t), such that spikes closer together in time dominate the

measure.
The ISI and SPIKE measures yield a quasi-instantaneous

distance profile, which is averaged to obtain a single distance
measure for each pair. These distances were computed using
the open source package PYSPIKE (Mulansky and Kreuz, 2016,
version 0.5.3). Specifically, the pairwise distances between two
units were determined by computing the pairwise distances of
all trials of the same stimulus. The resulting distance matrix
was then clustered with the hierarchical clustering algorithm as
implemented in the Scipy library (Jones et al., 2001, version
1.0.1), using the Ward variance minimization algorithm, as this
gave the best results on ground truth data.
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Synthetic RGC Responses
Model
To evaluate the clustering quality, synthetic RGC spike trains
emulating eight known base types, were generated using a linear-
nonlinear-Poisson (LNP) model. The stimulus s(t) was similar
to the chirp stimulus used in the MEA experiments (see below)
(Figure 1): 1.5 s darkness, followed by 2 s full intensity and 2 s
darkness; midpoint luminance “gray” value for 2 s; frequency
modulation schirp: freq.(tf ) = sin(π t2

f
) for 5 s; 2 s midpoint

luminance; amplitude modulation schirp: ampl.(ta)=0.2t sin(3π ta)
for 5 s; 2 s midpoint luminance.

We generated symmetric ON and OFF RGC types, with
fast/slow and transient/sustained temporal characteristics, using
Gabor functions with two parameters (Dayan and Abbott, 2001):

k (t) = pN

(

t, 0,
l

2

)

sin

(

2π

(

t

l

)v)

(4)

where N is the Gaussian probability density function, and p
the response polarity. This response is normalized in the range
[−1, 1].

Here l is the “length” of the temporal receptive field,
and modulates over how much the time the RF integrates
the stimuli, and v is the “speed” that affects how quickly
the cell responds to changes in the stimuli intensity.
A “long” RF thus averages out high frequency stimuli,
whereas a “short” one is sensitive to high frequency
stimuli, consistent with the main known distinguishing
characteristics of RGC receptive fields (Sanes and Masland,
2015; Sterling and Laughlin, 2015). Note that these simulated
RFs do not have a spatial component, instead its effect
during homogeneous illumination can be considered as
parameterized by the temporal component. Importantly,
the integral

∫ ∞
0 k(t)dt is constant for a fixed v, hence RFs

with a different “length” but the same “speed” will have
identical maximum linear response magnitudes, which allows
testing the effect of response kinetics independent of response
magnitude.

The cell’s RF filter Ek is convolved with the time-
varying stimulus s(t) to yield the cell’s linear response. To
simulate spikes, this response is passed through a non-
linear function r(x) which transforms the linear response
into an instantaneous spike rate. We used a logistic

FIGURE 1 | Synthetic retinal ganglion cell response models. For each of the eight cell types, rows from top to bottom: (i) the linear receptive field (RF) of the cell; (ii) the

stimulus; (iii) the linear response of the cell, computed by convolving the RF with the stimulus; (iv) the spike rate obtained by passing the linear response through a

non-linear function; and (v) the spike raster generated using a Poisson process.
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sigmoid function:

r(x) =
2rmax − rmin

1+ e−c(x−1)
+ rmin (5)

To match observations made in the recorded RGC spike trains,
rmin was set to 0.5, and rmax to 100. By changing c and observing
the effect on the different cell types, a value of 4.0 was found
to result in the most balanced spike rate response across all
types.

Finally, Poisson spike trains were generated in discrete time
bins (dt) of 1ms based on the instantaneous rate P(spike|r) =
r(t)× dt.

Model Parameter Selection
We modeled eight cell types by combining the following
parameters: “On” and “Off”: p = 1 and p = −1; “Fast” and
“slow”: l = 0.4 and l = 1.0; “Transient:” and “sustained:”:
v = 0.65 and v = 1.2. The resulting spike trains for the simulated
cells, consisting of eight types, are shown in Figure 1 together
with each cell’s RF, the stimulus, linear response to the stimulus,
and instantaneous spike rate.

RF Parameter Variation
To simulate cellular variability, each of the baseline RF
parameters was varied by sampling from a Gaussian distribution
centered around the baseline value, and constrained to positive
values. The standard deviation was varied as a percentage
proportion of the baseline value, using 5, 10, 15, 20, and 30% of
each of the baseline parameters.

Imbalanced Populations
To take into account that different RGC types are found
in unequal numbers, imbalanced data sets were created. As
representative examples, cell type frequencies were manipulated
based on %-ON and %-fast, %-ON and %-transient, and %-fast
and %-transient, in steps of 10%: %-ON from 30 to 70%, %-fast
from 10 to 90%, and %-transient fixed at 50%; %-ON from 30
to 70%, %-transient from 10 to 90%, and %-fast fixed at 50%;
%-transient from 30 to 70%, %-fast from 10 to 90%, and %-ON
fixed at 50%. This yielded 120 distinct data sets.

Recording Noise
As perfect spike detection and sorting cannot be fully guaranteed
in MEA recordings, the LNP model was augmented to include
three sources of experimental noise:

1. Poisson process with a fixed rate throughout the stimulus
time, either with a rate of β = 2s−1, or with a rate randomly
chosen uniform between 5 and 30Hz. This simulates noise
contamination of otherwise well isolated units.

2. Randomly removing 70% of the unit’s spikes across all
trials, simulating false negatives during detection and/or spike
sorting.

3. Merging two spike trains from different RFs, to simulate failed
single unit isolation.

To generate datasets contaminated with a known amount of
noisy units, a random subset of the population was picked and
replaced with one of the four noise models. The number of noisy

units was evenly distributed between each of the four types. The
percentage of noisy units as a percentage of the total population
was varied from 10 to 90%, in increments of 10%, and a dataset
was generated for each.

Experimental Data
MEA Recording
All experimental procedures were approved by the ethics
committee at Newcastle University and carried out in accordance
with the guidelines of the UK Home Office, under control of
the Animals (Scientific Procedures) Act 1986. In this study,
recordings from six C57bl/6 mice aged 59-101 days postnatal,
housed under a 12 h light-dark cycle, were used. All experimental
procedures are described in detail in Hilgen et al. (2017b).
Pan-retinal recordings were performed on the BioCam4096
platform with BioChips 4096S+ (3Brain GmbH, Lanquart,
Switzerland), integrating 4,096 square microelectrodes (21 by
21 µm, pitch 42 µm) on an active area of 2.67 by 2.67mm.
The platform records at a sampling rate of 7.1 kHz/electrode
when using the full 4096 channel array and recordings were
stored at 12 bits resolution per channel with a 8 kHz low-pass
filter/0.8 kHz high-pass filter using 3Brain’s BrainWave software.
Light stimuli were projected onto the retina as described
previously (Hilgen et al., 2017b) and attenuated using neutral
density filters to high mesopic light levels (mean luminance 11
cd/m2).

Spike Sorting
Spikes were detected and sorted using the algorithms described
in Muthmann et al. (2015) and Hilgen et al. (2017a), using
the HS2 software (https://github.com/mhhennig/HS2). Briefly,
spikes were first detected as threshold crossings individually
on each channel, and then merged into unique events based
on spatial and temporal proximity. For each detected spike, a
location was estimated based on the signal center of mass. Spike
sorting was performed by clustering all events using a feature
vector consisting of the locations and the first two principal
components of the largest waveform.

Analysis of Light Responses
The bias index (Carcieri et al., 2003) was computed from full field
responses as

OOi =
〈rON〉t − 〈rOFF〉t

〈rON〉t + 〈rOFF〉t
, (6)

where 〈rON〉t and 〈rOFF〉t are the spike count during the bright
and dark part of the stimulus, respectively.

DS was assessed by first recording the maximum spike count
for each of 12 directions of a moving bar stimulus, and dividing
this by the average across all stimuli and mean spike count of a
neuron relative to its minimum spike rate for each of the moving
bar stimuli:

rminmax = rmax − rmin (7)

where rmax is the maximum and rmin is the minimum spike rate,
calculated by counting the number of binned spikes, in this case
using 200ms wide bins. Taking the relative rate was required as
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it was found that the mean firing rate of the units drifted across
the different moving bar stimuli, regardless of their actual peak
response. The relative maximum rate was transformed into a
vector representing the direction of the stimuli, and the first two
normalized eigenvalues were used to compute the DSi:

DSi = 1−
λ1

λ2
(8)

This value is bounded [0, 1], with a higher value signifying
stronger DS.

The linear receptive field was computed as the spike triggered
average (STA) stimulus, obtained during white noise stimulation.
To increase the spatial resolution, the stimulus squares were
shifted randomly with each presentation, as described by Hilgen
et al. (2017a). A bivariate Gaussian was fitted to each STA at the
time of the first peak, and its average width taken as the receptive
field size.

Unit Selection
To avoid false negatives during detection, a low detection
threshold was used (threshold 10, see Muthmann et al., 2015
for definition), which led to an excessive high number of
putative units. To isolate well-sorted neurons from this set,
several heuristic criteria were applied: First, to be included, the
eccentricity of the ellipse defined by a bivariate Gaussian fit to the
spatial spike locations of each unit was thresholded to<0.85, and
the average of the two axes thresholded to below <17% of the
channel separation (7.14 µm). This removed units with poorly
localized, and therefore potentially poorly sorted units. Units
recorded from the two outer channel rows were removed as this
impaired spike sorting. Next, only units with at least 10 spikes in
each trial of the chirp stimulus were retained. Here we used six
retinas, with a final count of 1,026, 1,849, 1,234, 634, 1,131, and
575 units.

RESULTS

Our procedure to obtain functional RGC clusters consists of
two steps. First a spike distance matrix is computed for all
single unit pairs in the recording, which is then clustered using
agglomerative clustering. This requires a distance measure with
themetric properties of non-negativity, zero distance for identity,
symmetry and subadditivity (the sum of two distances has to
be greater than or equal than the individual distances). These
conditions are fulfilled by a number of metrics (Victor, 2005;
Kreuz et al., 2007, 2013), of which we evaluated the non-
parametric ISI and SPIKE distance measures. Then hierarchical
clustering is used to construct a dendrogram based on the
distance matrix. In the following, we will first validate this
method with synthetic data, and then show its application to a
high density MEA recording from the mouse retina.

Evaluation With Synthetic Data
We first evaluate the method with a synthetic ground-truth data
set, which contains eight different RGC types (see Methods).
Spike trains were generated using LNP models, and the
spike distance matrix was computed, followed by hierarchical
agglomerative clustering using Ward’s linkage. This procedure

yields a dendrogram, which was cut such that eight flat clusters
were obtained. We note that the last step is not feasible for
recorded spike trains, where the number of RGC types is
not known. We address this issue below when analyzing an
experimental data set.

First we combine all 140 datasets created using the LNP
model. In addition to the spike distance-based methods, the
ISI and SPIKE distances, we also used the raw PSTH, and
the PCA and sparse PCA of the PSTH for comparison (see
Baden et al., 2016 for an application of sparse PCA). To
assess the quality of the clustering, the median score of the
following four measures was used: the adjusted Rand index,
which summarizes the fraction of correct clustering choices based
on true/false negatives/positives (Murphy, 2012); the adjusted
mutual information, which quantifies information gain over
random clustering (Vinh et al., 2010); the Fowlkes-Mallows
score, the geometric mean of precision and recall; and the
completeness score measuring if all true cluster members are in
the same cluster. Across almost all conditions, the scores of each
individual quality index were very similar. The distribution of the
median scores across all conditions for each method is shown in
Figure 2.

This comparison shows that the different feature sets yield
a similar performance. However, it should be noted that
the methods using PSTHs, either alone or through a form
of dimensionality reduction, require selecting and optimizing
the PSTH bin size. Secondly, PCA requires selecting the
dimensionality, and sparse PCA has an additional L1 penalty
parameter. An exploration of the ground truth data showed
that all these parameters strongly affect clustering quality. For
the results shown in Figure 2, the parameters were optimized
through an extensive grid search.

For the PSTH-based clustering, a bin size of 200ms resulted
in the best overall performance, which also proved to be the

FIGURE 2 | Median score across all conditions. For each of the five feature

sets, four external clustering quality scores (adjusted Rand index, adjusted

mutual information score, V-measure, and the Fowlkes-Mallows score) were

computed for each dataset. The median of the four scores is calculated for

each dataset. Finally, the medians for the various datasets (140) are presented

in the form of a box plot, one for each method. A higher score implies a better

clustering result. Each colored box plot shows the median and interquartile

range (IQR). The error bars extend 0.8 times past the IQR in each direction.

The methods are ordered from the highest median value (of median scores) to

the lowest, from top to bottom.
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best bin size for PCA and sparse PCA. Note that this large bin
size was likely required due to the high variability introduced by
the Poisson spike generation process. In real data, more precise
spiking will require a smaller bin size. For PCA, using eight PCs
worked best, whereas for sparse PCA, a penalty of 50 with 12
components provided the best scores.

In contrast, the ISI and SPIKE distance based clustering
required no such parameter search. The fact that both methods
have comparable or better performance demonstrates that they
are suitable for the clustering of RGC types based on their
physiological response. This is particularly important in the
context of real data, where parameter optimisation can only be
done heuristically.

Synthetic Data With Biological Variability
Comparing the methods as a function of cell number
and RF variation, we find that the performance degraded
rapidly as the RF variation increased beyond 15% (Figure 3).
In particular, the spike distance based measures performed
slightly worse than the others as RF variation increased.
In all cases, the worst performance is observed when the
RF variation is at 30%, and the total number of units is
high (800 units). Each of the methods performs consistently
with regard to its relative overall performance (the order
shown in Figure 2). This trend is consistent across all
conditions of the synthetic dataset: permitting for minor local
variations, there was no single direction in which any of
the methods described performed characteristically better or
worse.

Synthetic Data With Experimental Noise
To evaluate the effect of experimental noise, we systematically
varied the proportion of noisy units (see Methods). For the three
methods requiring parameter selection, the values that gave the
best results on the non-noisy synthetic data were used. Here,
only the labels of the “good,” noise-free, units were compared
between the clustering results and the original labels. Therefore,
the comparison does not assess the methods for their ability to
separate the “bad” noisy units from the “good” ones. Instead, the
emphasis is purely on being able to separate the different types of
RGCs from each other, even if noisy units belong to these clusters.
The rationale for this choice is that if an RGC recording has been
properly pre-processed and filtered, the proportion of bad units
should be relatively low, and, therefore, the mean response of an
RGC cluster should not be affected. Moreover, the noise model
introduces new “types” of cells, hence constraining the results
to eight flat clusters could force erroneous clustering results.
Therefore, the results were evaluated against a range of numbers
of flat clusters, representing different cutoff points within the
hierarchy.

The median score across methods obtained for a clustering
result of eight flat clusters show a significant degradation in
reconstruction quality as the number of noisy units increases
(Figure 4). The ISI and SPIKE distance measures in particular
appear to deteriorate immediately upon the introduction of bad
units, despite a comparable baseline. Closer inspection of the
scores shows that the completeness score in particular reveals
an interesting result. This score places emphasis on classes being
grouped together, and will result in a score of 1.0 even if all classes

FIGURE 3 | Cluster quality measures as a function of RF variation and total number of units. For each of the five feature sets, the median of four clustering quality

scores (adjusted Rand index, adjusted mutual information score, V-measure, and the Fowlkes-Mallows score) are shown for each dataset (140 in total).
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FIGURE 4 | Clustering quality scores on noisy data. For each of the five methods, the median of four external clustering quality scores (adjusted Rand index, adjusted

mutual information score, V-measure, and the Fowlkes-Mallows score) are shown in the left panels. Right panels show the completeness score. The top row show the

results for 8, and the bottom row for 16 flat clusters.

are part of a single cluster. The high completeness scores for the
spike distance measures, in particular the SPIKE distance, for
a high fraction of noisy units shows they correctly group RGC
types with remarkable accuracy (Figure 4). This indicates that
the SPIKE distance clustering separates the noisy units into their
own clusters, and, as a result of the cutoff point in the hierarchy,
a flat clustering of 8 groups is insufficient to capture all types.
This leads to lower scores on the other measures, but would
allow recovering a correct clustering when more flat clusters are
allowed.

This is indeed the case when creating 16 flat clusters
(Figure 4). While the median score of all the external clustering
quality measures improves, the median quality score for the
baseline case (0% bad units) is now, as expected, lower for
all methods. However, the ISI and SPIKE distance methods
improve dramatically for low to medium levels of noise (10–
60%), with SPIKE distance surpassing all others over this range.
Yet, both spike distance methods continue to fare poorly when
the population is dominated by noisy units (70–90%). The
completeness scores agree with these observations, but they
go further by demonstrating that the reason for the poor
performance in the high noise range does not affect its ability to
continue to correctly group RGC types in highly contaminated
data.

In sum, these results show that spike distance measures can
be used to classify RGC responses. In comparison with other
methods, the procedure does not depend on any parameters,
which would have to be chosen heuristically and can significantly
affect the clustering results. In addition, the SPIKE distance
in particular is robust to experimental noise, which is hard
to avoid in large scale, high-density recordings where manual
data curation is infeasible. High completeness scores indicate
that clusters are not wrongly mixed in this case, but instead
noisy units form separate clusters that can be identified
manually.

Clustering Experimental Data
Next we used the spike distance measures to cluster RGC types
from one mouse retina high-density MEA recording. Following
quality control (see Methods), a set of 1,026 well isolated RGCs
was included in this analysis. Light-evoked activity used to
compute the distance matrices was obtained during stimulation
with either full field flashes, or a stimulus that included a full
field contrast step, green and blue full field flashes and a chirp
sequence (see Methods).

Hierarchical agglomerative clustering constructs a
dendrogram, starting with each single unit as its own cluster, and
iteratively merging units and resulting clusters with a minimum
variance constraint. As we have shown for synthetic data, the
spike distance measures are very robust to variability and noise.
However, to ensure noisy units are indeed placed into their
own clusters while preventing over-clustering, an appropriate
dendrogram cut-off point has to be determined. We evaluated
two common metrics: The first was the gap statistic, which
compares the compactness of each cluster to a random surrogate
(Tibshirani et al., 2001). Using the shuffled distance matrix as
surrogate, this metric indicates the data contains between 17 and
18 clusters, depending on the stimulus and metric (Figure 5A).
These numbers are similar to those reported by Farrow and
Masland (2011), but fall short of the higher numbers given by
Baden et al. (2016). However, we found that the gap statistic
generally favors larger clusters in data with higher variability,
as small clusters naturally yield squared distances closer to the
random surrogate. Hence the gap statistic may be a measure
too conservative to reliably assess data with potentially highly
imbalanced clusters.

To see whether the data may contain more valid clusters, we
turned to a consensus method. To this end, we compare the
results obtained with the ISI and SPIKE distance for the two
stimuli, using adjusted mutual information (Vinh et al., 2010).
This peaked at 17 clusters for the full field stimulus, and 28
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FIGURE 5 | Cluster metrics for a recording from 1,026 retinal ganglion cells. (A) The Gap statistic for the two spike distance metrics, computed for the full field and

chirp stimulus, as a function of the number of flat clusters. Vertical lines indicate the peak of each curve. (B) Paired comparison of different clustering outcomes,

quantified using adjusted mutual information. Two pairings were performed: between the ISI and SPIKE distance metrics for full field (blue) and chirp (orange), and

between the two stimuli (full field and chirp) for either ISI (green) or SPIKE (red) distance. Vertical lines indicate the peak values for the comparison between spike

distances. (C) Overlap between clusters obtained with the ISI and SPIKE metric, for 31 flat clusters. (D) The SPIKE distance matrix for all units, ordered by linkage.

FIGURE 6 | Visualization of the clustering with t-SNE embeddings of the chirp responses. A t-SNE embedding was generated from chirp PSTHs (bin size 50 ms;

perplexity 30). Each unit is colored either by cluster membership (left) or by bias index (right). Note that similar colors in the cluster plot are perceptually hard to

distinguish, colors were chosen such that a similar hue indicates proximity in the cluster dendrogram. The color coding is the same as in Figure 7.

clusters for the chirp stimulus (Figure 5B). Investigating this
metric and the corresponding confusion matrices (see Figure 5C
for the case of 28 clusters), it is evident that consensus is high for
solutions with 15 or more clusters for both stimuli. In addition,
the SPIKE distance consistently scored higher for a comparison
between full field and chirp stimulus. Therefore, in the following
we chose the SPIKE distance, using the peak consensus value of
28 clusters.

To get a first impression of the clustering result, we used
t-distributed Stochastic Neighbor Embedding (t-SNE) to create a

two-dimensional, non-linear embedding of the chirp PSTHs for
visualization (Figure 6). In this plot, each dot represents a single
cell, and spatial proximity indicates high similarity. Note however
that the overall spatial arrangement is arbitrary and that distance
does not imply similarity.

Coloring each dot by cluster membership reveals that the area
covered by each cluster is limited (Figure 6, left). This suggests
the clustering captures relevant structure in the data. Moreover,
coloring the same plot by the bias index shows that it is a major
contributor to similarity (Figure 6, right), a feature well captured
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by the clustering (note that this information was not included
explicitly in the clustering process). It is noteworthy that the same
analysis for the full field response yields a less structured picture,
indicating that the richer chirp stimulus is more informative
about specific RGC types (not illustrated).

Finally, a summary of the resulting 28 clusters is shown in
Figure 7. The dendrogram, which is colored to indicate the
average bias index on each branch (green = Off; red = On;
gray = no preference) is organized into three main branches.
The first contains many On cells and a sub-branch with mixed
preference. The second branch contains exclusively Off cells. The
third branch has again mixed preferences, with an average bias
index close to zero. Common to RGCs in the last branch appears
to be transient On or Off responses with a stronger sustained
component.

While it is not the aim of this work to exhaustively characterize
the RGC types found in this particular dataset, here we discuss a
few interesting cases. First, the PSTHs exhibit clear differences in
the kinetics of their temporal responses and contrast sensitivity
between clusters. In some cases, these differences are rather
subtle, for instance clusters 7 and 8 appear superficially similar,
and both could be classified as the highly abundant Off alpha
cells with transient responses and large RFs. Yet cluster 7 has
a slightly higher sustained response and a higher frequency
and contrast sensitivity. Cluster 8 may therefore correspond
to the “OFF mini alpha transient,” while 7 may be the “Off
alpha transient” type as described by Baden et al. (2016). To
fully confirm their identify, a more detailed analysis would be
required.

Figure 7 also shows spatial distribution, DS, RF size
estimated from STAs, and the temporal STA profile for each
cluster. Direction selectivity and RF size generally show broad
distributions, but with consistent differences between types. For
instance, the characteristics cells with larger than average RFs
match types with known large RFs, such as Off-alpha like cells
(clusters 7, 8, 10, and 12), and a putative On alpha type in cluster
17 (Krieger et al., 2017). On the other hand, several clusters have
very weak (2, 14, 15, 21–26) or even no well defined (cluster 9)
STA, adding variability in the RF fits.

Direction selectivity was measured with a single bar moving
in 12 different directions, a paradigm we found to be relatively
susceptible to noise. It is therefore unclear if the high variability in
many clusters is due to experimental noise, or due to incomplete
separation of DS types. Two observations however stand out.
First, all cells grouped together into the third mixed supercluster
(clusters 1–6) have a very low DS, lower than any other cluster.
Second, cluster 9 has a very strong DS. None of the RGCs in this
cluster had a measurable STA, suggesting it may correspond to
the “ON–OFF DS 2” type (Baden et al., 2016).

Finally, cluster 26 does not appear to have a discernible
light response. Closer inspection revealed that it consists of
noisy units with highly inconsistent firing patterns. Hence
these cluster are not likely to contain reliable RGC activity,
but one or several poorly detected neurons. It is encouraging
that, as for the synthetic data, these noisy units are sorted
into separate clusters, which allows easy removal from further
analysis.

FIGURE 7 | Summary of the RGC types found in a recording from 1,026

retinal ganglion cells (RGCs). (A), Dendrogram, with lines colored according to

the average bias index of all units with lower distance (green = –1/Off, red =

+1/On, gray = Zero). Percentages at the leafs give the relative abundance of

each RGC type. (B–G), Each row shows properties of one cluster: (B), full field

PSTH (2 sec bright, 2 sec dark); (C), chirp PSTH; (D), spatial distribution of

each cluster, recorded area is indicated in white; (E), histogram of direction

selectivity index (DSi); (F), histogram of receptive field sizes; (G), temporal

spike triggered average (STA) obtained at the pixel with the largest STA

magnitude, shaded area indicates one standard deviation around the mean

(black, where missing no receptive field could be fit). In E and F, the black

vertical lines are retina averages and blue lines the cluster averages.
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Heterogeneity Between Retinas
To assess the consistency of RGC classification across recordings
from different retinas, we performed pairwise comparisons
between six retinas. These had 1,026, 1,849, 1,234, 634, 1,131,
and 575 units, respectively (retina 1 is the same as shown
in Figure 7). Both the gap statistics and the adjusted mutual
information show a similar dependence on the cluster number
as shown above for one retina, but vary in their peak values,
indicating differences in overall separability in each preparation
(not illustrated). Each retina was clustered separately, and a PCA
model was fit using the combined, peak-normalized chirp PSTHs
from all retinas. Matching clusters between each pair of retinas
were found based on the smallest cosine distance between the
eight first components. The cosine distance, which is best suited
to compute distances in a vector space, ranges from zero to
one, where zero indicates identity and two opposing vectors. As
expected, averaged distances decrease as the number of clusters is
increased, but remains high even for 70 clusters (Figure 8A). In
addition, we found considerable variability in distances between
retinas, indicating that responses from the same RGC type can be
variable across retinas.

This effect can also be seen when visualizing the principal
components directly for each retina. Figure 8B illustrates this
for the first three components for three retinas. While some
regions in PCA space are shared, each retina occupies distinct
areas. As a result, SPIKE distance-based clustering of spike trains
pooled from different retinas yields results that primarily separate
units by retina, and not by functional type. This is illustrated in

Figure 8C, where a mixed data set was generated by randomly
sampling 500 neurons from retinas 1 and 2. Many of the resulting
clusters contain neurons from only one of the two retinas.

The variability between preparations complicates finding
matching clusters across all retinas, which we attempted using a
greedy search procedure. However, for pairs of retinas this was
feasible to some extent, as distances were similarly biased for the
corresponding cluster pairs. To find matching pairs, kernel PCA
using radial basis functions was fit with 20 components to peak-
normalized chirp PSTHs, and cosine distances were computed
between all neurons for each pair of clusters and averaged. This
procedure was carried out using two retinas, clustered into 34
types each instead of the 28 clusters used above. We chose this
number as the synthetic data experiments showed that noisy
neurons are assigned their own clusters, while the main types are
still preserved. Hence over-clustering is not expected to happen
unless this number is increased drastically.

When pairing these clusters by shortest average distance,
we found 27 clusters with well matched bias indices, and
with correlated direction selectivity (Figure 9A). Well matched
clusters tended to have small distances, while they were larger
for mismatched clusters. The distances increased sharply after
24 clusters (Figure 9B), indicating that at least 10 clusters could
not be matched well. Figure 9C illustrates a direct comparison of
these 24 clusters.

For six of these clusters, we could identify corresponding
counterparts in the taxonomy developed by Baden et al. (2016):
Off DS type without clear STA (group number 2 in Baden et al.,

FIGURE 8 | Systematic differences in RGC activity between individual retinas prevents data pooling. (A), Gray lines show, for each pair of six retinas, the average

cosine distances between the top eight PCA projections of the best matching chirp PSTHs (explaining 78% variance), as a function of the number of clusters

generated. The black line is the average across all data sets. Individual retinas show high variability even for a large number of clusters, indicating considerable

differences between preparations. (B), The first and second (left) and second and third PCA projections plotted against each other for three retinas (indicated by

color). Each retina occupies a different region in PCA space.(C), Dendrogram obtained by clustering a data set generated from randomly selecting 500 neurons from

two retinas. The pie charts show the relative proportion of neurons from each retina in each cluster. Most clusters exhibit a strong bias toward one of the two retinas.

Frontiers in Cellular Neuroscience | www.frontiersin.org 10 December 2018 | Volume 12 | Article 481

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Jouty et al. Retinal Ganglion Cell Classification

FIGURE 9 | Matching RGC types in two retinas. Spike trains from two retinas (retinas 1 and 2 in Figure 8) were independently clustered into 34 types, and matching

pairs found using the cosine distance between vectors of length 20, obtained with RBF kernel PCA. (A), A comparison of average bias indices (left) and direction

selectivity (right) for each pair of RGC types. Color indicates the distance measure for each pair. (B), Cumulative histogram of average pair distances. Beyond 24

clusters, a sharp increase in distance is observed. (C), Main features of the 24 most similar RGC types for both retinas. Data is presented as in Figure 7, with full field

and chirp PSTHs, histograms of direction selectivity index (DSi) and receptive field size (black vertical lines are retina averages, blue line is the cluster average), and the

STA (shaded area: 1 standard deviation; missing STA could not be fit). Numbers above the full field PSTHs are the percentage abundance of each RGC type. PSTHs

are colored by cosine distance, with black indicating zero and gray higher values. On the left, clearly identified RGC types according to the taxonomy by Baden et al.

(2016) are given.
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FIGURE 10 | Examples of matched cell types in two retinas. Each panel shows the PSTHs during full field stimulation (small, left) and the frequency-modulated part of

the chirp stimulus (right), for all neurons clustered together as the same type. Data is the same as shown in Figure 9. The color gradient indicating firing rates is

peak-scaled to the largest response across all neurons in retina 1 for the chirp stimulus, separately for each type.

2016), Off alpha sustained (5a and 5c), Off alpha transient (8a,
8b) and On alpha (24) (annotated on the left in Figure 9C).
However, a direct comparison to other classification studies
is difficult because of the nature of the different acquisition
conditions. To illustrate the variability within each retina, and
between retinas, PSTHs of all neurons for each of these annotated
clusters are shown in Figure 10. While overall consistent, there
are clear differences in firing rates between retinas, and for the
same type within the same retina. The origin of this variability
is unclear, possible factors include experimental limitations
(coupling of the retina to the MEA, variability in spike detection
and sorting), differences between the retinal eccentricities and
recording locations, and biological neuronal heterogeneity.

DISCUSSION

This work introduces a method for classification of RGC
responses based solely on spatially uniform light stimulation,
using spike train distances as a metric for hierarchical clustering.
The analysis of synthetically generated ground truth data
shows that this method performs well. For noisy data, our
method outperforms other approaches, which typically perform
clustering in a low-dimensional Euclidean feature space obtained
through dimensionality reduction (Carcieri et al., 2003; Segev

et al., 2006; Farrow and Masland, 2011; Jones et al., 2015; Ravi
et al., 2018). Most importantly however, our method is entirely
non-parametric, thus does not require searching for optimal
hyperparameters, such as the dimensionality of the feature
representation (Baden et al., 2016), or the definition or estimation
of salient response properties.

Our approach extends the idea by Zeck and Masland (2007)
to use salient spike train features directly for clustering. This
approach requires all neurons to be stimulated simultaneously
with the same stimulus, to ensure the spike distance measure
only captures physiological variations. This is a very effective
way to probe many RGCs simultaneously with high density
MEAs, since a small number of trials of a short, but sufficiently
rich stimulus are sufficient. While only modulating contrast and
temporal aspects of the RFs, the chirp stimulus appears well
suited as it allows to rapidly probe a range of relevant response
properties. Some clusters showed distinct receptive field sizes,
high direction selectivity or no clearly defined STA, indicating
that their responses to this homogeneous stimulus are sufficiently
distinct to isolate sub-types also with non-optimal stimuli (Zeck
and Masland, 2007).

The output of our method is a dendrogram indicating
similarity between units and groups of units. To obtain a flat
clustering into distinct RGC types, an appropriate cut-off point
has to be determined. This can be done either by computing
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a consensus score for two or more distance measures, or by
manual inspection. Consistent with our simulations, we found
that clusters with noisy, unreliable activity were split first when
the number of clusters was increased, while well-identified RGC
types remained in the same clusters. This allows the identification
of frequent types, such as, for instance, Off-alpha cells or On
mono- and bi-phasic RGCs. Noisy, invalid units, on the other
hand, can be removed by first clustering a full, contaminated data
set, then removing clusters with inconsistent responses, followed
by re-clustering.

A further method to assess the number of RGC types
is consensus clustering of recordings from different retinas.
However, perhaps unsurprisingly, we found significant variability
between retinas when comparing different recordings. This
prevents the joint clustering of pooled data, as spike distance
measures are highly sensitive to these systematic differences.
As a result, the clusters obtained for pooled data frequently
group neurons from the same retina. An alternative approach we
explored here is to cluster the recordings individually, followed
by computing pairwise distances between all recordings.

As pointed out before, light responses alone are certainly
insufficient to conclusively distinguish between individual RGC
types (Baden et al., 2016). A very reliable criterion is neural
morphology, in particular dendritic stratification in the inner
plexiform layer. While this is impossible to obtain for all neurons
recorded with large scale MEAs, the registration of sparsely
labeled neurons with spike sorted data is feasible (Hilgen et al.,
2017a), a method that could be used to augment the clustering
obtained with our method. A further criterion to assess the
validity of clustered types is regular spatial tiling of each type
(Segev et al., 2006; Marre et al., 2012), although there are
exceptions to this rule (Bleckert et al., 2014). Indeed our analysis
suggests some cell types may be preferentially found in certain
regions of the retina (cf. Figure 7D), a finding that however has
to be substantiated by comparing recordings from the same area
in multiple retinas.

Taken together, here we show that spike train distances can
be successfully used to classify RGCs in the mouse retina. We
expect this approach can be used in other sensory systems
where an appropriate homogeneous stimulus can be delivered.
A potential shortcoming is that cell types with a continuous
variation of selectivity, such as auditory neurons with different
frequency tuning, will be wrongly placed into different groups.
We also expect our method to be suitable for analysis of
spike trains inferred from calcium imaging recordings. The
analysis of synthetic data shows that the method is robust
even for highly variable Poisson spike trains, as long as key
response features are well preserved. As also pointed out by
Zeck and Masland (2007), transient, well-timed responses are
particularly important for spike-based measures, which we
expect can be inferred well from clean imaging data. On the
other hand, given the results discussed above, it seems unlikely
our method will perform well for data pooled across multiple
preparations.
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