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3D transcranial ultrasound 
localization microscopy 
for discrimination 
between ischemic and hemorrhagic 
stroke in early phase
Arthur Chavignon1*, Vincent Hingot1, Cyrille Orset2, Denis Vivien2,3 & Olivier Couture1

Early diagnosis is a critical part of the emergency care of cerebral hemorrhages and ischemia. A 
rapid and accurate diagnosis of strokes reduces the delays to appropriate treatments and a better 
functional recovery. Currently, CTscan and MRI are the gold standards with constraints of accessibility, 
availability, and possibly some contraindications. The development of Ultrasound Localization 
Microscopy (ULM) has enabled new perspectives to conventional transcranial ultrasound imaging with 
increased sensitivity, penetration depth, and resolution. The possibility of volumetric imaging has 
increased the field-of-view and provided a more precise description of the microvascularisation. In this 
study, rats (n = 9) were subjected to thromboembolic ischemic stroke or intracerebral hemorrhages 
prior to volumetric ULM at the early phases after onsets. Although the volumetric ULM performed 
in the early phase of ischemic stroke revealed a large hypoperfused area in the cortical area of the 
occluded artery, it showed a more diffused hypoperfusion in the hemorrhagic model. Respective 
computations of a Microvascular Diffusion Index highlighted different patterns of perfusion loss during 
the first 24 h of these two strokes’ subtypes. Our study provides the first proof that this methodology 
should allow early discrimination between ischemic and hemorrhagic stroke with a potential toward 
diagnosis and monitoring in clinic.

Stroke is among the most serious health issues of the century with more than 13 million cases every year 
 worldwide1,2. Most of them, 80%, are ischemic strokes that occur when the cerebral blood flow is dramatically 
reduced following clot-induced arterial occlusion, for example, depriving parts of the brain of oxygen and 
 glucose3. The other 20% are hemorrhagic strokes with blood leaks into the brain parenchyma due to a rupture 
of a vessel, leading to both hypoperfusion and increased intracerebral  pressure4. In both cases, non-supplied 
tissues die in a few hours and leave patients with serious cognitive impairments and high mortality rates. The 
care of ischemic stroke is rtPA-mediated fibrinolysis in a short therapeutic window of 4.5  h5,6, but recent studies 
suggest an extension up to 9  h3. When possible, the mechanical thrombectomy can be performed to remove the 
clot in situ in the first 24 h after stroke  onset7. The treatments can be eventually combined with better functional 
outcomes and lower  mortality8 in a therapeutic window of 6  h9. The treatment of hemorrhagic stroke consists of 
intracerebral blood removal and/or decompressive  craniectomy10,11. In both cases, time is brain, with a neces-
sity to make appropriate interventions as soon as possible. Also important, rt-PA treatment is associated with 
a risk of bleeding and thus should be prohibited on hemorrhagic stroke patients, in case of trauma or when 
anticoagulant treatments are  recent3.

Thus, stroke management relies heavily on cerebral imaging techniques used to discriminate between ischemic 
and hemorrhagic  stroke12,13 and thus preventing possible complications after  treatments14,15. In particular, imag-
ing is mandatory in the acute phase of the disease to address patients for fibrinolytics + /− thrombectomy treat-
ments versus  neurosurgeries7,9,12. It would also be needed at the subacute phase of the disease (24 h to 5 days) to 
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monitor possible secondary cerebral hypoperfusion (ischemia), vasospasms or hemorrhagic  transformations16,17. 
Although early brain imaging is performed thanks to CT or MRI to discriminate between ischemic and hemor-
rhagic strokes, post-stroke monitoring is insufficiently performed. Indeed, CT or MRI machines are either not 
possible at the bedside, usually over-booked, and more cost-expensive than echography.

Ultrasound imaging is currently not included in the clinical practices for stroke diagnosis. One main reason 
is that the human skull affects the propagation of acoustic waves and hinders the resolution and sensitivity for 
microvascular brain imaging. Nevertheless, the potential advantages of ultrasound imaging are multiple: repeat-
able, safe, bedside, affordable and mainly available, and it is already used to monitor major cerebral arteries 
with transcranial  Doppler18. The introduction of Ultrasound Localization Microscopy (ULM)19–23 may partly 
solve the lack of sensitivity and resolution due to diffraction limit and skull attenuation thanks to intravascular 
microbubbles tracking. The better image quality enables imaging of the small vessels even behind the human 
skull and provides an accurate description of brain vascularization with  hemodynamics24,25. Nonetheless, these 
first proof of concept are limited by the elevation projection and would require a plane-by-plane exploration 
with an experienced experimenter.

The elevation projection was solved with the emergence of volumetric imaging by combining thousands of 
transducers for  3DULM26–29. The system reaches a large field of view, an unbiased velocity estimation, and a 
quasi-isotropic resolution in-depth even though the intact skull  bone30.

In this study, ischemic and hemorrhagic strokes were induced in rats and imaged in the early phases with 
3DULM to describe perfusion losses in cerebral microvascularization. Cerebral ischemia was induced by a 
thromboembolic occlusion of the middle cerebral artery (MCA)31–33, and intracranial hemorrhage consisted 
of a collagenase injection in the  striatum34. A microvascular diffusion index (MDI) was devised and evaluated 
at different stages and locations of the brain and demonstrated different patterns of perfusion losses between 
ischemic and hemorrhagic stroke’ models. We thus provide here evidence that 3DULM could be a relevant micro-
vascular imaging modality to detect perfusion changes in the acute phase of stroke, particularly in the first hours 
of an MCA occlusion and thus to discriminate between ischemic and hemorrhagic stroke. This new device may 
diversify imaging tools for stroke triage, with better availability than MRI and CT scan, and an unprecedented 
sensitivity to intravascular flows.

Methods
Animal experiments. Animals’ experiments were performed under guidelines from the European Com-
munity Council (2010/63/EU) and approved by the protocol APAFIS #22544 validated by the French ethics 
committee “Comité d’éthique Normandie en matière d’expérimentation animale”. Reporting in the article follows 
the recommendations of the ARRIVE guidelines.

Sprague–Dawley male rats of 6–7 weeks old (290 ± 60 g) were used to validate the experiment, divided into 
two groups for ischemic model (n = 4) and hemorrhagic model (n = 5). Before this validation cohort, 11 animals 
were used to set the surgical and imaging procedures. All animals were anesthetized with a mix of isoflurane 
(2%) and nitrous oxide and installed in a stereotaxic frame. The temperature of the animals was regulated at 
38 °C with a heating pad and a rectal probe.

The top of the head was shaved, and the skin was incised for the stroke model’s induction and the conveni-
ence of ultrasound imaging (Fig. 1a). The skull was covered with echographic gel. The removal of the scalp did 
not affect the ULM results.

Stroke models in the rat. The ischemic model consisted of an injection of human alpha thrombin (3 µl , 
4 UI/µl) in the lumen of the MCA with a  micropipette31–33 (Fig. 1a). The skin and muscle were incised between 
the right eye and ear. The temporal bone was drilled, and the dura was excised to access the branch of the MCA. 
The thrombin-induced a fibrin-rich clot, occulting the MCA.

The hemorrhage model was induced inside the striatum by injecting collagenase (2 µl) with a micropipette 
via a small hole drilled in through the parietal bone (Fig. 1a)34,35 (stereotaxic coordinates {AP: −1.3 mm, ML: 
3.5 mm, DV: 4.5 mm}). Bleeding started at least 10 min  later34.

Each model follows the same timeline with a baseline ULM imaging in the half-hour before stroke induction 
(t−) (Fig. 1b). Ischemic or hemorrhagic stroke models were then induced, and two ULM acquisitions were real-
ized after 30 min and 1h30. The incision was sutured, and the animal was woken up. The day after, the animal 
was anesthetized again and imaged with the same position of the probe. No supplementary analgesics were 
used. Most animals were then scanned with a 7 T MRI (T2* and T2 weighted sequences, Bruker, USA) (Fig. 1b).

3DULM imaging. 3DULM was extensively detailed in our previous  paper30 including all specifications 
on the volumetric ultrasound sequence, the transcranial brain imaging on rat, and the ULM post-processing. 
Briefly, volumes were acquired on an ultrafast research scanner Vantage 256 (Verasonics, Kirkland, USA) with 
a 32 × 32 ultrasonic matrix probe (central frequency 7.8 MHz, 300 µm pitch). The 1024 elements were divided 
into 4 sub-apertures connected successively to the scanner via a  multiplexer36,37 (Fig. 1c). Volumes were obtained 
with 5 compounded tilted plane waves (Fig. 1c). Each plane wave required 10 successive transmission-reception 
to collect all backscattered signals. For volumetric ULM imaging, 100 k volumes at 250 Hz compounded volume 
rate (CVR) were acquired in 7 min. 50 µl boluses of Sonovue microbubbles (Bracco, Italy) were injected in a tail 
vein catheter every 30 s during acquisitions. (Supplementary Materials A).

Data were beamformed with voxels of 150 × 150 × 99 µm3, and the tissue signal was rejected by removing the 
first 12 of 200 eigenvalues from the singular value  decomposition38,39. Microbubbles were detected and then local-
ized with a radial symmetry algorithm considering a full width at half maximum of 5 voxels in all  directions28,40 
(Fig. 1c). Microbubbles’ positions were paired into tracks using a Kuhn-Munkres based algorithm (simpletracker, 



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14607  | https://doi.org/10.1038/s41598-022-18025-x

www.nature.com/scientificreports/

Jean-Yves Tinenez) with a maximal linking distance of 0.3 mm and a minimum persistence of 37 ms. Tracks 
were smoothed with a moving average of 5 points, interpolated with a linear model, and binned in 9.9 µm wide 
cubic voxels yielding a 10.5 × 11.5 × 11.2  mm3 angiographic  volume30. Almost 50 M microbubbles were detected 
in the 100k volumes and tracked into 500k trajectories. Tracks velocities were also averaged in each voxel of the 
volume. Volumes were manually registered with rigid transformations on a rat brain  atlas41(Fig. 1c).

Signal and image processing were done with MatLab (The MathWorks Inc., release 2019a, MA, USA). 2D 
slices images renderings were also done with MatLab. All 3D renderings were performed with Amira software 
(Thermo Fisher Scientific Inc., release 2019.4, MA, USA).

Microvascular diffusion index. A microvascular diffusion index (MDI) was devised from the 3DULM 
volume to quantify the density of microvessels. Microvessels can be associated with voxels where at least one 
microbubble has passed through. In theory, the voxel in a close neighbor to the passage of a microbubble (ves-
sel) will be supplied with oxygen and nutrients more than voxels far from any trajectories. The quantification is 
expressed in a larger zone, exploiting the contribution of many trajectories to analyze the microvascular density 
at the scale of the lesion. However, this quantification still benefits from super-resolution since it is performed 
within the resolution of the initial volumetric ultrasound imaging. For each region of interest, it reflects the 
proximity of microvessels as a weighted sum of close microbubbles trajectories with a diffusion law. We hypoth-
esize that dioxygen will diffuse within tissues on a distance of about 100 µm, as described  in42–44. The microvas-
cular network was first enhanced by binarizing the angiography volume ( VolAngio ): each voxel with a least one 
microbubble was given a value of one, and in the absence of a microbubble, it was given a value of 0 (Fig. 2a). A 
Gaussian convolution filter was applied with a standard deviation of 100 µm ( RO2

 ), representing approximately 
the diffusion range of dioxygen in the tissue by  capillaries42–44.

Figure 1.  3DULM for in vivo angiography at the early phase of stroke’s models. (a) Skin opening for ultrasound 
imaging. Ischemic model: a small hole was drilled above the MCA branch, and human thrombin was injected. 
Hemorrhagic model: the parietal bone was drilled, and collagenase was injected in the striatum. (b) Timeline 
of the experiment for each model, with four acquisitions: in the half hour prior stroke onset (t−), in hyperacute 
stage (30 min and 1h30), and the day after with MRI imaging. T2* and T2 MRI sequences slices and 3D 
rendering. (c) Ultrasound matrix probe with transducers pooled in four synthetic apertures successively 
connected to the echograph. ULM processing with filtering, localization and tracking. Rat brain atlas registered 
on ULM volume (600 µm width slab). 3D rendering with brain surface with Amira software (Thermo Fisher). 
Scale bars: 1 mm. Figures were created with (a–c) Illustrator 2021 (https:// www. adobe. com/ produ cts/ illus 
trator), (c) MatLab 2019a (https:// www. mathw orks. com/ produ cts/ matlab), (c) Amira 2019.4 (https:// www. 
therm ofish er. com/ amira- avizo).

https://www.adobe.com/products/illustrator
https://www.adobe.com/products/illustrator
https://www.mathworks.com/products/matlab
https://www.thermofisher.com/amira-avizo
https://www.thermofisher.com/amira-avizo
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This value cannot be used as-is and was averaged on larger zones close to 1  mm3 to get an average value and a 
standard deviation of the microvascularization at a larger scale. Comparable indices have already been exploited, 
for example, in tumor vascularization with optical coherence  angiography45.

Unsupervised observation for MCA occlusion. For ischemic stroke, the MDI was computed in ana-
tomical regions without prior knowledge of the stroke location. The regions were devised from the anatomical 
structures of the Waxholm Atlas. Five zones were analyzed: striatum, hippocampus, thalamus, and the cortex 
divided into two zones perfused by anterior cerebral artery (ACA) and MCA. For each region, the MDI values 
were normalized compared to the first timepoint before the stroke induction.

Sutures and lateral crests obstruct the propagation of ultrasound waves and hide a few regions that were 
excluded from the study to prevent any misinterpretation (Fig. 2a).

Supervised observations. A specific analysis focuses on a particular region manually selected and 
adapted to each animal. It yields a characterization of an area with prior knowledge of the location of the lesion. 
Regions of interest (ROI) were defined for both stroke models to evaluate MDI (Fig. 2b). First, a 1.2 mm diam-
eter spherical region was defined in the thalamus in a well-insonified region and far from the stroke influence 
zone (Fig. 2c). This region of interest was used as a reference for the normalization of volume: all volumes did not 
receive the same number of microbubbles and must be equalized. A second region was located inside the cortex 
for ischemic stroke or in the injection site for the hemorrhage model.

Results
Ischemic stroke model. The injection of thrombin initiated a fibrin clot which obstructed the lumen of 
the proximal part of MCA. A hypoperfused region appeared in the downstream area visible in the 3DULM at 
30 min (Fig. 3a, Supplementary Video S1). Large vessels could be identified in both volumes prior and 30 min 
after onset (white triangles), but the corresponding microvascularization was missing (white asterisk). Slices 
of 3DULM volumes allowed better identification of the ischemic regions. The hypoperfused area follows the 
cortex area (white dotted lines) (Fig. 3b). The blood velocity renders upward and downward flows visible with 
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Figure 2.  MDI for unsupervised observation reflects the vascularization density. (a) Anatomical regions are 
extracted from anatomical structures. The hidden areas are excluded from the study. MDI computation with a 
range of 100 µm on binarized vascularization. (b) Selection of a round reference region of 1.2 mm diameter in 
the thalamus and a region of interest in the cortex for ischemic stroke (0.9 mm diameter) and in the striatum 
for hemorrhage. (c) Example of a spherical ROI extracted from the ULM volume, binarization and MDI 
computation. Figures were created with (a,b) MatLab 2019a (https:// www. mathw orks. com/ produ cts/ matlab), (c) 
Amira 2019.4 (https:// www. therm ofish er. com/ amira- avizo).

https://www.mathworks.com/products/matlab
https://www.thermofisher.com/amira-avizo
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clear identifications of arteries and veins. The hypoperfused region drastically lacks microbubbles trajectories, 
confirming inexistent blood perfusion. Only a few wide blood vessels remained supplied. The monitoring of 
ischemia with volumetric ultrasound revealed the spontaneous reperfusion of the tissue in the next few hours 
after stroke onset. On this example animal, the microvascularization is slowly restored at t + 1h30 with sparse, 
isolated trajectories in the previously hypoperfused area (white asterisk). The day after, the reperfusion was more 
visible on the sagittal slice with the restoration of the initial complex mesh of microbubbles trajectories. The 
ischemic lesion was observed the day after with MRI with a T2 weighted sequence. Edema appeared hyperdense 
in a wide part of the right cortex and confirmed an extensive ischemic lesion of 90  mm3 (Fig. 3c).

The MDI was computed for each anatomical region without prior localization of the ischemia. The hypop-
erfused region follows the cortical area until the central part of the cortex, perfused by the ACA (Fig. 4a). 
The MDI values were normalized in relation to the initial values for each anatomical region. All average MDI 
remained constant with similar standard deviations (SD) (Fig. 4a) except for the right cortex associated with 
the occluded MCA (Cortex MCA (R)), which underwent a massive loss down to 0.1 (SD 0.2) at 30 min. Later, 
this value increased up to 0.5 (SD 0.6) at 1h30 and confirmed the visual observation of the reperfusion. The day 
after, the value was restored close to the initial value at 1.2 (SD 1.3). As a comparison, in the neighbor’s regions, 
hippocampus, thalamus, and cortex ACA regions, the MDI drop was limited to 21% for the cortex ACA at 24 h 
compared to the baseline (t−). (MDI slices in Supplementary Fig. S1–2).

The unsupervised MDI can be biased by the placement of the probe on the skull’s heterogeneities. For that 
reason, the analysis was pursued by selecting particular regions of interest in the cortex and the thalamus as a 
reference. In the reference region, the vascularization is constant at all timepoints with minor variations. The 
extracted ROI presents a sudden lack of microbubbles in the cortex just after the MCA occlusion (Fig. 4b). The 
day after, the microvascularization returns to baseline with a dense population of trajectories and was confirmed 
by the MDI (Fig. 4c). For the reference region, the average value remained stable with a maximal value of 1.5 (SD 
0.9) at t + 1h30. The MDI was more affected in the ischemic region with a drop of 87% (0.1 SD 0.2) at t + 30 min. 
The early reperfusion of the cortex raises the MDI to 0.4 (SD 0.4) at 1h30. The low standard deviation indicates 
a homogenous density of restored microvessels. The day after, the MDI overshot the baseline with a value of 2 
(SD 1).

Hemorrhagic stroke model. The hemorrhage model was imaged at different timepoints after onset. The 
round shape of the hemorrhagic core can be identified in the volume rendering at D + 1 (white arrows) (Fig. 5a, 
Supplementary Video S2) surrounded by large blood vessels present at all timepoints (white triangles).

Figure 3.  The MCA occlusion ischemic stroke was observed with 3DULM at the early phase. (a) 3D renderings 
at before and 30 min after stroke’s induction (Supplementary Video S1). (b) Sagittal and coronal slices of 
600 µm with velocity rendering at different timepoints. Ischemic cortex wrapped with a white dotted line. 
Vmax = 30mm/s . Upward flows: red, downward flows: blue. (c) T2 MRI at D + 1 with the segmentation of the 
lesion (yellow dotted lines). Scale bar: 2 mm. Figures were created with (a) Amira 2019.4 (https:// www. therm 
ofish er. com/ amira- avizo), (b,c) MatLab 2019a (https:// www. mathw orks. com/ produ cts/ matlab).

https://www.thermofisher.com/amira-avizo
https://www.thermofisher.com/amira-avizo
https://www.mathworks.com/products/matlab
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Within the first hours, the lack of perfusion occurs mainly in small vessels, with a loss of microbubbles trajec-
tories mainly visible in the sagittal slices at t + 30 min and t + 1h30 (white arrows) (Fig. 5b). The shaded and dif-
fused mesh of trajectories disappeared gradually the first day after onset and left a larger dark zone the day after.

The hemorrhage location and volume were validated with a T2* MRI sequence at 24 h post-onset (Fig. 5c). 
A rounded shape appears hypointense on few slices with a 7  mm3 lesion.

The extraction of ROIs shows a constant and similar blood vessel organization in the thalamus as a reference 
for normalization (Fig. 5d). The hemorrhagic ROI shows a progressive loss of small vessels in the first hours. At 
t + 30 min and t + 1h30, the largest vessels are almost stable, but the complex mesh with a low intensity disap-
pears. This type of trajectory can be related to the capillary mesh. The day after stroke onset, the tissue necrosis 
visible on MRI (Fig. 5c) hinders the vascularization of any vessels (Fig. 5d).

The MDI analysis confirms the stability of the reference region (Fig. 5e) with a maximal variation of 23% of 
the baseline at 1h30 (1.23 SD 1). On the other side, the hemorrhagic ROI decreased gradually with a loss lower 
than 35% the first day (0.6 SD 0.9 at 30 min and 0.6 SD 0.9 at 1h30), and 74% the day after (0.3 SD 0.6). The high 
standard deviations in the first two hours reflect areas with high MDI indices related to large vessels combined 
with underperfused regions where the capillary bed is missing (Supplementary Fig. S1–2).

Multiple animals’ analysis. The supervised analysis was repeated on several animals: n = 4 for ischemia 
and n = 5 for hemorrhage. All reference ROIs were located inside the thalamus, under the ischemic cortex and 
away from the collagenase injection site. For the hemorrhagic model, the ROI was adapted for each animal inside 
the center of the lesion. In the ischemic stroke model (Fig. 6a), all animals underwent a brutal and important 
loss of MDI the cortex ROI −88% (SD 4%) at 30 min respect to the baseline (t−). This massive loss correlates 
with the vascular territory downstream of the occluded MCA. The day after, most clots are no longer efficient, 
and all MCA have been reperfused (+ 32% SD 48%). In hemorrhagic models (Fig. 6b), the average MDI loss at 
30 min is −40% (SD 14%) and drops to -47% compared to the baseline the day after with an extended standard 
deviation of 44%.

In the clinical case, the normalization cannot be done respected to the timepoint prior onset. The MDI of the 
stroke ROIs were then compared to the reference region. For ischemic stroke (Fig. 6c), the MDI in the ischemic 
cortex is lower than 10% of MDI value in the thalamus region during the first hours of the stroke (t + 30 min: 5% 
SD 2%, t + 1h30: 7% SD 7%), which is lower than the MDI ratio of the baseline (45% SD 23%). The day after, the 
MDI ratio increased respected to t- with a mean value of 85% (SD 23%). In the hemorrhagic model (Fig. 6d), 
only a slight tendency appears in several animals with a ratio lower than 50% with respect to the reference region 
with a progressive decrease (t + 30 min: 43% SD 4%, t + 1h30: 33% SD 11%), compared to the initial ratio of 80% 

Figure 4.  Sudden and massive loss of perfusion in the cortex. (a) Coronal slices of MDI with anatomical 
regions. MDI values inside each region normalized with t−. Scale bar 1 mm, slices of 600 µm. (n = 1). (b) 
Projection of the selected ROI in the cortex and thalamus as a reference. c MDI values for the ROI inside 
ischemia and the reference, normalized with baseline (t−). (Results of the analysis of 1 animal over 4.) Box 
plot: mean (dot), median (line), 1 and 3 quartile (box), 5 and 95% (whiskers). Figures were created with (a–c). 
MatLab 2019a (https:// www. mathw orks. com/ produ cts/ matlab).

https://www.mathworks.com/products/matlab
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(SD 9%). Finally, we normalized MDI ratios with respect to the baseline images and compared at t + 30 min 
(Fig. 6e). The reference value was devised from all animals prior to stroke induction (n = 9). For ischemic stroke, 
the damaged region in the cortex presents a loss of 90% of the baseline (SD 5%, p = 0.0005, n = 4). In the induced 
hemorrhagic lesion, MDI losses were more variable due to the individual response of each animal to our stroke 
model. In most animals, volume renderings could not identify lesion at the early stage (Fig. 6f). The overall 
cohort did not reach a significant level (p = 0.077, n = 5).

Discussion
Ischemic and hemorrhagic stroke management in the acute phase of the disease relies heavily on neuroimaging 
to identify, classify, treat and monitor lesions. However, current neuroimaging solutions are incompatible with 
personalized medicine because over-booked by other pathologies, too expensive, and cannot be used bedside. 
Compact and portable ultrasound imaging devices are emerging, but the sensitivity and resolution of transcranial 
exploration remain insufficient for most tasks. ULM could partly solve those issues by combining large field-of-
views with acceptable resolution and sensitivity to the cerebral blood flows.

In this study, ULM allows imaging microvascularization patterns of ischemic and hemorrhagic strokes. 
Besides the obvious differences in injection sites, the aspects and timing of the vascular alterations were also 

Figure 5.  Collagenase induced hemorrhage in the striatum observed with 3DULM in the early phase. (a) 3D 
renderings before, and 1h30 after stroke’s induction, and the day after (Supplementary Video S2). (b) Sagittal 
and coronal slices of 600 µm with velocity rendering at different timepoints. Hemorrhagic core wrapped with a 
white dotted line. Vmax = 30mm/s . Upward flow: red, downward flows: blue. (c) T2* MRI at D + 1. Scale bar: 
2 mm. Yellow arrow targets the hemorrhagic core. (d) Projection of the selected ROI in the cortex and thalamus 
as a reference. (e) MDI values for the ROI inside the hemorrhagic core and the reference normalized with the 
baseline. (Results of the analysis of 1 animal over 5.) Figures were created with (a) Amira 2019.4 (https:// www. 
therm ofish er. com/ amira- avizo), (b–e) MatLab 2019a (https:// www. mathw orks. com/ produ cts/ matlab).

https://www.thermofisher.com/amira-avizo
https://www.thermofisher.com/amira-avizo
https://www.mathworks.com/products/matlab
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drastically different. Ischemia appeared as a well-defined vascular territory with a major loss and no temporal 
variations within the first hours (Fig. 4). Hemorrhages appeared with a more diffused loss worsening gradually 
over time (Fig. 5).

The ischemic lesion is clearly highlighted by ULM during the first hours after onset. A large and well-delimited 
area in the brain appeared completely non-perfused immediately after inducing the arterial occlusion. This 
area also matched the perfusion territory of the MCA (Fig. 3). It also fits with the lesion site as seen on MRI at 
24 h, which is in accordance with previous  studies46. Some variations in perfusion can be observed in separated 
regions, although of a smaller extent and without causing any lesion. In the cerebral hemorrhagic rat model, we 
observed the presence of diffused hypoperfused regions in the hyperacute stage (Fig. 5). This diffused aspect was 
highlighted by the high standard deviation of the MDI (Fig. 5e) compared tighter value in the ischemic lesion 
(Fig. 4c). These regions did not match any anatomical structures with round or elongated shapes. It appeared to 
affect small vessels gradually in the early stages and a maximal loss the day after the hemorrhage induction. In 
the rats with the smaller hemorrhagic lesions, the hypoperfused region was too small to be detected by ULM, 
and the MDI remained constant, whereas the MRI confirmed the hemorrhage.

For the diagnosis of stroke, the spatial comparison of MDI provides a characterization without prior imaging. 
By normalization of the MDI with a known and healthy region, the thalamus, cortical ischemic strokes underwent 
a drop of more than 85% for all animals within the two first hours (Fig. 6). After normalization with baseline 
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Figure 6.  Comparison between ischemic and hemorrhagic models. Variation of the MDI normalized prior 
onset (t−) for each ROI in the ischemic (a) and hemorrhagic (b) stroke and reference ROIs. Ratios between 
the ischemic (c) and hemorrhagic (d) strokes ROI and the reference region. (e) Normalized MDI ratio of the 
lesion site and the reference region, compared to the baseline (t-). All animals were pooled for baseline ratio 
in cortex and striatum (n = 9). Student t-test with equal variance (f) Volume renderings of ischemic (left) and 
hemorrhagic (right) strokes 30 min after onset. Scale bar 2 mm. Figures were created with (a–e) MatLab 2019a 
(https:// www. mathw orks. com/ produ cts/ matlab), (f) Amira 2019.4 (https:// www. therm ofish er. com/ amira- avizo).
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images, the comparison at t + 30 min reveals an efficient detection of ischemic stroke (P = 0.0005) in the cortex 
(Fig. 6). The good sensitivity rises from the high sensibility to moving flows with ULM and the total occlusion 
of the blood flow. Furthermore, in the early phase of hemorrhagic stroke, the blood circulation is less impacted, 
and no significant losses were observed with ULM. The hemorrhagic mechanisms first involve the denaturation 
of hemoglobin with the evolution of these products. They can be successively identified with CTscan or  MRI4. 
Later, as a result of hypertension, the necrosis region can appear totally under perfused on ULM imaging with 
any microbubbles detected (Fig. 5c at t + 24 h).

In all animals, the ULM processing reveals a fine description of the microvascularization. In most situations, 
the lesion could only be partially observed. Indeed, large regions under the sagittal sutures and crests of the skull 
appeared shadowed. These complex and heterogeneous structures induced aberration and attenuation, which 
hindered ultrasound imaging. By tilting the probe, shadowed regions can be projected to visualise vasculariza-
tion under crests (Supplementary Fig. S3). The volumetric property of this system, compared to restrict 2D 
ultrasound  imaging24, facilitates the observation and analysis of microvascularization with no user dependency 
and optimal placements over the skull. Besides these limitations, resolution and sensitivity  were30 30 µm for the 
smallest detectable vessel confirmed with several microbubbles, and a sensitivity up to 73 mm  s−1. Smaller vessels 
and capillaries were not resolved on the images, although they still appear like a complex and unresolved mesh. 
Moreover, we have also shown that the slowest microbubbles are affected by the clutter filter  process30 and are 
most likely unobservable with the current technique of acquisition and filtering.

Most quantitative indices built from ULM and contrast-enhanced data, in general, suffer from a lack of nor-
malization. Indeed, although injection doses and animal vitals were kept as constant as possible, the circulating 
microbubbles concentration still varies significantly and affects the accuracy of biomarkers based on intensity. 
This variability can be explained by the initial concentration of  Sonovue47, the quality of the intraveinous injec-
tion, the attenuation of the skull, and the signal-to-noise ratio inside the brain. Thresholds can also be applied 
to images of vascularization to highlight vessels and get a quantification of the cerebral blood volume.

For microvascular imaging, ULM is mainly sensitive to flow perturbations with drastic reductions in flows. 
Both detection and tracking of microbubbles focus on flowing particles with a velocity range of 4.3 to 28.4 mm/
s30 and highlight arterioles and venules. At this scale, the resolution and sensitivity of the system provide a 
good detection of vascular issues, but it fails at the capillary scale. In the context of stroke diagnosis, rapid and 
important microvascular losses are characteristics of a heavy ischemic stroke in the early phase with large under-
perfused regions. Conversely, early hemorrhagic strokes do not present totally underperfused areas and could 
not be identified with ULM within the first hours. The results of MDI at t + 24 h after onset were not relevant for 
ischemic stroke detection because of recanalization and could be associated with an old hemorrhage (Fig. 6e). The 
pattern of hypoperfusion in the hemorrhagic lesion at t + 24 h draws similarities with recent ischemia (Figs. 3b, 
5b). However, in a clinical context, the time to onset is estimated by the symptoms and must exclude either old 
ischemic or hemorrhagic lesions. Therefore, with the descriptions of symptoms and an estimated time to onset, 
ULM in the early phase may discriminate the subtype of stroke: an MDI loss of more than 90% compared to 
the baseline can be associated with ischemia; otherwise, the stroke can be classified as hemorrhagic (Fig. 6e).

The velocity and direction of microbubbles were also investigated but no significant outcomes were found 
between ischemic and hemorrhagic strokes (Supplementary Fig. S5–6). In the analysis, the modifications of 
mean velocity or variance were mainly related to a smaller population of microbubbles, for example, in the 
ischemic model.

This study can be seen as a first proof of concept toward transcranial human ULM. It has already been vali-
dated in 2D in the  brain24 and various abdominal  organs48 by reducing the frequency to 2–3 MHz. In the brain, 
the increased field-of-view will resolve numerous anatomical regions with an isotropic resolution. The temporal 
window offers a privileged ultrasonic window with an absorption equivalent to those involved in this study 
(−18 dB at 7.8 MHz). Aberration and attenuation issues induced by the skull have been explored in the field of 
transcranial  Doppler49 and recently for 2DULM in  humans24. Its generalization to 3D will create further chal-
lenges induced by diffraction, and clinical translation is well within the scope of current ultrasound advances. 
Besides, the placement of the probe on this temporal window gives direct access to the main cerebral  arteries18, 
their associated vascular territories, and particularly MCA territories that represent half of the cerebral ischemic 
 strokes50. However, the present extended field of view used in this study is insufficient to observe the whole brain, 
thus limiting the possibility of revealing some stroke events depending on their location. Further developments 
would be needed prior to translation to the clinic.

This new imaging technique focuses on the dynamic vascular flow while MRI and CTscan are more sensitive 
to cellular and tissular changes induced by stroke mechanisms. Meanwhile, optical-based imaging techniques 
are limited by the skull and absorption. Cerebral ischemic strokes are mainly represented by sudden and total 
vascular occlusion and are particularly visible when imaged in the first hours after the onset. The ULM investi-
gations combined with estimation of the time to onset reveal the presence of a hypoperfused area with a precise 
definition. With high dissemination and availability, this technique could bring a first characterization of massive 
ischemic stroke that represents 1 stroke over 5, with the possibility to be performed bedside, at the bed of patients 
or in the ambulance. A recent study with 2D functional ultrasound has yielded the prediction of the lesion size 
in ischemic  stroke46. The administration of thrombolytic agents reduces the lesion size and must be injected as 
early as possible. With this study, we expect an early diagnosis of ischemic stroke versus hemorrhagic one in order 
to reduce the time to needle for fibrinolysis + /− thrombectomy and wider the number of eligible patients, and 
finally reduce long-term sequelae. It could also find an application in monitoring the recanalization of arteries 
after a therapeutic action, for example, a mechanical thrombectomy of an ischemic stroke.

Volumetric ULM is an emerging imaging technique that provides high resolution and sensitivity for brain 
vascular imaging with a simple and safe system, even through the skull of the rat. The sensitivity to intravascular 
moving microbubbles highlights induced ischemic strokes in rats and allows us the discrimination between 
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ischemic and hemorrhagic strokes in the early phases. Its extension to human imaging could support current 
neuroimaging systems in stroke management, especially for very early detection of cerebral ischemia in the 
ambulance.

Data availability
The datasets used and analysed during the current study are available from the corresponding author on reason-
able request.
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