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Abstract

Tumor Necrosis Factor alpha (TNF-α) has been shown to be released by tumor cells in

response to docetaxel, and lipopolysaccharides (LPS), the latter through activation of toll-

like receptor 4 (TLR4). However, it is unclear whether the former involves TLR4 receptor

activation through direct binding of the drug to TLR4 at the cell surface. The current study

was intended to better understand drug-induced TNF-α production in tumor cells, whether

from short-term drug exposure or in cells selected for drug resistance. ELISAs were

employed to measure cytokine release from breast and ovarian tumor cells in response to

several structurally distinct chemotherapy agents and/or TLR4 agonists or antagonists.

Drug uptake and drug sensitivity studies were also performed. We observed that several

drugs induced TNF-αrelease from multiple tumor cell lines. Docetaxel-induced cytokine pro-

duction was distinct from that of LPS in both MyD88-positive (MCF-7) and MyD88-deficient

(A2780) cells. The acquisition of docetaxel resistance was accompanied by increased con-

stitutive production of TNF-αand CXCL1, which waned at higher levels of resistance. In

docetaxel-resistant MCF-7 and A2780 cell lines, the production of TNF-α could not be signif-

icantly augmented by docetaxel without the inhibition of P-gp, a transporter protein that pro-

motes drug efflux from tumor cells. Pretreatment of tumor cells with LPS sensitized MyD88-

positive cells (but not MyD88-deficient) to docetaxel cytotoxicity in both drug-naive and

drug-resistant cells. Our findings suggest that taxane-induced inflammatory cytokine pro-

duction from tumor cells depends on the duration of exposure, requires cellular drug-accu-

mulation, and is distinct from the LPS response seen in breast tumor cells. Also, stimulation

of the LPS-induced pathway may be an attractive target for treatment of drug-resistant

disease.
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Introduction

Breast cancer has a mortality rate second only to lung cancer [1,2]. Surgery is the primary

treatment for most breast tumors in North America, followed by radiation and/or systemic

adjuvant chemotherapy [3]. Neoadjuvant or ’preoperative’ chemotherapy is more common in

other jurisdictions (namely Europe) and is often used worldwide to shrink tumors that are ini-

tially inoperable, permitting better surgical margins [4], as with locally advanced or inflamma-

tory forms of the disease [5,6]. Despite continuous improvements in the treatment of solid

tumors, response rates to chemotherapy are still relatively low and treatment side effects can

be quite debilitating for patients. Treatment regimens for breast cancer in an adjuvant or

neoadjuvant setting typically contain an anthracycline (doxorubicin or epirubicin) and a tax-

ane (paclitaxel or docetaxel) [7]. The taxanes interact with β-tubulin, blocking the depolymeri-

zation of microtubules, and inhibiting cell division during mitosis [8,9]. As with breast cancer,

treatment of ovarian cancer typically involves surgical removal of the tumor followed by adju-

vant chemotherapy. Preoperative chemotherapy followed by interval debulking is also used in

certain cases of advanced ovarian cancer [10]. In both instances, the chemotherapy drugs used

typically involve the taxanes and a platinating agent [11].

Although the above chemotherapy agents have been shown to inhibit breast or ovarian

tumor growth directly, in vitro, considerable evidence suggests that therapeutic benefit during

treatment likely relies on an immunoadjuvant effect stemming from tumor cell death by differ-

ent chemotherapy agents [12]. This effect involves the release of signaling molecules from

tumor cells, serving as a trigger for a host immune response against the tumor. Various mem-

bers of the family of damage-associated molecular patterns (DAMPs) have been shown to play

a role as immunoadjuvants [13] emanating from dying tumor cells [14]; however, the full

breadth of tumor-derived signals that are provoked during chemotherapy and that play a role

in promoting a chemotherapy-induced tumor-targeted immune response is not clear.

TNF-α is an inflammatory cytokine considered to be a master regulator of innate and adap-

tive immune responses [15,16] and a key player in many inflammatory disorders [17]. It has

been shown to be released by and impart effects on a variety of cell types, including myeloid

cells [18–20], endothelial [21], epithelial cells [22], as well as tumor cells. Recently, it has been

shown in vitro that TNF-α is released by breast and ovarian tumor cells in response to taxane

exposure [23]. The release of soluble factors, such as TNF-α, from tumor cells may be of

importance in chemotherapy response, with and without the involvement of the host immune

system. Cancer patients may not receive a benefit from chemotherapy due to innate resistance

to chemotherapy drugs, involving pre-existing tumor characteristics, or due to acquired resis-

tance, involving changes within the tumor or its microenvironment during treatment. The

presence of a variety of factors including inflammatory cytokines [TNF-α, CXCL8 (interleu-

kin-8), and CXCL1 (GRO-α)] have been implicated in mediating both innate and acquired

resistance to taxanes and/or platinating agents in tumor cell lines [23–26]. Furthermore, the

production of TNF-α by malignant cells in mice has been shown to affect tumor-associated

myeloid cell activity, in turn affecting tumor growth [19]. TNF-α can also stimulate cell death

pathways in tumors, as docetaxel-induced TNF-α production was shown to be cytotoxic in

breast tumor cells via autocrine signaling [23]. It can also affect the tumor vasculature [27],

which is an important element in the treatment of solid tumors. Poor treatment efficacy can be

the result of inadequate drug exposure or penetration of the tumor, both of which can be due

to a variety of factors including changes or anomalies in vascular architecture [28].

Chemotherapy-induced cytokine release has been reproducibly observed in mouse myeloid

cells and it is thought to be mediated by activation of the pathogen recognition receptor

known as toll-like receptor 4 (TLR4) [29,30]. However, the mechanism of chemotherapy-
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induced cytokine release in tumor cells is less understood. We hypothesize (a) that TNF-α
release can be induced by a variety of chemotherapy agents, (b) that docetaxel-induced TNF-α
release is an active cellular process, and (c) that the primary mechanism of docetaxel-induced
TNF-α release is not attributable to direct ligand-binding of drug to TLR4 at the surface of

human tumor cells. Multiple groups hold the view that taxanes activate TLR4 directly as a ligand

in tumor cells [30–34] despite a lack of definitive evidence in tumor cells. We show evidence in

human tumor cells that docetaxel-induced TNF-αrelease requires intracellular accumulation of

drug. We also show that the molecular pathway involved in docetaxel-induced TNF-α release is

distinct from that of lipopolysaccharides (LPS). Moreover, it does not require the presence of

the TLR4 adaptor protein MyD88. We also show that the acquisition of resistance to docetaxel

is accompanied by distinct changes in the expression of a variety of inflammatory cytokines,

including TNF-α, CXCL1, and CXCL8. Finally, we demonstrate that stimulation of the TLR4

pathway in vitro can increase the sensitivity of tumor cells to the chemotherapy agent docetaxel,

thus identifying a possible approach to increase the efficacy of this drug in docetaxel-resistant

disease.

Methods

Cell culture and cell lines

MCF-7 cells were obtained from the American Tissue Culture Collection, while A2780 cells

were from the European Collection of Cell Cultures. Cells were cultured in DMEM and RPMI

media using Sarstedt and Corning T75 tissue culture flasks for MCF-7 and A2780 cells, respec-

tively, in a 5% CO2 atmosphere at 37˚C. Culture media was supplemented with 10% FBS (v/v)

and 1% Penicillin and Streptomycin (v/v). At confluence, cells were washed with PBS, treated

with 0.25% trypsin for resuspension, after which 1 ml of complete media was added to inhibit

trypsin activity. Cell suspensions were harvested by centrifugation at 650 x g for 7 minutes and

resuspended in medium for counting. Docetaxel-resistant variants were generated from MCF-

7 cells and A2780 cells as previously described by Guo et al. [35] and Armstrong et al. [36], re-

spectively. MCF-7TXT7, MCF-7TXT8, MCF-7TXT9, MCF-7TXT10, MCF-7TXT11, and MCF-7TXT12

cells are MCF-7 cell lines selected for survival in progressively increasing concentrations

(doses) of docetaxel [also known as Taxotere1 (TXT)]. These doses (7 through 12) are 0.37,

1.1, 3.3, 5, 15, and 45 nM docetaxel, respectively. Likewise, A2780DXL10, A2780DXL11, and

A2780DXL12 cells represent a series of A2780 cell lines selected for survival in up to 1.97 nM

(dose 10), 2.96 nM (dose 11), and 8.88 nM (dose 12) docetaxel, respectively. During the above

selections for docetaxel resistance, equivalent cultures of MCF-7 and A2780 cells were pas-

saged in the absence of drug to control for differences in cell properties and behavior due to

increased passage number. One of these “co-cultured control” cell lines at selection dose 10 for

the MCF-7 cell line and at selection dose 12 for the A2780 cell line (MCF-7CC10 and A2780CC12

cells, respectively) served as the drug-sensitive control cell line in experiments.

ELISA (enzyme-linked immunosorbent assay)

All ELISAs were completed using kits from R&D systems (Minneapolis, MN, USA), following

the manufacturer’s experimental protocol. Plates pre-coated with monoclonal antibody were

purchased for the detection of the cytokines TNF-α, CXCL8, and CXCL1 (catalog numbers

DTA00C, D8000C and DGR00, respectively). Equal numbers of cells were transferred to 10

cm culture plates and allowed to adhere overnight. After treatment with docetaxel in the

absence or presence of various additional agents for up to 96 hours, the culture media were

collected and subjected to centrifugation at 875 x g to remove cell debris. The media superna-

tants were then transferred to a 50 ml Amicon tube equipped with a 3 kDa molecular-weight-
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cut-off filter (EMD Millipore, Etobicoke, ON; cat no. UFC900324) and subjected to centrifuga-

tion at 3273 x g. The volumes of media supernatants were measured and the samples stored at

-80˚C. ELISA standards were prepared by serial dilution of a reconstituted lyophilized stock

solution. After 2 hours of incubation at room temperature, the wells were rinsed with wash

buffer. A horseradish peroxidase (HRP)-conjugated secondary antibody was then added to

each well and the plate incubated for 1 hour at room temperature, followed by a rinse with

wash buffer and addition of HRP-sensitive colorimetric substrate for 20 minutes. The absor-

bance of the samples at 450 nm and 540 nm was measured using a Synergy H4 Hybrid spectro-

photometer from BioTek1 and duplicate measurements were averaged for both samples and

standards. After subtracting the absorbance at 540 nm from the absorbance at 450 nm absor-

bance values were likewise corrected for background absorbance of standard diluent (for stan-

dards) or concentrated tissue culture medium (for samples).

Cell counting and trypan blue staining

Following trypsinization and staining with 0.066% trypan blue (v/v), cells were counted in a

hemocytometer (Improved Neubauer, Hausser Scientific) using a light microscope (Leica -

10x/0.22) with phase contrast filter. The average number of trypan-positive and trypan-nega-

tive cells within a 4x4 grid of 4 different fields was determined.

Reverse-transcription of mRNAs and quantitative PCR (polymerase

chain reaction)

Two million cells were transferred to 10 cm tissue culture dishes and grown for 30, 36, and 42

hours. RNA was isolated using a Quiagen RNeasy extraction kit (Qiagen, Inc., Toronto, ON).

The cells were washed with PBS, and treated with 350 μl of RLT buffer containing 3.5 μl of β-

mercaptoethanol. Cells were harvested using a cell-scraper, and the lysate was subjected to 4–5

passes through a 16-gauge needle. After transfer of the lysate to a microfuge tube, an equal vol-

ume of 70% ethanol was added, and after mixing, the mixture was transferred to a Qiagen

mini-column and RNA purified as described in the manufacturer’s protocol. The concentra-

tion of purified RNA was determined by measuring the absorbance at 260 nm in a NanoDrop

2000C spectrophotometer (Thermo Scientific), with a baseline correction for absorbance at

340 nm. Two μg of purified RNA was diluted to generate a mixture of 15 μl, containing 2 μl of

10x DNase buffer, and 2 ul of DNase (1 unit/μl). After a 15 minute incubation at room temper-

ature, 2 μl of 25 mM ethylenediaminetetraacetic acid (EDTA), 20 μl of T20 primers (20 ng/μl)

and 16 μl of dNTP’s (10 mM) were added. Samples were incubated for 5 minutes at 65˚C, after

which 16 μl of 5x first-strand buffer and 8 μl of dithiothreitol (DTT) were added, with a subse-

quent incubation period of 2 minutes at 37˚C. Finally, 200 U of Moloney-murine leukemia

virus (M-MLV) reverse-transcriptase was added and the mixture left for 2 hours at 37˚C to

allow for reverse-transcription of mRNA to cDNA. Samples were then heated for 5 minutes at

95 oC to inactivate the transcriptase.

Quantitative real-time PCR reactions were performed in a 96-well plate using cDNA prepa-

rations. mRNA standards were generated using cDNA from an untreated sample originating

from the same cell line as the other samples, to generate a standard curve. Five or more 2-fold

serial dilutions were made starting with an initial 4-fold dilution in RNase-free water. Samples

were prepared beginning with a 16-fold dilution (3 μl of sample added to 45 μl of RNase-free

water). The primer pair for detection of TNF-α transcripts was 5'-CCTGCC CCA ATC CCT
TTA TT-3' (forward) and 5'-CCCTAA GCC CCC AAT TCT CT-3' (reverse). A primer pair

with sequences 5'-TCC ATC ATC CGC AAT GTA AAA-3' (forward) and 5'GCT TCT CGC
TCT GAC TCC AAA-3' (reverse) was also used to quantify expression of the S28 reference
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gene. All primers were purchased from Integrated DNA Technologies (Skokie, IL, United States).

Triplicate samples were prepared for qPCR with 5 μl per well of cDNA standards, including a no-

template control containing only RNase-free water, or 5 μl per well of cDNA for unknown sam-

ples, to which was added 7.5 μl of 2 mM pooled forward and reverse primers and 12.5 μl per well

of 1x SYBR Green. The plate was centrifuged for 1 minute at 650 x g in order to position all

reagents at the bottom of each well. qPCR involved a hot start for 5 minutes at 95˚C, followed by

40 cycles consisting of: 30 seconds at 95˚C, 30 seconds at 53˚C, and 1 minute at 72˚C.

Flow cytometry

Cells (2 x 105 per well) were allowed to adhere overnight in 6-well plates. The cells were rinsed

with PBS, resuspended with 500 μl of 0.25% trypsin, transferred to 1 ml microfuge tubes, com-

bined with 500 μl of PBS, and centrifuged for 3 minutes at 300 x g. The pelleted cells were

resuspended in a mixture of 20 μl of phycoerythrin-conjugated monoclonal antibody, specific

for P-glycoprotein (P-gp), protected from light and left at room temperature for 30 minutes.

Cells were centrifuged for 3 minutes at 300 x g, washed with PBS, resuspended in PBS and

then analyzed with an FC500 flow cytometer (Beckman Coulter, Mississauga, ON) set to mea-

sure fluorescence using the FL2 filter for 10,000 events per sample with no gating. Mean fluo-

rescence Intensity (MFI) values for the mouse anti-human P-gp antibody or for an IgG2β
isotype control (BD Bioscience, catalog 557003 and 555743, respectively) were recorded and

the MFI for the isotype control subtracted from the MFI for the P-gp-specific antibody to cor-

rect for non-specific binding.

Drug uptake measurements

Cells (2x105) were plated in 6-well plates and left to adhere overnight in the appropriate

medium. Cells were then incubated with either 2.5 nM tritium-labeled docetaxel (3H-TXT

from American Radiolabeled Chemical, St. Louis, MO) or 100 nM Tariquidar (Med Chem

Express, Monmouth Junction, NJ) or a combination thereof, with 5% CO2 at 37˚C. After 12

hours, the media were removed, while the adhered cells were rinsed with 1 ml PBS, treated

with 0.25% trypsin, and then placed in 5 ml of scintillation fluid. The radioactivity associated

with the cells was then quantified using a Beckman LS 6000 IC scintillation counter.

Cell protein extraction

Two million A2780 and MCF-7 cells were seeded onto 10 cm tissue culture plates and cultured

for 24 and 48 hours, respectively. Protein extracts were prepared from these cells by lysis in

500 μl of chilled RIPA buffer [1% NP-40 (Sigma, St. Louis, MO), 0.5% sodium deoxycholic

acid (Sigma, Oakville, ON) and 1% SDS (BioRad, Mississauga, ON) in PBS] supplemented

with 2 mM sodium orthovanadate (Sigma) and 1X protease inhibitor cocktail (Roche, Missis-

sauga, ON). Cell lysates were passed through a 21-gauge needle 5 times, incubated for 30 min-

utes on ice, and then centrifuged at 15,000 x g for 30 min. The supernatants were divided into

aliquots that were stored at -80˚C. The protein concentration of extracts was quantified using

the Pierce BCA protein assay kit (Thermo-Fisher, Mississauga, ON). Alternatively, cells were

extracted in 5X SDS-PAGE sample buffer to ensure complete dissolution of membranes for

enhanced isolation of membrane-associated proteins.

Immunoblotting experiments

Lysates (36 μg of protein) were loaded onto a 10% polyacrylamide gel for electrophoresis,

transferred to a nitrocellulose membrane using a BioRad Trans-blot1 SD Semi-Dry Transfer
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Cell for 1hr at 12V. The membrane was blocked in 5% skim milk in TBST [0.24% Trizma1

Base (Sigma), 0.8% NaCl (Fisher), 0.1% Tween201 (Sigma) at pH 7.6] for 1 hour before incu-

bation overnight at 4˚C with a human TLR4 antibody (1:250, Santa Cruz, Dallas, TX), human

MyD88 antibody (1:1000, Cell Signaling, Danvers, MA), human TRIF antibody (1:700, Cell

Signaling, Danvers, MA) or a GAPDH antibody (1:10,000, Santa Cruz). All primary antibodies

were diluted in TBST supplemented with 5% BSA (Sigma). Membranes were washed with

TBST 3 times for 5 minutes. TLR4 and MyD88 levels were detected using an HRP-conjugated

goat anti-rabbit secondary antibody (1:10,000, Santa Cruz). The membranes were washed

before incubation with ECL reagent (Santa Cruz) and exposure on CURIX ortho HTL-Plus

film (AGFA Healthcare, Waterloo, ON). Densitometry was performed using the FluorChem

FC3 apparatus and AlphaEaseFC 4.0 software.

Clonogenic assays

Cells were added to 6-well plates (3x105 cells) with 2 ml of media per well and left to adhere

overnight. Each well received one of twelve different concentrations of docetaxel (including a

‘no drug’ control) and the cells incubated for 24 hours. After 24 hours the medium in each well

was collected, while the adherent cells were resuspended using 0.25% trypsin. The floating and

adherent cells from each well were combined, centrifuged at 650 x g for 7 minutes, and resus-

pended in 300 μl of culture media. The cells were then added to 2.7 ml of methylcellulose (with

25% FBS v/v), and mixed thoroughly by vortexing. After incubating an hour to allow bubbles to

escape, 1.2 ml of each cell suspension were transferred to a 6-well plate. The plates were then

incubated for two weeks and photographs of 12 independently chosen fields were taken using a

Leica light microscope with a Leica 4x/.10 objective lens. Viable colonies, defined as being

greater than or equal to 4 mm (MCF-7) or 3 mm (A2780) in two perpendicular directions (as

measured on a PowerPoint slide and printed 4 slides per 8’x11’ page), were counted. The aver-

age colony count was then computed and divided by the average colony count for the untreated

control to obtain the survival fraction. Survival fractions were then plotted against drug dose

and a sigmoidal dose-response (survival) curve was fit to 12 data points using GraphPad Prism

software. The concentration that inhibited colony formation by 50% (IC50) was determined for

each dataset at the inflection point of the sigmoidal curve. Clonogenic assays using Tariquidar

involved 24-hour co-administration of Tariquidar and docetaxel together, whereas clonogenic

assays with LPS involved a 48-hour pretreatment with LPS followed by a 24-hour docetaxel

treatment. Tariquidar clonogenics used 3 x 105 MCF-7 cells and 2 x 105 A2780 cells, whereas

LPS clonogenics used 2 x 105 and 1 x 105 cells for MCF-7 and A2780 cells, respectively.

Statistical analyses

Statistical analyses are specified in figure legends for each experiment. They involved compari-

son of the mean values from data obtained from at least three replicates (separate cell culture

dishes). Two-tailed T-tests were performed when comparing data, from cell populations, with

one independent variable (ie. drug concentration or time after treatment). 2-way Analysis of

Variance (ANOVA) was performed for experiments comparing data from cell populations

with two independent variables (ie. both drug concentration and time).

Results

Characterization of docetaxel-induced TNF-α release

Assessing the effects of drug concentration and exposure time on TNF-α release. The

earliest reports of taxane-induced TNF-α production involved the treatment of mouse
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macrophages with paclitaxel [37]. We have recently shown that MCF-7 (breast) and A2780

(ovarian) tumor cells exhibited increased production of TNF-α, 48 hours after treatment with

3 to 45 nM docetaxel [23]. In this study, it was determined that 2.5 nM docetaxel induced

TNF-α release up to 96 hours after administration (Fig 1A and 1B). A dose response curve was

generated at the 72 hour time point for each cell line (Fig 1C and 1D). We observed that both

the concentration of drug and the exposure time are important factors affecting TNF-α release

by docetaxel in both breast and ovarian cancer cell lines. It was also found that A2780 cells

expressed considerably higher levels of TNF-α in response to docetaxel than MCF-7 cells, with

the peak TNF-α concentrations greater than ten-fold above those observed in MCF-7 cells (Fig

1C and 1D).

A variety of classes of chemotherapy drugs induce TNF-α release from breast and ovar-

ian tumor cell lines. Members of several different classes of chemotherapy agents such as

the taxanes (docetaxel and paclitaxel), the anthracycline doxorubicin, the platinating agent

Fig 1. Docetaxel-induced TNF-α levels in media of breast and ovarian tumor cells are dose- and time-dependent. A) and B)

Effects of treatment time on TNF-α release by 2.5 nM docetaxel from MCF-7 and A2780 cells; C) and D) Effects of docetaxel

concentration on TNF-α release in breast and ovarian cancer cell lines over 72 hours. The data represents the mean of three

replicates (+ SEM). The significance of differences in secreted TNF-α levels between treated and untreated (NT) cells was

assessed using a two-tailed T-test;*** p<0.0001.

https://doi.org/10.1371/journal.pone.0183662.g001
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carboplatin, and the thymidine analog 5-Fluorouracil (5-FU) were used to treat various tumor

cell lines for 72 hours at various concentrations. The levels of TNF-α released into the medium

were then assessed using a TNF-α ELISA. Given that the concentration of docetaxel that opti-

mally induced TNF-α release in MCF-7 and A2780 cells at 72 hours was approximately five-

fold higher than the IC50, the concentrations used for testing the effects of other drugs were

chosen relative to their published IC50 values in a previous study using MCF-7 cells [35].

MCF-7 cells responded to docetaxel, paclitaxel, doxorubicin, and 5-FU with significant in-

creases in TNF-α levels. Carboplatin was without effect. However, MDA-MB-231 and A2780

tumor cells responded to all of the agents with statistically significant increases in secreted

TNF-α levels. Both MDA-MB-231 and A2780 cells secreted more TNF-α than MCF-7 cells.

Overall, docetaxel was the chemotherapy drug with the greatest capacity to induce TNF-α
release in the cell lines tested (Fig 2A, 2B and 2C).

Increased media levels of TNF-α are due to increased transcription, not loss of mem-

brane integrity. We assessed whether TNF-α levels had increased in the media due to the

release of intracellular TNF-α following plasma membrane damage upon chemotherapy treat-

ment. MCF-7 cells were treated for 48 or 72 hours with docetaxel at two different concentra-

tions and the number of trypan blue-positive cells were quantified as a measure of lost plasma

membrane integrity (Fig 3B). All docetaxel treatments caused an increase in the number of try-

pan blue-positive cells (Fig 3B). As expected the higher docetaxel concentration (15 nM)

resulted in a higher number of trypan blue-positive cells than 2.5 nM docetaxel. In contrast,

treatment with 15 nM docetaxel was not associated with the highest level of TNF-α in the

media (Fig 3A), suggesting that TNF-α release is not principally associated with drug-induced

cytolysis. In order to confirm this interpretation, cells were subjected to hypotonic conditions

causing cell-lysis and assessed for the levels of TNF-α release (Fig 3C). Consistent with the pre-

vious interpretation, cell lysis alone did not result in significant increases in secreted TNF-α
levels.

It has been shown that paclitaxel can induce increased production of TNF-α transcripts in

macrophages [37]. We thus examined whether the drug-induced increase in media levels of

TNF-α in MCF-7 cells involved the increased transcription of the human TNF-α gene. We

observed that after 36 hours of exposure to 2.5 nM docetaxel, MCF-7 cells significantly in-

creased their production of TNF-α transcripts by more than ten-fold (Fig 3D), while at earlier

time points no significant increase was observed (data not shown).

Comparing cellular responses to docetaxel and lipopolysaccharides in

terms of TNF-α production

The idea that taxanes can activate an inflammatory pathway has been the focus of much study.

This class of drug has often been shown to have ’LPS-mimetic’ effects, as it has been reported

that paclitaxel induces similar changes in gene expression to LPS [34]. LPS, also referred to as

bacterial endotoxins, are the major structural components of the outer cell wall of Gram-nega-

tive bacteria. They are believed to be the cause of severe sepsis in patients with Gram-negative

bacterial infections and it is suggested that most of the adverse effects of LPS stem from its abil-

ity to trigger the endogenous production of inflammatory cytokines [38]. Among the inflam-

matory cytokines, TNF-α is believed to be a primary mediator of sepsis, since direct infusion

of animals with recombinant TNF-α produces most of the adverse events observed after LPS

administration [39]. TLR4 is the primary receptor involved in LPS signaling. Activation of

TLR4 by LPS has been shown to cause nuclear factor-κB (NF-κB)-mediated expression of

TNF-α and CXCL8 [40], among other genes [41]. Another member of the TLR family (TLR2)

has also been shown to mediate LPS signaling [42], although to a lesser extent. It has been
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suggested that the ability of taxanes to induce the production of inflammatory cytokines

involves the direct activation of TLR4 [30,32,34,43,44]; however, clear evidence for this has yet

to be demonstrated in tumor cells. Treatment of myeloid cells with LPS has been shown to

result in the release of a variety of cytokines including TNF-α [30], CXCL8 [45], CXCL1 [46].

Further, each of these cytokines has been implicated in resistance to chemotherapy agents

through either autocrine [23,24] or paracrine [25] signaling mechanisms. We thus assessed

whether the tumor cell lines in this study were responsive to LPS as well as docetaxel, and

whether these two agents stimulate the release of similar cytokines.

Cellular response to docetaxel is distinct from that of LPS in breast and ovarian cancer

cells. MCF-7 cells responded to LPS with the release of TNF-α, CXCL8, and CXCL1. In

Fig 2. Increased TNF-α levels induced in select tumor cell lines by a variety of chemotherapeutic

drugs. Soluble TNF-α levels in the media were measured by ELISA after 72 hr of treatment with either

docetaxel, paclitaxel, doxorubicin, carboplatin, or 5-FU. Drug concentrations tested were based on IC50

values previously determined experimentally in MCF-7 cells. The data represents the mean of three replicates

(+/-SEM). The significance of differences in TNF-α levels between treated and untreated cells was assessed

using a two-tailed T-test; *** p<0.0001, **p<0.001, *p<0.05.

https://doi.org/10.1371/journal.pone.0183662.g002

Fig 3. TNF-α release does not correlate with loss of membrane integrity. Cells were treated for 48 or 72 hours with one of two concentrations

of docetaxel and the level of TNF-α in the media was measured (A) as well as the number of trypan-positive cells (B). The significance of

differences in TNF-α levels or loss of membrane integrity were assessed using a 2-way ANOVA with a Tukey post-test. Cells were also lysed

under hypotonic conditions and media levels of TNF-α from lysed and non-lysed were measured using an ELISA (C). TNF-αmRNA levels were

also determined by quantitative PCR using cDNA generated from RNA extracts after 36 hours of docetaxel treatment. In these studies the

significance of differences in TNF-α transcript levels between preparations was measured using an unpaired, two-tailed T-test; * p<0.05. All data

represent the mean of three replicates (+/-SEM).

https://doi.org/10.1371/journal.pone.0183662.g003
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contrast, docetaxel only induced detectable increases in TNF-α and CXCL8 expression. A2780

cells, in contrast, responded to docetaxel with the release of TNF-α only, and when challenged

with LPS, no significant changes in any of the above cytokines were observed (Fig 4). Unlike

the canonical (hexa-acylated) form of LPS produced in E. coli, under-acylated forms such as

Fig 4. Media cytokine profiles for tumor cells after LPS or docetaxel exposure. The levels of TNF-α (A and B), CXCL8 (C and D),

and CXCL1 (E and F) in cell media of either MCF-7 (A, C and E) or A2780 (B, D and F) cells were measured by ELISA after 72 hours of

LPS or docetaxel treatment. The data represents the mean of three replicates (+/-SEM). All treatments were 10 μg/ml and 2.5 nM for LPS

and docetaxel, respectively; The significance of differences in TNF-α levels between treated and untreated cells were determined using a

two-tailed T-test; *** for p<0.0001, ** for p<0.01, and * for p<0.01.

https://doi.org/10.1371/journal.pone.0183662.g004
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tetra- and penta-acylated LPS (lipid IVA) are fundamentally distinct in their interactions with

TLR4. Rather they are antagonists of TLR4 activation [47]. Penta-acylated LPS is synthesized

by some bacteria, including Rhodobacter Sphaeroides [48] and elicits an inhibitory effect

through the binding of the adaptor protein myeloid differentiation factor 2 (MD-2), forming a

complex that suppresses TLR4 activation [47,49,50]. Recently, another group has shown that

TLR4 activity can also be selectively inhibited by a small molecule called TAK-242 [51]. Unlike

LPS-RS, TAK-242 associates with the intracellular TIR (toll-interleukin-1 receptor) domain of

TLR4 and prevents its association with intracellular adaptor proteins. It was therefore of inter-

est to determine whether inhibition of TLR4 signaling with either penta-acylated LPS from R.

Sphaeroides (LPS-RS) or TAK-242 would inhibit docetaxel-induced TNF-α release in tumor

cells. Using MDA-MB-231 cells (prominent TLR4 expressers) it was found that treatment with

an LPS-RS concentration of 100-fold higher than that of LPS caused complete inhibition of

LPS-induced TNF-αrelease, consistent with experiments in human monocytes [48]. However,

LPS-RS did not suppress docetaxel’s ability to induce TNF-α release, but rather augmented it

(Fig 5A). In a similar experiment the TLR4 antagonist TAK-242 was administered in combina-

tion with either docetaxel or LPS (Fig 5B). As with LPS-RS, TAK-242 completely abrogated

LPS-induced TNF-α release from MDA-MB-231 cells; however, it did not significantly affect

docetaxel-induced TNF-α release. Together these findings demonstrate that interference with

the LPS-binding domain (Fig 5A) or blocking the association between the intracellular TIR

domain of TLR4 and its adaptor molecules is not able to prevent docetaxel-induced TNF-α
release, while in both cases abrogating that induced by LPS. Moreover, since there have been

reports that LPS can activate cellular processes dependent upon other toll-like receptors [for

example, TLR2 [52]] and since TLR4 can form heterodimers with TLR2 [53], our observations

with the TLR4-specific inhibitor TAK-242 suggest that LPS-induced TNF-α production is

through the ability of LPS to activate TLR4 and not other toll-like receptors.

Fig 5. The effect of TLR4 inhibition on secreted TNF-α levels induced by docetaxel or LPS. MDA-MB-231 cells were treated for 72 hours

with either 2.5 nM docetaxel (TXT) or 0.1 μg/ml LPS, after pretreatment with either 100 μg/ml LPS-RS (A) or 0.1 μg/ml TAK-242 (B). The data

represent the mean of three replicates (+/-SEM). The significance of differences between treated and untreated cells were assessed using a

two-tailed T-test; ***p<0.001, **p<0.01, *p<0.02.

https://doi.org/10.1371/journal.pone.0183662.g005
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Inhibition of docetaxel-induced TNF-α release by Marimastat. In macrophages it is

thought that TNF-α release, particularly in response to LPS, occurs by constitutive exocytosis,

involving a receptor-mediated increase in gene transcription [54,55]. Increased gene transcrip-

tion results in increased production of a membrane-bound precursor of TNF-α (mTNF-α),

and TNF-α release involves cleavage of mTNF-αto produce the soluble form (sTNF-α) [56].

Hydroxamate-based agents cause inhibition of a broad-spectrum of matrix metalloproteinases

(MMPs), and have also been shown to inhibit TNF-α release, suggesting that one or more

MMPs are involved in this process, including TNF-α-converting enzyme (TACE, also known

as ADAM-17) [56]. Although the pathways governing cytokine trafficking and release have

been well-studied in macrophages and in other murine cell lines, there is a lack of understand-

ing about the pathways responsible for cytokine trafficking in epithelial cells [54] or in tumor

cells of epithelial origin. It was therefore of interest to determine whether similar mechanisms

are employed during the processing of drug-induced TNF-α release in epithelial-derived

tumor cell lines. We thus examined the effect of the hydroxamate-based MMP inhibitor Mari-

mastat on LPS- and docetaxel-induced TNF-α release from various epithelial-derived cell

lines.

Marimastat, which reportedly inhibits MMP-1, 2, 3, 7, 8, 9, and 14, as well as ADAM-17

with respective IC50 values of 5, 6, 200, 20, 2, 3, 1.8, 3.8 nM [57], did not have a significant

effect on docetaxel-induced TNF-α release from MCF-7 cells (Fig 6A). In contrast, LPS-

induced TNF-α release was significantly diminished (by ~50%) in the presence of Marimastat.

Fig 6. The effect of MMP inhibition by Marimastat on cellular TNF-α levels. MCF-7 and A2780 cells were treated with 2.5 nM docetaxel (TXT)

or 10 μg/ml LPS for 72 hours in the presence or absence of 200 nM Marimastat, a broad-spectrum MMP inhibitor. The data represent the mean of

three replicates (+/-SEM). The significance of differences in TNF-α levels between treatments was assessed using a two-tailed T-test; ***
p<0.0001, ** p<0.001, *p<0.01.

https://doi.org/10.1371/journal.pone.0183662.g006
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Our findings suggest that in MCF-7 cells LPS-induced TNF-α release is mediated, at least in

part, by shedding of TNF-α from the plasma membrane by MMPs. It was, however, unclear

whether MMPs play a role in docetaxel-induced TNF-α release from MCF-7. Supporting the

role of MMPs in TNF-α release, we observed that Marimastat inhibits basal and docetaxel-

induced TNF-αrelease from A2780 cells (Fig 6B). The differential sensitivity to Marimastat

suggests that the mechanisms for docetaxel-induced TNF-α release in MCF-7 and A2780 cells

are distinct.

Changes in TNF-α production upon selection for docetaxel resistance

P-glycoprotein (Abcb1) mediates the docetaxel-resistant phenotype. A series of doce-

taxel-resistant breast tumor cell lines (MCF-7TXT7 to MCF-7TXT12 cells) were previously cre-

ated by selection of wild-type MCF-7 cells for survival in increasing concentrations of

docetaxel [35]. These cells were shown to exhibit progressively increased transcription of the

gene encoding P-glycoprotein (P-gp, also known as Abcb1) relative to cells “selected” in the

absence of drug (co-cultured MCF-7CC cells) [58]. We thus assessed whether increased ABCB1

gene transcription was associated with corresponding increases in P-gp protein levels.

As shown in Fig 7A, MCF-7TXT cells exhibited progressively increased P-gp protein expres-

sion (relative to the MCF-7CC10 cell line), which correlated with their observed level of doce-

taxel resistance. Detectable increases in P-gp protein expression (relative to MCF-7CC cells)

first occurred at selection dose 9 (MCF-7TXT9 cells), which was also the selection dose at which

docetaxel resistance was first achieved. Consistent with P-gp’s ability to transport docetaxel

[59] and other chemotherapy drugs out of tumor cells [60], we observed that docetaxel-

Fig 7. Increased P-gp levels are associated with diminished drug uptake in drug-resistant MCF-7 cells. (A) Flow cytometry was used to

assess P-gp levels [as expressed by mean fluorescence intensity (MFI) values] for MCF-7 cells at selection doses 8, 9, 10, 11, and 12. (B) Docetaxel-

resistant MCF-7TXT10 cells exhibited decreased intracellular drug accumulation, which was restored with the addition of Tariquidar (Tar), an allosteric

inhibitor of P-gp. Tritiated docetaxel (H3-TXT) was administered at a concentration of 2.5 nM, either with or without 100 nM Tariquidar for 12 hours

and docetaxel uptake was determined by measuring the radioactivity of cells. All data represents the mean of 3 replicates (+/-SEM). Two-tailed T-

tests were employed to assess the significance of differences in docetaxel uptake between the various treatments in the control (MCF-7CC10) and

docetaxel-resistant (MCF-7TXT10) cell lines; *** for p<0.0001, **p<0.001, and * for p<0.01.

https://doi.org/10.1371/journal.pone.0183662.g007
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resistant MCF-7 cells showed decreased uptake of tritium-labeled docetaxel (H3-TXT), relative

to the drug-sensitive MCF-7CC10 cell line (Fig 7B). In order to assess whether P-gp was respon-

sible for the decreased docetaxel uptake, a specific allosteric inhibitor for P-gp, Tariquidar, was

given in combination with docetaxel (Fig 7B). It was found in MCF-7TXT10 cells that drug

uptake was restored significantly upon addition of Tariquidar, thus confirming the role of P-

gp in the export of docetaxel from drug-selected cells.

Given that increased P-gp levels were shown to affect docetaxel uptake in docetaxel-resis-

tant cells, we assessed whether restoration of drug-uptake would also restore docetaxel sensi-

tivity. As shown in Fig 8A and 8B, pre-incubation of docetaxel-resistant MCF-7TXT10 and

A2780DXL12 cells with the P-gp inhibitor Tariquidar increased sensitivity to docetaxel, while

having no significant effect on drug sensitivity in the co-cultured control cell lines at their

respective selection doses. The ability of Tariquidar to restore drug sensitivity in drug-resistant

cells to a level that is close to their respective co-cultured control cells suggests that the doce-

taxel-resistant phenotype is primarily achieved by P-gp–mediated drug efflux from the cells.

Basal production of multiple cytokines increases in tumor cell lines selected for resis-

tance to docetaxel. Previous reports by our laboratory have shown that MCF-7 cells selected

for resistance to docetaxel exhibited increased basal levels of TNF-α. At very high selection

doses, TNF-α production eventually returned to the level of co-cultured control cells [23]. In

the same study, it was reported that acquisition of docetaxel resistance in MCF-7 cells was

associated with decreased expression of TNF-αreceptor 1 protein (TNFR1) relative to drug-

sensitive control cells, thereby diminishing TNF-α’s ability to induce apoptosis. The increased

TNF-α production was thought to contribute to the resistant phenotype by activating TNFR2-

dependent survival pathways, although TNFR2 blockade accounted for only a small restora-

tion of drug sensitivity relative to that achieved by inhibiting NF-κB [23]. Activation and sub-

sequent nuclear localization of NF-κB can occur in response to a variety of extracellular

stimuli, including endogenously produced inflammatory cytokines such as TNF-α, CXCL8

[61], and CXCL1 [62]. Thus, we assessed whether increases in TNF-α, CXCL8, and CXCL1

would also be observed during selection of tumor cells for survival in increasing concentra-

tions of docetaxel.

As shown in Fig 9, basal TNF-α levels increased upon selection for docetaxel resistance,

when the selection dose reached level 9 and 10 (MCF-7TXT9 and MCF-7TXT10 cells), beyond

which selection at higher doses resulted in TNF-α levels subsiding back to that of non-selected

cells. Similarly, it was also found that basal levels of CXCL8 and CXCL1 increased with maxi-

mum production in MCF-7TXT10 cells, beyond which their levels also declined toward those

of non-selected cells (Fig 9). Interestingly, A2780DXL cells above selection dose 10 showed a

similar elevation in basal TNF-αand CXCL1 levels (Fig 9B and 9F); however, no changes in

CXCL8 expression were observed (Fig 9D).

Elevated basal production of TNF-α in docetaxel-resistant cells is inhibited upon treat-

ment with a broad-spectrum MMP inhibitor. As mentioned, TNF-α is first synthesized as

an integral membrane protein that is typically released from cells through the action of the

metalloproteinase ADAM-17 [56]. We thus examined the effect of the MMP inhibitor Mari-

mastat on the ability of docetaxel-resistant MCF-7 cells to produce elevated basal levels of

TNF-α. As shown in Fig 10, Marimastat was able to inhibit basal TNF-α production in MCF-

7TXT10 cells, suggesting that this process depends, at least in part, on MMP activity and shed-

ding of membrane-bound TNF-α. Unlike the previous observations in the drug-naive MCF-7

cell line, the production of TNF-α in MCF-7TXT10 cells was not augmented by treatment with

2.5 nM docetaxel for 72 hours. In contrast to docetaxel, LPS was able to strongly augment

TNF-α production, and this production was also inhibited by Marimastat. TNF-α release was

not fully abolished by Marimastat under any conditions.
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Fig 8. Sensitivity to docetaxel is restored upon inhibition of P-gp activity with Tariquidar (Tar). (A) Clonogenic assays

yielded IC50 values for docetaxel in MCF-7CC10 cells of 0.28 nM and 0.24 nM, with and without 100 nM Tariquidar, respectively. IC50

values for MCF-7TXT10 cells were significantly different with (0.42 nM) and without (7.14 nM) Tariquidar, respectively (p<0.0001). (B)

An identical trend was observed for the A2780CC12 (IC50 = 0.630 nM) and A2780DXL12 (IC50 = 47.5 nM) cell lines, where in the

presence of Tariquidar IC50 values were 0.331 nM and 0.435 nM, respectively. Each data point represents the mean number of

colonies (+/-SEM) in twelve independent microscopic fields. Each experiment was replicated three times with consistent trends.

Non-linear regression analysis was used to compare the significance of difference in IC50 values between Tariquidar-treated and

untreated conditions.

https://doi.org/10.1371/journal.pone.0183662.g008
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Fig 9. Basal cytokine production changes during selection for resistance to docetaxel. Levels of TNF-α (A and B), CXCL8 (C and D), and

CXCL1 (E and F) in media as measured by ELISA, from MCF-7 (A, C, and E) and A2780 cells (B, D, and F) after 72 hours of cell culture. Cell lines
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Differences in pathways leading to TNF-α release in tumor cells. Docetaxel-resistant

MCF-7TXT10 and A2780DXL12 cells failed to increase their output of TNF-α in response to a

72-hour docetaxel exposure, in contrast to their respective co-cultured control cell lines.

Remarkably, TNF-α release could be stimulated by LPS in both docetaxel-sensitive (MCF-

7CC10) and docetaxel-resistant (MCF-7TXT10) cells (Fig 11A). In contrast, docetaxel-resistant

A2780DXL12 cells remained unresponsive to LPS, along with respective co-cultured control

cells (Fig 11B), as previously described (Fig 4). Immunoblot experiments revealed that both

MCF-7 and A2780 cell lines expressed the cell-surface receptor TLR4 (Fig 12A, 12B, 12C and

12D). MyD88 (TLR4 adaptor protein) levels were detectable in MCF-7 cells and were elevated

greater than three-fold upon acquisition of docetaxel resistance (MCF-7TXT10 cells) (Fig 12A

and 12C). By contrast, MyD88 was undetectable in both A2780 and their docetaxel-resistant

counterparts (A2780DXL12) (Fig 12B and 12D). Another TLR4 adaptor protein, TIR-domain-

containing adapter-inducing interferon-β (TRIF) was detected in all four tumor cell lines and

its expression increased in MCF-7TXT10 relative to the unselected MCF-7CC10 cells (Fig 12 A,

12B, 12E and 12F).

Restoring cellular drug accumulation potentiates drug-induced TNF-α release in doce-

taxel-resistant cells. Given the presence of P-gp and its contribution to reduced cellular doc-

etaxel accumulation in docetaxel-resistant, MCF-7TXT10 and A2780DXL12, cells (Fig 7), we

examined the effect of the P-gp inhibitor Tariquidar on docetaxel-induced TNF-α production

in these cell lines. As shown in Fig 13, pre-incubation with Tariquidar had no significant effect

on drug-induced TNF-α release in co-cultured control MCF-7 and A2780 cells. In contrast,

Tariquidar potentiated docetaxel-induced TNF-α release from MCF-7TXT10 and A2780DXL12

cells, suggesting that docetaxel accumulation within tumor cells (drug entry) is required for

drug-induced TNF-α release.

Effects of LPS pretreatment on docetaxel cytotoxicity

LPS augments docetaxel cytotoxicity in breast tumor cells. The ability of LPS (but not

docetaxel) to induce TNF-α release from docetaxel-resistant MCF-7TXT10 cells (Fig 11A)

prompted us to test whether LPS could potentiate docetaxel cytotoxicity in the above doce-

taxel-resistant cell lines. We found that LPS increased docetaxel cytotoxicity in both MCF-

7CC10 and MCF-7TXT10 cells (between 4 and 5-fold) (Fig 14A). In contrast, the sensitivity of

docetaxel-resistant A2780 cells and their co-cultured control cells was unchanged upon addi-

tion of LPS (Fig 14B), consistent with their inability to manifest LPS-induced TNF-αrelease.

Discussion

Characterization of docetaxel-induced TNF-α release

Findings in this study suggest that several human tumor cell lines respond to docetaxel by

increasing their release of TNF-α. However, the kinetics of taxane-induced TNF-α induction

in human tumor cells are remarkably distinct from macrophages, as the latter requires drug

concentrations in the 1 to 10 μM range, producing a maximal response within 90 minutes

[29]. In contrast, the former requires low nM concentrations of taxanes (Fig 1C and 1D) and

TNF-α release from tumor cells is maximal at 96 hours (Fig 1A and 1B). While much higher

concentrations of paclitaxel were used in studies involving murine macrophages, it is also

to the right of the vertical broken grey line exhibit acquired resistance to docetaxel, as confirmed in clonogenic assays. Each value represents the

mean of three replicates (+/-SEM). Two-tailed T-tests were used to assess the significance of differences in cytokine levels between docetaxel-

selected cell lines and their respective co-cultured control cell lines (MCF-7CC10 or A2780CC12); ***p<0.0001, **p<0.001, *p<0.01.

https://doi.org/10.1371/journal.pone.0183662.g009
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Fig 10. Effect of Marimastat on TNF-α levels in the medium of MCF-7TXT10 cells. Cells were treated for 72 hours with media only (NT),

200 nM Marimastat, 2.5 nM docetaxel (TXT), 10 μg/ml LPS, or a combination thereof. The data represents the mean of three replicates

(+/-SEM) and the significance of differences in TNF-α levels between treatments was determined using a T-test; *p<0.01, **p<0.001,

***p<0.0001.

https://doi.org/10.1371/journal.pone.0183662.g010
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possible that lower drug concentrations over longer time intervals may also result in TNF-α
release from macrophages. From a clinical perspective, peak plasma concentrations for doce-

taxel in cancer patients can be as high as 5 μM [63]. If a small fraction of circulating drug

reaches cells within tumors, then the low nM concentrations of taxanes required for TNF-α
induction are likely clinically relevant for cancer patient tumors.

We also observed that a variety of structurally distinct chemotherapy drugs with distinct

mechanisms of action induce TNF-α release from breast and ovarian tumor cell lines with sim-

ilar kinetics (Fig 2). Of the drugs tested, the taxanes appear most effective at inducing TNF-α
release. While the release of TNF-α from cells after chemotherapy drug exposure could be the

result of cytolysis or secondary necrosis, our findings suggest that docetaxel-induced TNF-α
release in this context is not a passive process associated with lysis. Rather, our studies suggest

that docetaxel-induced TNF-α release appears to involve, at least in part, the increased produc-

tion of TNF-α transcripts (Fig 3). The time required for increased transcription (36 hours)

suggests that chemotherapy drugs are acting through one or more intermediary products.

Interestingly, aside from myeloid-based cells, non-tumor cell lines of human origin tend to be

poorly responsive to taxanes in terms of TNF-α production [64,65].

Docetaxel induces TNF-α production by a mechanism distinct from

lipopolysaccharides (LPS)

Prior studies have suggested that TLR4-null macrophages exhibited lower TNF-α and nitrogen

oxide (NO) production in response to paclitaxel than macrophages with wildtype TLR4 levels

[30]. This suggested a role for TLR4 in paclitaxel-induced TNF-α release. The study further

showed that the TLR adaptor protein MyD88 was also required, since MyD88-knockout mice

did not exhibit augmented TNF-α release by paclitaxel or LPS [30]. In contrast, docetaxel-

induced TNF-α release from tumor cells appears to be independent of MyD88, since we

Fig 11. Comparing the effects of docetaxel and LPS treatment on TNF-α release from drug-naive and drug-resistant cell lines for

MCF-7 (A) and A2780 (B) cells. All docetaxel (TXT) concentrations used were 2.5 nM and LPS concentrations were 5 μg/ml. Comparisons

between treated and untreated TNF-α levels were assessed for significance using a one-way ANOVA with a Tukey post-test; * for p<0.05; all

data points represent the mean of three trials.

https://doi.org/10.1371/journal.pone.0183662.g011
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observed strong docetaxel-induced increases in soluble TNF-α levels in A2780 cells that lack

detectable MyD88 expression (Fig 4B). This is in contrast to LPS-induced TNF-α production,

since A2780 cells lacking MyD88 expression did not respond to LPS with increased secretion

of TNF-α (Fig 11). Several prior studies have shown a lack of LPS-induced TNF-α production

in MyD88-deficient cell lines [31–33,66]. Another contrast between LPS and docetaxel, is that

the former induces production of TNF-α, CXCL8 and CXCL1 in MyD88-expressing MCF-7,

while the latter only induced TNF-α and CXCL8 production (Fig 4).

Fig 12. Levels of TLR4 and adaptor proteins during acquisition of resistance to docetaxel. Immunoblots

were performed from extracts of MCF-7 and A2780 drug-naive and drug-resistant cell lines (A and B) in order to

confirm the presence or absence of TLR4 and adaptor proteins MyD88 and TRIF. Changes in protein levels of

drug-naive and drug-resistant cell lines were assessed by densitometry (C, D, E, and F). Statistical analysis

consisted of two-tailed T-tests; *p<0.05.

https://doi.org/10.1371/journal.pone.0183662.g012
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Based on gene inactivation experiments, it is believed that membrane-bound mTNF-α is

cleaved by the MMP ADAM-17, to release the soluble form of TNF-α [56] and MMP inhibi-

tors such as Marimastat have been shown to inhibit the release of TNF-α from cells. In our

study, Marimastat caused only a partial (50%) decrease in docetaxel-induced TNF-α release in

A2780 cells, but not in MCF-7 cells (Fig 6). It is possible that the lack of effect of Marimastat

on TNF-α release in MCF-7 cells may be due to the involvement of other Marimastat-insensi-

tive serine proteases in the shedding of mTNF-α, as this has been demonstrated by others in

alveolar macrophages [67,68]. Alternatively, inhibition by Marimastat may have been subopti-

mal in this system and higher concentrations could have achieved complete inhibition of

mTNF-α release by LPS. Another possibility is that shedding may occur within the Golgi appa-

ratus [69], sheltered from inhibition by Marimastat.

Changes in cellular cytokine levels associated with the acquisition of

resistance to docetaxel

Resistance to several classes of chemotherapy agents in the same cell type (multidrug resis-

tance) has been widely studied in vitro and the ABC family member P-gp has been shown to

induce multidrug resistance [70]. This drug transporter promotes the efflux of a variety of

anti-cancer drugs [59,60,71–73]. Levels of MDR1, the gene that encodes P-gp, have been found

to be frequently elevated in tumors that are innately resistant to chemotherapy treatment [74–

76]. Its increased expression in patient tumors has also been observed in response to chemo-

therapy [60,74,77,78]. We have shown that selection of tumor cell lines for resistance to doce-

taxel is associated with increased expression of P-gp and decreased cellular accumulation of

Fig 13. Effects of Tariquidar on docetaxel-induced TNF-α release. All treatments lasted 72 hours at which point levels of TNF-α in the media

were measured by ELISA for MCF-7 (A) and A2780 (B) cells. Cells were either untreated or treated with 100 nM Tariquidar and/or 2.5 nM

docetaxel (TXT). The data are representative of three replicates (+/-SEM). A two-tailed T-test was used to assess the significance of differences

in cellular TNF-α production between treatments;** for p<0.001, * for p<0.01.

https://doi.org/10.1371/journal.pone.0183662.g013
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drugs (Fig 7). Treatment of docetaxel-resistant breast and ovarian tumor cells with the P-gp

inhibitor Tariquidar restored cellular drug accumulation as well as drug cytotoxicity (Figs 7B

and 8). While P-gp clearly contributes to docetaxel resistance in MCF-7TXT10 cells, it is possible

that there are other contributors to resistance at lower selection doses where P-gp expression is

considerably lower (MCF-7TXT9 cells). Aside from P-gp, whose expression continued to rise

with increasing selection dose in MCF-7TXT cell lines (Fig 7A), basal levels of secreted cyto-

kines TNF-α, CXCL1, and CXCL8 also became elevated during selection for docetaxel resis-

tance. Maximum levels of these cytokines were reached at selection dose 10 (MCF-7TXT10),

after which they declined toward that of drug-naïve MCF-7CC cells (Fig 9A, 9C and 9E). A sim-

ilar trend was observed for cytokines TNF-α and CXCL1 when A2780 ovarian tumor cells

were selected for docetaxel resistance (Fig 9B, 9D and 9F).

Fig 14. Effect of LPS exposure on tumor cell sensitivity to docetaxel. (A) Sensitivity to docetaxel was

assessed using the clonogenic assay. MCF-7CC10 cells had an IC50 value for docetaxel of 0.4 nM docetaxel,

and when pretreated with 10 μg/ml LPS, the value was reduced to 0.09 nM docetaxel. Likewise, MCF-7TXT10

cells exhibited an IC50 value for docetaxel of 27.6 nM docetaxel, which was reduced to 6.4 nM upon addition

of 10 μg/ml LPS. Non-linear regression analysis comparing LPS-treated and LPS-absent curves revealed

statistically significant differences in IC50 values (p<0.005). (B) Untreated and LPS-treated A2780CC12 cells

both exhibited an IC50 value of 1.0 nM docetaxel. There was no significant difference in the IC50 values for

docetaxel between LPS-treated and untreated A2780DXL12 cells (28.7 nM and 21.0 nM, respectively). Each

data point is the mean of 12 microscopy field counts and each curve is representative of three replicate

experiments, each showing a consistent trend.

https://doi.org/10.1371/journal.pone.0183662.g014
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Elevated production of the cytokines CXCL8 and CXCL1 have been implicated in auto-

crine-based drug resistance in various tumor cell lines [24,26] and in poor clinical outcome in

ovarian cancer patients [79]. CXCL8 signaling, through CXCR1 and CXCR2 promotes multi-

drug resistance [80,81], while CXCL1 expression, in response to taxane or anthracycline treat-

ment [26], has been shown to cause drug-resistance through activation of CXCR2 [26,82,83]

via autocrine signaling. Other groups also report an in vivo role for CXCL1 in drug resistance

that involves paracrine signaling between tumor and myeloid cells [25].

Previous findings from our laboratory have shown that acquisition of resistance to doce-

taxel in MCF-7 cells was accompanied by increased TNF-α production and secretion, as well

as decreased cellular levels of TNFR1 [23]. Blockade of TNFR2 in the resistant cells restored

sensitivity to docetaxel by roughly 2-fold [23]. It is unclear whether these alterations in TNF-α
signaling contribute to drug resistance through modulations of P-gp expression or activity.

Exogenously added sTNF-α has been shown to stimulate P-gp expression and activity in a

variety of cell lines [84–87]; however, we observed that exposure of MCF-7 cells to sTNF-α
failed to promote detectable increases in P-gp at the protein level after treatment for 96 hours

(see S1 Fig). At any rate, it is possible that autocrine signaling by mTNF-αmay be one of many

confounding factors, given studies showing that membrane-bound and soluble forms of TNF-

α, expressed by tumor cells, have opposing effects on tumor-associated myeloid cells [19]. It is

unknown whether mTNF-α levels are increased in the drug-selected cell lines used in this

study.

If one or more of the above inflammatory cytokines promote P-gp expression in MCF-7

cells, then it would follow that this support would be lost beyond selection dose 10 (15 nM doc-

etaxel), since cellular levels of these cytokines fall considerably at higher selection doses (Fig 9).

Yet, we observe P-gp expression to increase further. Likely, this involves another mechanism

to increase P-gp expression, as above selection dose 10, we detected a regional amplification

on chromosome 7 (7q21) resulting in an increased P-gp (MDR1) gene copy number [58]. This

amplification results in highly increased P-gp expression, which may no longer be driven by

elevated cytokine production. Recent studies also support a role for TNF-α as a potent muta-

gen [19,88], since treatment of cultured cells with sTNF-α was found to cause DNA damage

comparable to that of ionizing radiation [88]. This, in turn, caused gene amplifications, muta-

tions, micronuclei formation, and greater chromosomal instability [88], which could have led

to the chromosomal amplifications we observed in MCF-7TXT11 and MCF-7TXT12 cells.

In our study, we observed that despite the increased basal output of TNF-α from both breast

and ovarian tumor cell lines during acquisition of docetaxel resistance, there was a diminished

ability to further increase TNF-α production in response to docetaxel (Fig 11). In contrast,

LPS retained its ability to induce TNF-α production in MCF-7TXT10 cells. The ability of Tari-

quidar to re-establish both docetaxel accumulation and cytotoxicity in MCF-7TXT10 and

A2780DXL12 cells suggests that docetaxel’s ability to induce TNF-α release requires drug entry

into tumor cells. This is unlike LPS, which promotes TNF-α production by extracellular bind-

ing to TLR4. Consistent with previous reports that MyD88 is an essential cellular component

for LPS-induced inflammatory cytokine production, elevated TNF-α production in response

to LPS treatment did not occur in A2780DXL cells, which do not express detectable levels of

MyD88 (Fig 12).

Mechanistic insights into docetaxel-induced TNF-α production

Some groups have reported that paclitaxel induces TNF-α release through the activation of

TLR4, via a direct interaction between paclitaxel and the murine extracellular TLR4 adaptor

protein MD-2 at the cell surface of macrophages and HEK293 cells [34,64]. This appears to be
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the accepted mechanism, by which taxanes promote TNF-α production and release in human

macrophages [29,30] as well as tumor cells [33,43,89], despite the lack of rigorous studies

employing tumor cells. Although our findings do not discount a role for TLR4 in mediating

taxane-induced TNF-α production in all tumor cell types, they do suggest a distinct mecha-

nism involving drug entry into tumor cells, with or without an indirect activation of TLR4.

Our observation that a variety of structurally unrelated chemotherapy agents can induce

TNF-α release suggests that a variety of pathways promote this phenomenon. A recent review

also questions whether the functional effects of paclitaxel on TNF-αsecretion are mediated

through physical binding to TLR4 [90]. One possibility is that TLR4 activation by chemother-

apy drugs involves the death-dependent release of DAMPs, a subset of alarmins, some of

which can activate TLR4 and subsequent cytokine production. For example, studies have dem-

onstrated the release of the DAMP HMGB1 after treatment with a variety of chemotherapy

agents, including docetaxel [14]. HMGB1 among other alarmins has been shown to activate

TLR4 after its release from necrotic cells [12]. The release of DAMPs in response to docetaxel

could require the drug’s uptake into cells. Drug-induced TNF-α production may also involve

heat shock proteins (HSP’s), as geldanamycin, a specific inhibitor for the Hsp90 family, abro-

gated the expression of TNF-α in macrophages treated with paclitaxel or LPS [91]. Interest-

ingly, geldanamycin did not block microtubule stabilization by paclitaxel suggesting a

mechanism independent of the drug’s effect on microtubules [91]. The authors of the study

further suggest that paclitaxel may bind to Hsp90, mediating macrophage activation [91].

Kawasaki et al. demonstrated that paclitaxel’s ability to mimic the effects of LPS occurs only

in murine-derived cell lines, as the expression of recombinant murine MD-2 in combination

with either human or murine TLR4 is a requirement for inflammatory cytokine expression

[34]. Resman et al. reported an inhibitory effect of docetaxel on LPS-induced TLR4 signaling,

through binding of MD-2 in human embryonic kidney (HEK293) cells [65]. There are many

potential explanations for the lack of taxane-induced inflammatory response in human tissue.

As we’ve seen in this study, a response involving TNF-α release is clearly dose-dependent (Fig

1). Furthermore, the optimal dose likely differs greatly between tissues, as most studies report-

ing this phenomenon in macrophages or other non-malignant cell lines involve treatment

with very high taxane concentrations roughly three orders of magnitude greater than those

used here. However, it is interesting to note that LPS-RS (Lipid IVA) suppressed TNF-α pro-

duction in breast tumor cells treated with LPS, but in the same cell line potentiated TNF-α
release in the presence of docetaxel (Fig 5A). This is consistent with studies demonstrating a

pro-inflammatory role for lipid IVA, exclusively in murine-derived cells [48]. Thus, expression

of some confounding factor associated with the murine form of MD-2, yet induced by doce-

taxel, may confer responsiveness to penta-acylated forms of LPS. In addition, interfering with

the intracellular signaling cascade triggered by extracellular TLR4 ligation was shown in our

study to be insufficient for preventing docetaxel-induced TNF-α release from MB-231 cells

(Fig 5B). The absence of an inhibitory effect of TAK-242 on docetaxel-induced TNF-α release

at 1 μg/ml, a concentration that completely inhibits LPS-induced TNF-α release, suggests that

TLR4 is not an important contributor to TNF-α release by docetaxel in the MDA-MB-231 cell

line. Nevertheless, further studies are clearly warranted for a better understanding of the mech-

anisms at play.

Effects of LPS pretreatment on docetaxel cytotoxicity. In this study, we found that

pretreatment of drug-naive and docetaxel-resistant MCF-7 cells with LPS significantly

increased sensitivity to docetaxel, but this effect was absent in MyD88-deficient A2780 and

A2780-derived cell lines (Fig 14). Although it is unclear how LPS elicits this increased sensiti-

zation to docetaxel in MCF-7 cells, it arguably does not involve changes in P-gp activity or

expression, since LPS also caused sensitization to docetaxel in drug-naive cells that lack
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detectable P-gp levels. It is interesting to note that the sensitizing effect of LPS in MCF-7 cells

was accompanied by a cellular response to LPS involving increased cytokine production

(TNF-α, CXCL8, and CXCL1). Similarly, the inability of LPS to increase sensitivity to doce-

taxel in MyD88-deficient A2780 cells was associated with its inability to promote increased

production of these cytokines (Figs 4 and 11). This suggests that the biochemical pathways

that are activated by LPS, resulting in inflammatory cytokine release, are closely related to

those responsible for the increased sensitization to docetaxel. Given the reported ability of

TNF-α to sensitize tumor cells to taxanes [23,92], the docetaxel-sensitizing effects observed

here (Fig 14) may likewise be provoked through LPS’s ability to induce TNF-α production and

subsequent death-associated autocrine signaling.

It should be noted that the effects of LPS exposure on cellular sensitivity to docetaxel have

been studied by other groups. In contrast to our observations, one study shows that ligation of

TLR4 with LPS induced increased resistance to the growth inhibitory effects of docetaxel on

PC-3 prostate tumor cells [93], and other groups have shown that TLR4 activation is associated

with increased resistance to taxanes in SKOV-3 [31]. Consistent with our results, however,

LPS was found to have no effect in A2780 [31]. Thus it would appear that depending on the

particular tumor cell line in question, LPS exposure can either increase, decrease or have no

effect on sensitivity to docetaxel.

Conclusion

The pathogen recognition receptor TLR4 is undoubtedly involved in the induction of inflam-

matory cytokines and is expressed in a variety of cell types, most notably immune cells [94]

and also tumor cells as our data illustrates. The activation of this receptor can occur during

exposure to the pathogen-associated molecular pattern LPS, and also in response to chemo-

therapy drugs of the taxane family [30,43]. Although taxanes can induce the production of

inflammatory cytokines through activation of TLR4 in both murine macrophages [95], and

certain tumor cell types [43], we have observed that this response can occur independently of

TLR4 in the MDA-MB-231 breast tumor cell line. We also demonstrate that docetaxel-induced

cytokine production in the ovarian A2780 and breast MCF-7 cell lines requires the cellular

accumulation of drug and thus suggests, contrary to popular belief, that it does not involve the

direct interaction of drug with TLR4 at the cell surface in these cell lines. Regardless of its

mode of activation, TLR4 is an ideal target for the activation of inflammatory pathways and its

activation has become a promising strategy for therapeutic intervention and the development

of vaccine adjuvants [96]. Although LPS is the most studied ligand for TLR4, its known toxicity

in humans limits its clinical use as a vaccine adjuvant [96]. However, much of the LPS struc-

ture that is responsible for its toxicity has proven unnecessary for TLR4 activation [97]. This

knowledge has prompted the study of less toxic agonists [98,99], which are currently used in a

variety of adjuvant formulations [96]. In light of our novel reports in MCF-7, these clinically

tested agonists may be worthy of assessment for their ability to augment chemotherapy

response, as they may also be able to simultaneously improve immune recognition of the

tumor during chemotherapy treatment of patients.

Supporting information

S1 Fig. Levels of P-gp protein expression in breast tumor cells after supplementation with

exogenous recombinant TNF-α. The medium of MCF-7CC10 cells was supplemented with 10

ng/ml TNF-α twice over 96 hours (second treatment at 48 hours), after which cell surface P-gp

protein expression was assessed in treated and untreated cells by flow cytometry. This was

then compared to P-gp expression in untreated MCF-7TXT10 cells using the same approach.
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An ANOVA with Tukey post-test was then used to assess the significance of differences in P-

gp expression among the samples (���p = 0.0002).

(TIF)

S1 File. Raw data for all manuscript figures.

(PDF)
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