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Efficient ciliary locomotion and transport require the coordination of motile
cilia. Short-range coordination of ciliary beats can occur by biophysical mech-
anisms. Long-range coordination across large or disjointed ciliated fields often
requires nervous system control and innervation of ciliated cells by ciliomotor
neurons. The neuronal control of cilia is best understood in invertebrate
ciliated microswimmers, but similar mechanisms may operate in the
vertebrate body. Here, we review how the study of aquatic invertebrates con-
tributed to our understanding of the neuronal control of cilia. We summarize
the anatomy of ciliomotor systems and the physiological mechanisms that can
alter ciliary activity. We also discuss the most well-characterized ciliomotor
system, that of the larval annelid Platynereis. Here, pacemaker neurons drive
the rhythmic activation of cholinergic and serotonergic ciliomotor neurons
to induce ciliary arrests and beating. The Platynereis ciliomotor neurons
form a distinct part of the larval nervous system. Similar ciliomotor systems
likely operate in other ciliated larvae, such as mollusc veligers. We discuss
the possible ancestry and conservation of ciliomotor circuits and highlight
how comparative experimental approaches could contribute to a better
understanding of the evolution and function of ciliary systems.

This article is part of the Theo Murphy meeting issue ‘Unity and diversity
of cilia in locomotion and transport’.

1. Introduction

Ciliary locomotion occurs in the majority of unicellular eukaryotes [1,2] and is
also widespread in animals. Animals can either swim or glide with cilia, both at
larval stages and as adults. There is a great diversity in the mode of movement,
the type of ciliation and the tissue-scale dynamics of cilia. Ciliary swimming
is most common in the larval stages of marine invertebrates. The majority of
bottom-dwelling marine invertebrate animals have a ciliated larval stage.
These animals undergo a planktonic-to-benthic transition as part of their bipha-
sic life cycle [3]. Ciliary gliding is often found in adult forms such as flatworms
or placozoans where ciliary activity co-occurs with muscle-based or epithelial
contractility [4,5]. Many animals also use cilia to generate feeding currents to
capture food particles. Planktonic ciliary swimmers that also feed with cilia
can display the most complex ciliary dynamics and have trade-offs between
swimming and feeding [6].

In ciliary swimmers, gliders and feeders, the activity of cilia can change in
response to environmental cues and is generally under nervous system control.
For example, many ciliary swimmers can change their trajectory to move towards
a light source by phototaxis [7]. Circadian or sensory-induced adjustments in cili-
ary beating allow planktonic organisms to regulate their depth in the water
column [8]. There are several other contexts where ciliated fields and the flows
they generate are important for animal physiology, including the establishment
of symbiosis in squid [9], mixing the boundary layer in corals [10] or the move-
ment of cerebrospinal fluid in the vertebrate brain [11]. All these activities require
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Figure 1. The diversity of ciliated larvae. (a) Nematostella vectensis uniformly ciliated planula (cnidarian), (b) Mueller’s larva of the flatworm Maritigrella crozieri,
uniformly ciliated, (c) annelid trochophore with ciliary bands, (d) annelid trochophore with ciliary bands (P. dumerilii), (e) larva of the brachiopod Terebratalia
transversa, (f) Aplysia californica, mollusc veliger with ciliary bands, (g) Lineus longissimus, nemertean pilidium larva, () starfish bipinnaria larva, (i) echinoderm
8-arm-larva (sea urchin), (j) phoronid actinotroch larva, (k) amphioxus chordate larva and (/) Schizocardium californicum hemichordate tornaria.

the coordination of multiple cilia across large ciliary fields,
sometimes spanning the entire body. Here, we focus on the
anatomical and functional organization of ciliary locomotor
and feeding systems in invertebrates. We discuss different
phenomena of ciliary coordination in ciliary bands and epithe-
lia and the mechanisms of nervous system control. In some
cases, large neurons known as ciliomotor neurons that
innervate multiple ciliated cells are used to coordinate ciliary
activity throughout an organism. The recently characterized
whole-body ciliomotor circuit of the marine annelid Platynereis
dumerilii [12] highlights the sophistication of a dedicated
ciliomotor circuit. In Platynereis larvae, large biaxonal neurons
form a morphologically and functionally distinct ciliomotor
nervous system coordinating whole-body ciliary activity. We
review the evidence suggesting that other ciliated larvae also
have dedicated circuitry for the control of cilia. Future com-
parative studies could test the hypothesis that ciliomotor
nervous systems have a unique evolutionary history with
potentially deep origin in animal evolution [13,14].

2. Types of ciliary locomotor and feeding
systems in invertebrates

Ciliary systems occur either as uniformly ciliated body sur-
faces or as ciliary bands with more densely concentrated

cilia that run around the body or along appendages (figures 1
and 2). Cilia in ciliary bands often emanate from specialized
multiciliated cells, distinct from monociliated epithelial cells.
Ciliary bands often have a dual role, enabling the animal to
both swim and feed.

(a) Locomotor cilia
Locomotor cilia occur in both larval and adult stages of invert-
ebrates. Larval ciliary swimmers are present in many sponges
and cnidarians, most spiralians, echinoderms, hemichordates
and cephalochordates [15]. Ciliary swimming in adults is pre-
sent in ctenophores, some flatworms and rotifers. Ciliary
gliding is characteristic of placozoans and also occurs in
some species of annelids, flatworms, nemerteans, gastrotrichs,
gnathostomulids, gastropods and xenacoelomorphs [16-18].
There is a great diversity in the patterns of ciliation and the
mode of ciliary beating across animals (figure 1). Locomotor
cilia can occur either on ciliated epithelia (e.g. placozoans, flat-
worms, sponge, cnidarian and cephalochordate larvae) or
organized in discrete ciliary bands (most lophotrochozoan
and echinoderm larvae, ctenophore combs). The ciliated cells
can either have one (sponges, cnidarians, the annelid Owenia,
echinoderms) or multiple cilia (most lophotrochozoan larvae,
sponge trichimella larvae) (figure 3). Both types have a broad
phyletic distribution and it is currently unclear if multiciliation
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Figure 2. Mono- and multiciliated surfaces. (a) Annelid multiciliated cells of the ciliary band (P. dumerilii). (b) Multiciliated cells on a hemichordate larva.
() Multiciliated cells on a nemertean pilidium larva. (d) Monociliated epithelium in the planula of N. vectensis. (e) Monociliated cells on echinoderm larval

arms. (f) Monociliated cells in an amphioxus larva.
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Figure 3. Types of metachrony. (a) Side view of a row of beating cilia. Symplectic metachronal waves (i) propagate in the same, while antiplectic waves (i)
propagate in the direction opposite to the direction of the effective stroke. (b) Top view of a bundle of cilia. Metachronal waves can propagate orthogonally
to the beat plane. Laeoplectic waves propagate to the left, and dexioplectic to the right relative to the effective stroke of the cilia. Based on [19].

evolved multiple times independently. The molecular path-
ways driving centriole amplification in multiciliated cells are
well understood, and it was experimentally demonstrated that
changes in the levels of expression of genes involved in centriole
amplification can induce multiciliation [20]. It may be that the
fine-tuning of these pathways led to the repeated emergence
of multiciliation during evolution.

Cilia can be simple or compound, with compound cilia
linked by filamentous bridges and able to support a larger

body size and greater swimming speed [21]. Among animals,
compound cilia occur in ctenophores, the largest ciliary
swimmers [17]. The compound cilia in ctenophore comb
plates are structurally complex, with multiple cilia grouped
in bundles and adjacent cilia connected by a unique structure,
the compartmenting lamella [22]. Compound cilia also
occur in some single-celled ciliates like Stentor [23]. Table 1
summarizes the types of ciliation and ciliary movement
across animals.
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Table 1. Types of ciliation and ciliary movement (based on [15,16,24]).
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(b) Cilia in suspension feeding

Suspension feeding is widespread among larval and adult
aquatic animals. Many animals have specialized ciliated
structures like arms and tentacles to aid feeding, including
the larvae of echinoderms, enteropneusts and lophophorates
(brachiopods, phoronids, ectoprocts). Larval ascidians do not
have ciliated feeding structures, but adults feed by filtering
food particles through the branchial basket [25].

Feeding ciliary systems overlap with locomotory systems in
some planktonic larvae with ciliary bands. There are two main
suspension-feeding systems in these larvae: the upstream and
downstream collecting systems. Larvae with one ciliary band
use an upstream collecting system that concentrates food par-
ticles upstream of the ciliary band. Larvae with multiple ciliary
bands rely on a downstream collecting system, also known as
opposed-band feeding, where food particles are collected down-
stream of the main ciliary band [26]. Some planktotrophic
pilidium larvae of nemerteans have ciliary bands, but they use
muscular contractions of the lappet to induce local flexures of
the ciliary band that efficiently funnel algae into the mouth [27].

(c) Swimming—feeding trade-off

It has been suggested that larval forms, behaviours and preferred
habitats result in part from a trade-off that exists between swim-
ming and feeding. Feeding and swimming efficiencies depend
largely on the length of cilia and the size of the ciliary bands
[28]. Echinoderms, hemichordates and lophophorates have
long ciliated arms or lobes and an upstream collecting system.
In the case of these groups, the decreased feeding efficiency of
short (20-25 pm) cilia on monociliated cells is compensated for
by an extension in the size of the ciliary band. On the other
hand, cilia on multiciliated cells are longer, have faster effective
strokes and permit their carriers to feed using opposing flow
currents between the opposing ciliary bands [28].

In the bipinnaria larva of Patiria miniata, a starfish that uses
only one ciliary band for both swimming and feeding (upstream
collecting system), it was demonstrated that the cilia can change
stroke direction, generating different complex patterns of
vortices depending on whether the larva swims or feeds [6].

3. Ciliary coordination by biophysical and cellular
mechanisms

For directional movement, changes in motion and efficient filter
feeding, the activity of beating cilia needs to be coordinated and
regulated. Ciliary coordination can occur at different scales,
from local coordination of adjacent cilia to the coordination
of cilia on distant parts of the body (e.g. segmental ciliary
bands). The coordination is owing to biophysical, cellular and
neuronal mechanisms.

(a) Metachronal waves

Most ciliated fields display metachronal waves, which are more
efficient than non-metachronal beating in terms of energetics
and flow generation [29,30]. Metachronal waves have an impor-
tant contribution to swimming dynamics. The waves contribute
to flow generation and could thus in principle exert a torque
(turning force) on a swimming body. In addition, torque can
also be generated by the azimuthal offset of the cilia [31]. The
torque, together with the posterior-directed flow from effective
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ciliary strokes, generates the helical swimming trajectory charac-
teristic of most larvae [32]. In helically swimming larvae, the
direction of body rotation is usually opposite to the direction
of wave propagation [24]. Understanding the generation of the
different types of waves is an important future challenge for
understanding ciliary coordination and swimming mechanics.

The direction of wave propagation relative to the effective
ciliary stroke distinguishes four major forms of metachrony
(figure 3). Symplectic waves propagate in the direction of the
effective stroke and antiplectic waves in the opposite direction.
Diaplectic waves are perpendicular to the effective stroke and
can propagate either to the left (laeoplectic) or to the right
(dexioplectic) [24]. In ciliary bands, the most common form of
metachrony is dexioplectic, although some molluscs, bryozo-
ans and larvae of the annelid Chaetopterus show laeoplectic
waves [24]. Other exceptions include placozoans, where ciliary
beating seems to be uncoordinated [15,16], and ctenophore
comb cilia where the waves are antiplectic [15,16] (table 1).

Flow-based hydrodynamic coupling of adjacent cilia of the
same ciliary band or the same ciliated epithelium contributes to
the generation of metachronal waves. Mathematical models of
ciliary beating and coordination are able to recapitulate meta-
chronal synchronization [33,34]. In the unicellular green alga
Chlamydomonas reinhardtii, basal-body coupling also contrib-
utes to ciliary coordination [35], but it is unclear whether this
mechanism also occurs in ciliary bands in animals. In the
comb plates of ctenophores, there is an additional level of
short-range coordination, whereby adjacent cilia are directly
coupled by filamentous bridges [17,22].

(b) Gap junctions

In some ciliated surfaces, there are gap junctions facilitating
electrical coupling between ciliated cells. This may allow the
fast propagation of signals leading to the coordination of ciliary
activity across cells [36]. In the tunicates Oikopleura [37] and
Corella [38], water flow into the adult animal is aided by the
beating cilia of the branchial sac. Some, but not all, of
the ciliated cells are innervated, and gap junctions between
the ciliated cells ensure rapid signal propagation and coordi-
nated beating [38,39]. Gap junctions have also been identified
via electron microscopy between velar ciliated cells in mollusc
larvae [36] and comb plate ciliated cells of ctenophores [40].

4. Neuronal and paracrine mechanisms of ciliary
coordination

Long-range ciliary coordination has been observed between
different ciliary bands in many organisms. The coordination
can extend to three different aspects of ciliary activity that
cannot be fully accounted for by hydrodynamic coupling
and gap junctions: simultaneous ciliary reversals, arrests and
frequency changes [41]. In several instances, it has been
noted that these events are influenced by neurotransmitters
and neuropeptides and accompanied by calcium-dependent
action potentials. Ciliary bands are innervated in many
animals, and the activity of ciliomotor neurons, where demon-
strated, controls the phenomena of long-range ciliary
coordination. Below we discuss the types of phenomena
where long-range ciliary coordination has been observed. We
also discuss the neuronal or paracrine mechanisms that have
been suggested to ensure coordination.

(a) Coordination of ciliary closures

Coordinated closures have been observed in the ciliary bands
of annelids [12,42], molluscs [36,43,44] and echinoderms [45],
in the ciliated epithelia of placozoans [16], in the gill bar cilia
of amphioxus [46] and in the branchial basket cilia of juvenile
and adult tunicates [25,47]. The extent and duration of ciliary
arrests can be varied and depend on the species and the
developmental stage [48].

Alternating phases of spontaneous ciliary closures and beat-
ing control swimming depth in planktonic larvae [49]. Ciliary
arrests also occur as part of startle and avoidance responses to
mechanical stimuli [50,51] and in response to chemical stimuli,
including settlement cues [43,52]. In hemichordates and echino-
derms, mechanical stimulation leads to ciliary reversal or
stoppage [45,51,53]. In the neuron-less placozoan Trichoplax
adhaerens, the gliding movement halts when encountering food,
likely owing to a pause in the activity of cilia [16].

The signalling mechanisms of ciliary closures have been
studied in pharmacological, electrophysiological, calcium ima-
ging and cell ablation experiments. Electrophysiological
recordings revealed that ciliary closures are accompanied by
bursts of membrane depolarization in the ciliated cells of
larval annelids [8,49], molluscs [36,54], echinoderms [55] and
the branchial baskets of adult tunicates [25]. The depolariz-
ations lead to an increase in the concentration of intracellular
calcium, as shown by calcium imaging in larval Platynereis [12].

Neurons that drive these ciliary depolarizations have
been identified in larval Platynereis [12] and in the central
ganglion of adult tunicates [25,38]. These two examples are
also telling of the molecular mechanisms driving arrests.

Studies on Platynereis uncovered that the rate of change of
intracellular calcium, and not absolute concentration, triggers
closures. As long as the calcium concentration in the ciliated
cells is increasing, the cilia remain arrested. Ciliary beating
resumes when the calcium concentration starts decreasing [12].
The dependence of ciliary activity on the rate of calcium
change was also shown to be important during sperm chemo-
taxis, suggesting a similar mechanism of adaptive signalling [56].

More information about the second messenger cascades
involved in triggering ciliary closures came from pharmaco-
logical experiments in the tunicate Ciona intestinalis. In the
Ciona branchial basket cilia, the calcium-dependent arrests
are modulated by a pathway involving cAMP. It was
shown that an increase in cAMP concentration reactivates
the arrested cilia, which suggests there are antagonistic effects
of calcium and cAMP [47].

While the details of signalling mechanisms driving ciliary
closures remain largely unknown, some information is avail-
able about the neurotransmitters and neuromodulators that
induce them. In larval Platynereis [8,12], cholinergic neurons
were shown to induce closures. Pharmacological experiments
in molluscs [44], the annelid Spirobranchus [42] and hemichor-
dates [51] indicate that acetylcholine and probably also
catecholamines may be responsible for inducing ciliary closure,
while serotonin inhibits closures. In most of these experiments,
itis difficult to distinguish direct neurotransmitter effects on the
ciliated cells from potential indirect effects, for example, on
presynaptic pacemaker systems.

Secreted peptides can also have an effect on ciliary clo-
sures. In Trichoplax, the coordinated ciliary pauses may be
owing to diffusible neuropeptide-like molecules [57]. Treat-
ment of Platynereis larvae with synthetic neuropeptides
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revealed that several peptides can induce or inhibit ciliary
arrests [49,58]. The site of action of these neuropeptides is
not known, but they may modulate the ciliomotor pacemaker
circuit in these larvae [12]. Neuropeptides can modulate pace-
maker systems as demonstrated, for example, in the crustacean
somatogastric ganglia [59,60].

(b) Coordination of ciliary reversals

Ciliary reversals, or reversals of the direction of the effective
stroke of ciliary beating, have been observed in ctenophores
and some deuterostomes (echinoderms and tunicates).

In ctenophores, ciliary reversals occur during prey capture
[61]. Upon contact with prey, the ctenophore comb cilia briefly
stop beating (quiescence). Quiescence is followed by a unilat-
eral ciliary reversal in the ctene rows that were catching the
prey. Reversals can also be induced by electrical, mechanical
or chemical stimulation of some larval ctenophores [62].
Reversals were demonstrated to be calcium-dependent and
triggered by voltage-dependent calcium channels [17,62].

In echinoderm larvae, contact with food particles leads to
brief local ciliary reversals in the ciliary band [37,63]. Larger-
scale, coordinated reversals are observed as an avoidance
response upon contact with obstacles and they lead to the
animal swimming backwards [45]. The reversals are
accompanied by action potentials [55] and involve cholinergic
and catecholaminergic neurotransmission [45,64,65]. Pharma-
cological experiments implicate an ionotropic (nicotinic)
acetylcholine receptor in stimulating the avoidance response-
related reversals [45]. However, specific ciliomotor neurons
mediating this behaviour have not yet been identified.

In the branchial basket of the tunicate Oikopleura, coordi-
nated reversals of ciliary beat in two ciliated rings induce a
reversal of the water current through the pharynx [37]. The
reversals are accompanied by membrane depolarizations of
the ciliated cells. This happens spontaneously, as well as in
response to mechanical or electrical stimulation. It is presumed
that reversals increase in instances of greater particle density in
natural conditions. The ciliated cells of Oikopleura are inner-
vated with peripheral nerves. As spontaneous reversals
continue after the removal of the brain, it was suggested that
a peripheral pacemaker system exists to induce them [37].

(c) Control of ciliary beat frequency

Similar to ciliary closures, ciliary beat frequency (CBF) can be
modulated by neurotransmitters and neuropeptides to control
swimming speed or feeding behaviour. Serotonin and dopa-
mine are the two transmitters most commonly associated
with a change in CBF. Serotonin generally increases CBF and
inhibits closures. Dopamine most commonly decreases CBE
with a few exceptions.

Serotonin is the most common cilioexcitatory neurotrans-
mitter in aquatic embryos and larvae. In encapsulated
embryos of the gastropod Helisoma, specific serotonergic neur-
ons mediate hypoxia-induced increases in CBF [66,67]. This
induces rapid rotations of the embryos, and more efficient
oxygen diffusion owing to increased stirring. This serotonin-
mediated response acts through G-protein-coupled receptors.
One receptor signals through the Gq pathway, leading to
increases in intracellular Ca®* [68]. The hypoxia response is
also accompanied by increased cAMP levels in the ciliated
cells, mediated by another, Gs-coupled serotonin receptor

[69]. The different serotonin receptors may have a function [ 6 |

during different phases of the behavioural response [69].

Similar cilioexcitatory effects of both serotonin and cAMP
were demonstrated in pharmacological experiments in anne-
lids [12,49] and echinoderms [70,71]. Serotonin treatments
also lead to increased CBF in mollusc velligers [44] and echi-
noderm plutei [72]. In a rare example of surface ciliation in a
vertebrate, the CBF of Xenopus laevis epidermal larval cilia is
controlled by serotonin secreted from specialized epidermal
cells binding to the ionotropic 5-HT3 receptor on ciliated
cells [73]. Serotonin was found to have cilioexcitatory effects
in other vertebrate tissues as well, including the mouse tra-
chea [74] and rat ependymal cells, where the cilioexcitatory
effects are calcium-dependent [75].

Dopamine was demonstrated to decrease CBF in pharma-
cological experiments on echinoderm plutei and bipinnariae
[53,70], mollusc veligers [44] and annelid trochophores [42].
In all these species, dopamine treatment also induces more
frequent ciliary closures. As an exception, in the embryos of
the snail Lymnaea, dopaminergic neurons seem to induce
CBF increases during the hypoxia response [67]. In sea
urchin embryos, dopamine increases swimming speed
likely through a cilioexcitatory effect [70,76]. Experiments in
echinoderms suggest a role for acetylcholine, adrenaline
and noradrenaline in decreasing CBF [53,70].

In addition to neurotransmitters, neuropeptides also exhi-
bit stimulatory and inhibitory effects on CBF. In Platynereis, 9
of 11 neuropeptides tested were found to have a cilioexcita-
tory effect, while the remaining two neuropeptides reduced
CBF [49]. Neuropeptide antibody stainings have revealed
peptidergic nerves along ciliary bands in several larvae.
RFamide-like neuropeptides are commonly detected along
ciliary bands [44,67,77-80]. In Platynereis larvae, FMRFamide
increases CBF and leads to higher positioning in the water
column, while in the Crepidula fornicata veliger, it has the
opposite effect [44]. In the nemertean Lineus longissimus,
two neuropeptides (excitatory peptides 1 and 2) increase
CBF [81]. While the influence of peptides on CBF has not
been explored in vertebrates in great detail, it has been
shown thus far that the melanin-concentrating hormone exhi-
bits cilioexcitatory effects in the mouse ependymal cells [82].

The signalling cascades involved in coordinated changes in
ciliary activity generally involve calcium as a second messenger.
The diverse effects of calcium on ciliary activity may partly be
owing to differences in calcium channels, signal location or
dynamics, or interactions with other second messengers. For
example, the fine-tuning of ciliary closure dynamics is achieved
through an antagonism between calcium and cAMP signalling
in Ciona [47]. CBF is generally regulated by cAMP (e.g. [49,71])
and may interact with calcium to fine-tune responses. Inaddition,
the rate of change in calcium concentration can also be important
[12,56]. Finally, different processes rely on different calcium chan-
nels. Ciliary reversals are mediated by voltage-dependent
calcium channels [62]; CBF changes can be triggered through
Gq signalling and the inositol trisphosphate receptor [68].

5. Innervation of ciliary bands

The phenomena of long-range ciliary coordination discussed
above are commonly under neuronal control.

The most unambiguous data about the innervation of
larval ciliary bands are available from electron microscopy
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studies. Electron microscopy enables the identification of
neurons forming synapses on ciliated cells. Synapses from
nerves running along ciliary bands or ciliated epithelia have
been described in ctenophores [62], the larvae of platyhel-
minths [83], annelids [12,48,84], molluscs [54], nemerteans
[85] and echinoderms [53].

The axons of neurons that synapse on ciliated cells run
along the ciliary bands. In some cases, these nerves form a
distinct ciliomotor nervous system that is clearly distinguish-
able from the central nervous system. The best example of
a distinct ciliomotor nervous system can be found in the
Mueller’s larva of the polyclad flatworm Pseudoceros canaden-
sis, which has a unique intraepithelial nervous system
associated with the ciliary band [83]. The ciliomotor nervous
system is separated from the central nervous system by the
basement membrane and there are only two points of contact
between the two systems. Many of the cells of the ciliomotor
nervous system are bipolar sensory cells with sensory
dendrites among the cells of the ciliary band. Pilidium
larvae of nemerteans also have a distinct ciliomotor nervous
system. In these larvae, the main ciliary band is innervated by
the marginal nerve, the largest nerve in the body. Additional
nerves connect the marginal nerve to the oral nerve that
innervates the accessory oral ciliary bands [85,86].

Further knowledge about the innervation of ciliary bands
comes from immunofluorescence or histological stainings.
Serotonin immunoreactivity has been detected in the ciliary
nerves in most groups of ciliated animals (table 2; [101]).
Glyoxal-induced fluorescence imaging also shows catechol-
amine presence in the ciliary band nerves of nemerteans [86],
annelids [108], phoronids [109], echinoderms [110,111] and
enteropneusts [105]. Cholinergic innervation has been charac-
terized in ciliary bands of echinoderms [112], enteropneusts
[105], annelids [12] and molluscs [113].

It was shown through these tissue stainings that the ciliated
velum of the mollusc veliger is innervated by bipolar and tri-
polar cholinergic neurons. Bipolar neurons were found at the
base of the velum, connecting it with the cerebral ganglia [113].

6. The ciliomotor circuit in the Platynereis
dumerilii larva

The most comprehensive characterization of ciliary band
innervation comes from the reconstruction of the ciliomotor
nervous system in the Platynereis nectochaete larva [12].
Here, all neurons that synapse on locomotor cilia have been
reconstructed by serial electron microscopy (figure 4). The
neurons form a distinct ciliomotor circuit with a function in
the control of ciliary closures and beating. Most ciliomotor
neurons are morphologically unique and have two axons
emanating from the cell body. These neurons are the largest
in the body, with very long axons, spanning the entire proto-
troch ciliary band or all segmental ciliary bands [12]. Through
immunofluorescence, in situ hybridization and transgenesis,
the Platynereis ciliary neurons have been classified into 11
cholinergic, five serotonergic and three mixed peptidergic—
catecholaminergic neurons [12].

The 3-day-old Platynereis larva (nectochaete) has multiple
segmentally arranged ciliary bands, where the beating and
closures show a rhythmic pattern and cross-band synchroni-
zation. Imaging of neuronal activity reported by the calcium
sensor GCaMP6 showed that the activity of the serotonergic

ciliomotor neurons correlates with ciliary beating, whereas
cholinergic neurons are active during closures. Laser ablation
of a major head cholinergic neuron (MC neuron, figure 4)
abolished the rhythmic closures of the main ciliary band
innervated by this neuron.

The ciliomotor circuit is under the control of a central
pattern generator (CPG), the ciliomotor pacemaker. The
three peptidergic—catecholaminergic neurons of the ciliomotor
circuit activate rhythmically and likely form the pacemaker.
Two of them are active during ciliary closures and one
during the phases of beating. This rhythmically active circuit
driving alternating phases of swimming and sinking (during
closures) may enable the larvae to maintain a constant depth
in the water column [49].

The activity of this pacemaker seems to be under the influ-
ence of different neuropeptides and hormones released in
response to sensory cues or following a circadian rhythm.
Several neuropeptides expressed in sensory-neurosecretory
neurons in the larval brain influence larval vertical distribution
through changing the ciliomotor rhythm (inhibiting or stimu-
lating ciliary closures) [96]. A reduction in closures moves the
larvae upwards in the plankton, whereas more frequent clo-
sures lead to sinking. Sensory cues may trigger neuropeptide
release and concomitant changes in ciliary closures. For
example, during larval settlement, chemical cues likely lead
to a release of myoinhibitory peptides from chemosensory-
neurosecretory neurons [114]. Exposing larvae to these pep-
tides increases ciliary closures, which causes the larva to sink.

The frequency and duration of ciliary closures also change
in a diurnal cycle, with more frequent closures occurring
during nighttime. This effect may be mediated by melatonin
signalling acting on cholinergic ciliomotor neurons [8].

Platynereis larvae also respond to vibrational stimuli by
ciliary arrests [50]. The stimuli are detected by ciliated mechano-
sensory neurons called the collar-receptor neurons (CRs). CRs
synapse on different interneurons that in turn synapse on the
cholinergic intersegmental ciliomotor neurons. This feed-for-
ward circuit can explain how a vibrational stimulus leads to
the coordinated arrest of all locomotor cilia in the larva.

7. The evolution of ciliomotor cell types
and circuits

We can note several general principles and similarities in the
regulation of ciliary locomotion across different groups of
animals (figure 5). To achieve coordinated movement of
cilia across longer distances, neuronal input is required and
achieved through the release of neurotransmitters and neuro-
peptides. Even in placozoans—animals that lack a nervous
system—a function for neuropeptides in stopping ciliary
gliding has been confirmed. In different groups where their
effects were studied, ciliary responses to neurotransmitters
were shown to be similar. Serotonin application increases
CBF and decreases the occurrence of ciliary closures, while
by contrast, acetylcholine and catecholamines decrease CBF
and increase closures [12,42,44,66,70,72].

The general involvement of serotoninergic and catecholamin-
ergic neurons in ciliary control suggests that such ciliomotor
neurons may trace back to the protostome-deuterostome
common ancestor.

In animals where neuronal control of ciliary activity has
been demonstrated, such as molluscs, annelids, nemerteans,

S9L06LOT :SLE § 20S Yy *subil ‘iyd  qisi/jeunol/bio buysigndAianosiefos H



royalsocietypublishing.org/journal/rstb  Phil. Trans. R. Soc. B 375: 20190165

(‘panupuo)

Sisaue yym
(enxd fad)
SN JUILLIANIS

panjossip 03 spuodsal
buiwwims
bupiaals Joj pasn
(sfeubis ybi)

[UOIAIIP) 1[0

Juawanow Aleyp
Hququr 1nuins

[OUDIPR 40

[BIWAY ‘[edjuRYIW

pooj

sixejojoyd anpebau

nduy Kiosuas

paxnpul

pue snoauejuods

anydex

faid buunp
s[esianal Kieln
pue DUs3AINb

‘uope|nwns

uodn sjsaie

buipas uaym

s)salie

H L[S

(onpynd
DayodNa7) €1~
‘(20iag) SL—pL

“(1wnho bisuaLDY) [

uwinjo> Jajem u
1aMmo] dente| ‘4g)

S95AIP 3PILLILJYW4

sapidadoinau

dypads

-a104doual [eranas

SPaYd ASINIP
‘uaney 0
[wjue 3y} pue
asned 0} eyp

asned 4ddM pue

1ddW "3d13 "edNdd

awouab

94} Ul punoj
sapidadoinau ou

sapndadoinau

49D seseanul yq
‘sisalle saysijoqe

'49) saseanul JHS

Sidnjwsuenondu

JIssep

13y10 ou ‘ny Ajuo

auou

sia)jiwisuesjondu

U33MJAq suorpun(
deb ‘ygyy
ybnoiyy pajerpaw
slsaue padnput
-JUBWRIAS JsaLe
0} pea] sjenuajod

uoipe Juapuadap-e)

buyjjeubis-e)
buifjdwr ‘uonouny
fuen ysijoge

s|aA3) b parensp

buijjeubis

Bl JefaA

umouy lou

5|[3 pajel|d oJuo

umoys sasdeufs
“s>olels
[eloqe 3y}

uj B> duefeq
Jayewsded

3y} 18 pajenul SMOJI qui0)

Ajjensn buneaq

auou wnipyyds pajenn

3od

Joj 1ddX3 adepns

J0 sMoJ

uoneasuul

wnipyida pajenn

pajeln paited g

pajerpRnW

UOIRUIPI00)

[IEENT
anen|ne)

U3IMIY

sabpuq snojuswely

‘pajeypRINW

pajeljpouow

(58] (pareypi)
ELVLIRITETNTITY
pljjRueX3Y ddX
s|j> [eypynda
pa1eljpouow

aney aenie| e

s|3> paenn

JETIEN

e|nued

ente| piddiph “ynpe

Jnpe

ente| ejpwAypuased

abeys

|eyuawdojanap

Tib] owoyioy
opidas) '[ge)

SUISYNI SHOIDY

‘[¢S"cy] avbogis
ojjsayq ‘[9€]

wnjoby puiojsoyyn) ssnjjow
[z6]

pioydojsi> vippadii sueLepIu

[16'069'LL] snouea saloydoua
[Ls'91]

Sualapypp Xojdoupii sueozode|d
[88'28]
DoIpupjsuaanb

uopauiyduty sabuods

(EDEL wsjuebio

=y aseuy uRyoid Yy ‘sapndadoinau ‘sgN ‘duiwedop ‘yq "SUBOZEIAW SSOR I JO [0A3U0D [UOINAU Y} pue UORelD Jo Alewwns ‘g 3jqer



royalsocietypublishing.org/journal/rstb  Phil. Trans. R. Soc. B 375: 20190165

((panunuo))

Sisaue padnpul
-JUBWAS
‘asuodsas

ajues ‘sixejojoyd

bulwwims
leuoijelor
ul uones|e
— exodfy 0}
puodsal suoinau
J1613U030135
pue d1bsuiwedop
buiwwims
leuoijejor
Ul uopesR[e
— exodfy
0} puodsal

Appanp suoinau

Jojow-Kiosuas |INI

nduy Kiosuas

20pojifyg

uj ferued ‘sak

fouanbay

3INSop) S3seaNIp

LHS ‘padnpul
pue snoauejuods

ZH §L~

epad ul zH4 yL~

s)salie

(zH) 49D

pueq Aeyp

0} suoafoid
YIM suoinau
uefio [eade ul
Annpeasounwiwy

apiwery

‘apiwepd ‘apiweq

15a1R
aseanul dIw
pue qIm &4
‘s15a11e dNpal
A4 pue ejyn4
210 "BNA BAY
'4g) aseanap
Q1M pue el4
'48) aseanul AdS
pue ‘L7 ‘edp
"BA1 BN "e44IN4

‘210 "BWA "BAY

suonau

VL Ul opiLeqyNg

sapndadoinau

153Le 0)
peaj (jojouaidye)

spojg-o

1l 9seansp

SaujWe|oyale)

4g) saseanul [HS

49) aseanu]
aujwedop

pue uluoo1as

ki)

SISRANUI UIU0)0IIS

sia)jiwisuesjondu

sienuajod papNAsudU

uoe Juapuadap-e) MNID J0jowoND ||y

suoInau (Jy)

Joyddal |q J1biauIwe|o3led

uo e Aew auiwedop jeaide Juaisuesy
5|23 pajel|p
100§ 3y} Ul
$10)dal / pue
6 3dfy ‘suonau
Md LIN3 Joow

ybnosyy buijjeudis-ey -i0suas J1613u030135

posjeisw

osjelaw

pue (ponojoid

(leyoon0joud)
[esale[osiop pue
lepad ‘uoibas

ajeid [edide pajern

pajerpRnw

spueq Kiep
(Jeyponojoid)
[e1R)e|0SIop

pue [epad

(8] “ds 0pojfyy
‘[t¥) snajupbib

snupupiqoids
aloydoypon [96) v1aja) byjaydy)
atoydoyon [0S'6v'L] Hpuawnp

(abes [ente)

ou) ofiqusa Ajea [£9] sipubis vauwAy

(abess [ene| [56'76'99]

ou) ofiquia Ajea SIAJOALL) DUIOSI[aH

abeys

|eyuawdojanap

spijpuue

((panupuo)) *z 31qe}




royalsocietypublishing.org/journal/rsth

(‘panupuo)

ou

buipasy

0] pajeal I[nuins
fiosuasoueypaw buipasy
uodn sjsaue 0 asuodsas

nduy Kiosuas s)saue

(pueq Kieyp
esa3e]) ZH €01
pue ([exde) z4 9'6

(zH) 49D

pueq Areyp

0} bumafoid
S|19> [eldle] Ul
Aunpeasounwiwy
apiwery

S|[3> pajelnd ul

fynipealounwuw

5|92 pajel u
Aynpeasounwwi

SplwesyN4

EINED]
pueq Areyp ul
Ayapeasounww

444

49) aseanul

(td1 '1d3)
sdN f103eapXe 7

sapndadoinau

SplwesyN4

Phil. Trans. R. Soc. B 375: 20190165

vm_vxs&voi ,
annebau
jejnuins
¥a pue 1HS

. .%_.i o

Kieyp Joudyue uj
Aunpeasounwiwy

1HS ou

MU

pueq Aselp u

Aynpeasounwuwl JHS

sia)jiwisuesjondu

anRu fien
j1eausapun
SN
3y} 03 uebio
|edide woy
buipafoid saniau
(d3) 2tbsapndad
“(LHS)

aniau [eutbiew

(eu0102)

pueq Aeqp |

wiapida paey
100} pajel|d
‘PRY Apog

pajen ‘spueq

1013)Ue [RI)UAA 7

pueq Aeyp

pua Jouaisod
o pueq

Keeid frepuodas
osle Jaje| ‘s|2)
JO SMOJ 7 UM

pueq Aseqp Krewyd

BAJR| 9]RU0I0)

5|2

3eJU3)} palelpouow eAle| eLRIIW

abeys

|eyuawdojanap

ene|

B eAte] plopioyp

eA| S R|PNY

* foot] oueu
pjnbng ‘[96] “ds
pjnsoydfn) ‘[8/]
(arewaejouwAb)
syib
DIyUDGIIMOg
pup ‘wnsouypjob
wnipiofofy
‘oAn) bjnbng

‘opdsyy vipyjausn

[e2]
(a1ewaejope|fyd)

DUD}NS DjjaIUAPaI{

[66'86]

piopupd uoiquifs

6] Haizon W

(spoidopa)

sueozofiq

suesoydop/d

e8] ssiapounr g

[6'12] sisuaysojp
oinpiy ‘(18]
snuissibuoy 7 ‘(98]
vaindind pindiyy

‘snpupoqyp snaury

[5L] supjjo) puamg

‘SjuLIoyIsn DIUaMQ)

suealaWau

((panupuo)) *z 31qe}



royalsocietypublishing.org/journal/rstb  Phil. Trans. R. Soc. B 375: 20190165

(‘panutuoy)
. m_._._wg.. .....
(Bueaq 3INpal auljeuape §|[22 Klosuas
feeyp padnpai) Ry pue yq dnbiauiwe
asuodsar duepiore S|esianal ou ‘ou ‘syuabe d1bauljoyd ‘anau Kieip Jelownip ‘| pajel[pouow eueuuidig [£S] snaxwapo a1svsig
15318 pue
lesianal Kieyp
asned syuabe [s¥] snpid
J1bsaujoy paAjoAul SnuIpAAT ‘[z'0L]
pue 3uljeuaipe SI YYDy dlunodu snuiLaynd
va 49D Jey) pajsabbins SIIOQUDILIIH
53seANAP Y 1qiyul ‘snssaidap
‘3seanul sisiuobe pue uopeIpPxd SM0AUIOPNaS]
s[esianal pue J1biaualpe 410q Ul PaAJOAU] ©) HIVAI]
asuodsal duepiore SISaLle PajeuIpiood -8J3q pue JHS ‘4IWYD J0 301 Kiojedxa [elownip ‘| pajel[pouow snaynid SUDIIW SNUILPIUILIDS SwipoUId
PP ac_v_c_& T T T T T
1nwins InolARYdq
[ed1URYIW DUYIP
0} asuodsal dUYIP SDNPUI 3pIwe4yiN4 spueq Aieln pajel[pouow eAe| [bOL] Dssansuvay | spodoiyelq

sapads Jayo
uy snyponopnasd
‘wnpnbup pue

pRY [edidewnin

uoneAduUl ‘snipos)
umouy ou :spueq Ateyp ¢ Jnpe [€0LL] snoLiea SIajol
. . . c.zm___ues.E . R e ; - S
e ‘pua JoLdisod
ydoinau Jeau LposjoaeypIe U0 D01}03RLDIR
S|[22 pajel|i ul pue SdPEU) U ‘spueq
fynpeasounww funpeaounww Kreyp apeyuay [0g'sL]
apIwe4yiN4 M- LHS pue [eioisod ‘[esoaid yponoupe L3jjanus sjuoioyq spiuosoyd
J P _tes:m% - T T T
pueq pue anooib
ey buoje pooj pajel
Aunpeasounww “poneipw
1HS ou anau yroxojoid “yponojoid ente| adA-buiwwims [z0L’L0L] snouea spoidojud

nduy Kiosuas s)saue (zH) 4D sapndadoinau SI3IWISURL0INAU uoneAI3uU| spueq Kienp S|[9> pajeln abeys

|eyuawdojanap

((panupuo)) *z 31qe}



royalsocietypublishing.org/journal/rstb  Phil. Trans. R. Soc. B 375: 20190165

el
3y} burensauul
wajshs snomau
[ere ayy ul
fynipealounwuwy

SpIefyiNg

uopeinp

ul's 7| ‘uonejn
-wns [eIway
10 ‘[e2UD3R
‘|edIURYIW

0} 3suodsal

ul Jo snoauejuods

anunuod
SI2YI0 JIYM
buneaq dois
few yponop)
3y} Jo sped

asuodsal duepjone 3Wos (s 07—SL) SIA

nduy Kiosuas s)saue (zH) 4D sapndadoinau

..a.:.m. ,_H.Ew_u._ :
aanpur sjuabe
J1bs3uljoyd
EHIETEN
pue pueq
lesolsod up |22
dbiaulLe|OYD3R
3)buts
‘poA0j3) ay} ul
10U Inq ‘spueq
Lreyo [eio ayy Jo
yibua| 3y buoje
wnipynda ay) ul

Ayne aserisauljoyd

sia)jiwisuesjondu

Jsanb sajearpe
dNY> saue
0} pea| sienuajod

uoie Juapuadap-e)

washs

SNOAIAU [eL}R

Aq uonensauu

‘pauLiyuod
1013U0) [eUOIN3U
R R wonea,
-Js0d 4 47

woyy ed Jo sso|

‘siuuapida pajern

s

Arey Burfjonuod
Apaup (eljbued
[enu 3y} Jo (wanshs Kieyp
ANBU [RISIA Y} |erewbns) 19yseq
40 Led) suoinau [e1ypueiq 3y} Jo

(D) 1s3ue Kieyp

ejewbis ay) punose

uoljensauUl
poapR)
UMOUUN ‘31U
MU [eiope
pue ajeyd [eade
) woyy sauqy
Aq ved ur pajensauuy

poigja) ‘spueq

[eJowndn omy

elD [esae| Jeq |16

parelpi|AW

[UIETENT]

nnw ‘spueq

paye
[PAOWINIID OM) 3y}

u s|[3 pajeljpouow eleuI0)

abeys

|eyuawdojanap

[£0L'9y] jtuaanf

ot ewer

Jnpe

apLoy DUIOSONUDIG

[sz] wnpnposd
Dpuiosofjay)

(L] Sipunsapur puor)

[sot]
snjuobosajoid
snssojboupjpg

‘[15] sisuatupiq

snssojboupjpg

sajepJoojeydad

sy

saleploLpILRY

(panuuo)) -z d1qey



(®)
>
f “
&
p -
cMNATO %
Y
() (e)
Loop®

& \ paratroch IIT

D (c) D
i prototroch I
v prm s 0 v
Y \./ s \
A 5 5 \
) 2 mMCc
s A @ {
% <
i { f 3 N
Yo o > y
. \" W R
.‘:? \,: /
| ‘_ N '.";'
- \\\ j-/
A il
I ( f) py.c.
P M) séhrr
C@d d\@m
Séeb!
P"’@“ pn@“'é
prap””
3
N2 pre®
eyﬂSnm R3 @2
O . @m
G N @iy"“"‘ pa@
nughpl® p@ P @'l
P p@{:@lldr / M@' = ,S Ir
MI mewy’ P @
sy 7 T
cres@@ p@"

Figure 4. The ciliomotor circuit of the Platynereis larva. (a) SEM of a Platynereis nectochaete (3 days old) larva with ciliary bands labelled. Scale bar 50 pm. (b) serial
scanning transmission electron microscopy (ssTEM)-based reconstructions of one of three catecholaminergic neurons (anterior view) and (c) of the closure-inducing
cholinergic MC neuron (anterior view) in the Platynereis ciliomotor circuit. Ciliated cells are shown in grey. (d) Reconstruction of the serotonergic Ser-tr1 and (e)
cholinergic Loop ciliomotor neurons (ventral views). (f) Synaptic connectivity graph of all ciliomotor neurons and ciliary band cells.

echinoderms and chordates [12,25,36,42—45,47], spontaneous
ciliary closures have been recorded, implying the existence of
a pacemaker system (CPGs) involved in generating the
rhythm of beating versus closure, similar to Platynereis
larvae [12]. Changes in the pattern of closures were shown
to be induced by chemical [8,52] and mechanical [45,51,53]
stimuli, suggesting that there is sensory innervation modulating
the presumptive pacemaker function.

Apart from the pacemaker neurons in Platynereis, we
know very little about the generation of ciliary rhythms in
other animals. Electron microscopic studies identified large
and morphologically distinct neurons in other larvae that
span the whole body to innervate ciliated cells [83,85,86].

We hypothesize that ciliomotor neurons are special and
form a distinct part of the nervous system with a unique func-
tion and evolutionary history. We call this the ciliomotor
nervous system. In the Platynereis larva, the comprehensive
characterization of the ciliomotor nervous system revealed
many unique characteristics. First, all ciliomotor neurons,
with two exceptions, have a unique biaxonal morphology
where two axons emanate directly from the neuronal soma
and project in two directions. Second, the ciliomotor neurons
show a distinct activity profile that drives ciliary activity.
Third, the ciliomotor nervous system has a unique connec-
tivity pattern and forms a distinct subnetwork in the larval
nervous system. Fourth, the ciliomotor system must be
specific to the larval stages as ciliation and ciliary swimming
are lost in the juvenile worms and are absent from adults. The
developmental fate of the ciliomotor neurons is not known,
but they will either disappear or completely change function.

In agreement with what we have found in Platynereis, a
morphological reconstruction of the ciliomotor system in
the platyhelminth Muller’s larva by Lacalli [83] revealed
that the ciliomotor system in this larva is clearly distinguish-
able from the central nervous system. In the pilidium larva,
the largest and most distinct neuron innervates the ciliary
margin. Giant serotonergic neurons with bi- or multiaxonal
morphology have also been described in the phoronid larva
[118]. These studies suggest that ciliomotor nervous systems
form a distinct part of larval nervous systems, with unique
characteristics and potentially a unique evolutionary history.

From the perspective of comparative neurobiology, cilio-
motor neural circuits represent an interesting model system
as they can be unambiguously identified through cell tracing
in electron microscopy datasets (tracing backwards from
ciliated cells). Such connectomic reconstructions of the circui-
try underlying ciliary coordination in different animals
would be valuable to understanding the evolution of these sys-
tems. Unravelling the evolution of ciliomotor circuits will also
require research into the function and molecular specification
of the cell types composing these circuits. This would require
a combination of behavioural experiments, functional imaging
(e.g. using genetically encoded calcium indicators) and genetic
approaches. For example, an exciting subject of cell-type and
circuit evolution would be a comparison of the annelid
larval circuit to circuits in mollusc ciliated larvae. Both larval
types show spontaneous and mechanically induced coordi-
nated synchronized arrests that extend to all cilia, which
suggests that a similar pacemaker operates in these larvae. In
addition, the main ciliary band (prototroch) of annelid and
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Nemertea
Platyhelminthes
Annelida
Brachiopoda
Phoronida
Bryozoa

Gastrotricha

Mollusca
Entoprocta
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Ecdysozoa

{1
Vertebrata**
B E Urochordata
Cephalochordata
Hemichordata
_|: Echinodermata
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Figure 5. Types of invertebrate ciliary systems and their control. Blue squares indicate presence, and red squares absence of a trait. Squares with no available data
are crossed out. Phylogeny is based on [115—117]. *Nemerteans show brief arrests coupled with muscle contractions upon contact with food particles. **Only motile

clia on the body surface (anuran larvae) are considered.

mollusc larvae are likely homologous as they derive from the
same blastomeres during the spiral cleavage pattern [119-121].
More generally, it would be interesting to study how ciliomo-
tor systems compare across lophotrochozoan larvae. What are
the differences between larvae with distinct ciliary bands and
uniformly ciliated larvae? How is the nervous system in larvae
with ciliary bands made of multiciliated or monociliated cells?
How do systems regulating locomotory ciliary bands and
feeding ciliary bands compare to each other?

Ciliomotor cell types likely coevolved with ciliary bands
and their comparative study across animal groups may
also reveal which larval types are homologous and which
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