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Abstract
Environmental factors can influence diversity and population structure in marine spe-
cies and accurate understanding of this influence can both improve fisheries manage-
ment and help predict responses to environmental change. We used 7163 SNPs 
derived from restriction site-associated DNA sequencing genotyped in 245 individuals 
of the economically important sea scallop, Placopecten magellanicus, to evaluate the 
correlations between oceanographic variation and a previously identified latitudinal 
genomic cline. Sea scallops span a broad latitudinal area (>10 degrees), and we hypoth-
esized that climatic variation significantly drives clinal trends in allele frequency. Using 
a large environmental dataset, including temperature, salinity, chlorophyll a, and nutri-
ent concentrations, we identified a suite of SNPs (285–621, depending on analysis and 
environmental dataset) potentially under selection through correlations with environ-
mental variation. Principal components analysis of different outlier SNPs and environ-
mental datasets revealed similar northern and southern clusters, with significant 
associations between the first axes of each (R2

adj = .66–.79). Multivariate redundancy 
analysis of outlier SNPs and the environmental principal components indicated that 
environmental factors explained more than 32% of the variance. Similarly, multiple 
linear regressions and random-forest analysis identified winter average and minimum 
ocean temperatures as significant parameters in the link between genetic and environ-
mental variation. This work indicates that oceanographic variation is associated with 
the observed genomic cline in this species and that seasonal periods of extreme cold 
may restrict gene flow along a latitudinal gradient in this marine benthic bivalve. 
Incorporating this finding into management may improve accuracy of management 
strategies and future predictions.
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1  | INTRODUCTION

The application of population genomic-based approaches to the study 
of marine population structure has revealed increasingly higher lev-
els of genetic differentiation and population structure than previously 
recognized in multiple marine species (e.g., Benestan et al., 2015; 
Bradbury et al., 2013; Corander, Majander, Cheng, & Merila, 2013; 
Milano et al., 2014; Moura et al., 2014). Recent observations of fine-
scale differentiation are changing our view of marine connectivity 
and marine population dynamics (Hauser & Carvalho, 2008). Limited 
dispersal may contribute to fine-scale population differentiation, but 
given large populations and large environmental gradients, selection 
may also contribute significantly to genetic differentiation among 
marine populations (Hauser & Carvalho, 2008). As such, studies sup-
porting a role for selection in regulating marine connectivity con-
tinue to accumulate (Bradbury et al., 2010; Clarke, Munch, Thorrold, 
& Conover, 2010; Limborg et al., 2012; Milano et al., 2014; Sjöqvist, 
Godhe, Jonsson, Sundqvist, & Kremp, 2015; Van Wyngaarden et al., 
2017). Researchers increasingly recognize the important role of selec-
tion in population connectivity, particularly for economically important 
species, because an accurate understanding of population structure 
and environmental influences can contribute to the identification of 
conservation units and allow prediction of a species’ response to cli-
mate change (Allendorf, Hohenlohe, & Luikart, 2010; Conover, Clarke, 
Munch, & Wagner, 2006; Sale et al., 2005).

Genomic studies increasingly highlight a role for selection in reg-
ulating marine population structure (Berg et al., 2015; Bradbury et al., 
2010, 2014; Gagnaire et al., 2015; Gaither et al., 2015; Hellberg, 
2009), and loci identified as putatively under selection repeatedly 
reflect small-scale genetic differentiation in multiple marine species 
(Bradbury et al., 2010; De Wit & Palumbi, 2013; Lamichhaney et al., 
2012). Additionally, marine landscape genomic studies combining tra-
ditional landscape approaches with large genomic datasets have iden-
tified significant associations between climate and genetic structure 
(genetic–environmental associations) in numerous marine and anad-
romous species, including Atlantic herring (Clupea harengus) (Limborg 
et al., 2012), Atlantic cod (Gadus morhua) (Berg et al., 2015; Bradbury 
et al., 2010), purple sea urchin (Strongylocentrotus purpuratus) (Pespeni 
& Palumbi, 2013), Atlantic salmon (Salmo salar) (Bradbury et al., 2014), 
European hake (Merluccius merluccius) (Milano et al., 2014), and 
Chinook salmon (Oncorhynchus tshawytscha) (Hecht, Matala, Hess, & 
Narum, 2015). Although historically most marine population genomic 
studies have focused on fish species, work on other taxa, including 
invertebrates, is increasing (e.g., Benestan et al., 2015; Pespeni & 
Palumbi, 2013). The pervasiveness of genetic–environmental associ-
ations across taxa and life histories supports the hypothesis that en-
vironmentally associated selection may structure marine populations.

The sea scallop, Placopecten magellanicus (Gmelin) (Figure 1), is an 
economically important benthic marine bivalve with a range that ex-
tends from North Carolina, USA, to Newfoundland, Canada (Posgay, 
1957). The scallop fishery in both the United States and Canada ex-
tends back over 100 years and is one of the most economically im-
portant fisheries on the east coast of North America (DFO 2016; 

Naidu & Robert, 2006; NOAA 2016). The sessile adult scallops live 
in isolated beds up to 300 m deep and undergo broadcast spawning. 
Juvenile scallops have a planktonic period of development of up to 
40 days, which is conducive with the potential for long distance dis-
persal among populations (Davies, Gentleman, DiBacco, & Johnson, 
2014; Tian et al., 2009). The scallop range spans a vast latitudinal area 
where the cold Labrador Current meets the warm Gulf Stream. This 
convergence leads to large gradients in ocean temperature and other 
environmental factors experienced by different scallop populations, all 
of which may be influenced by the oceanographic properties of major 
currents and storm-related mixing along coastal areas (Townsend, 
Thomas, Mayer, Thomas, & Quinlan, 2006). Several oceanographic 
barriers (such as current fronts) along the range may also influence lar-
val dispersal and survival among populations (Townsend et al., 2006).

Previous genetic work on the sea scallop detected significant 
but weak population structure among geographic locations off 
eastern Northern America using microsatellites, AFLPs, and SNPs 
(Kenchington, Patwary, Zouros, & Bird, 2006; Owen & Rawson, 2013; 
Van Wyngaarden et al., 2017). Recently, Van Wyngaarden et al. (2017) 
resolved significant spatial structuring in sea scallops visible primarily 
in outlier loci detected using FST-based outlier detection methods and 
genomewide RAD-seq (restriction site-associated DNA sequencing)-
derived SNPs. Taken together, the results from these studies suggest 
that both limited dispersal and selection associated with local adap-
tation across the species range may spatially structure scallop pop-
ulations, despite high potential for gene flow. Here, we build directly 
on existing studies and known population structure to identify envi-
ronmental variables that may contribute to non-neutral divergence 
among sea scallop populations. Using the RAD-seq-derived SNPs 
identified in Van Wyngaarden et al. (2017), we focus solely on envi-
ronmental association-based outlier tests to identify loci potentially 
under selection and directly compare our results to existing work and 
the results of previous outlier tests.

Considering the unique oceanographic features, the large latitudi-
nal range, and previously identified clinal population structure along 
the range of the sea scallop, we hypothesize that directional selection 

F IGURE  1 Placopecten magellanicus. By Dann Blackwood, USGS 
[Public domain], via Wikimedia Commons
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and local adaptation drive sea scallop population structure and that 
ocean temperature likely contributes significantly to adaptation of 
the species to its local environment. Our specific objectives are to: (1) 
explore spatial variation in environmental variables across the range 
of the sea scallop, (2) use environmental correlation-based outlier de-
tection methods to pinpoint potential targets of environment-based 
selection across the genome of the sea scallop, and (3) identify po-
tentially important environmental drivers of population structure and 
adaptation in scallops. This work represents one of the first population 
genomic studies on a bivalve species or on an invertebrate species 
with a planktonic juvenile and sessile adult life stage. This work also 
incorporates both environmental association-based outlier detection 
and nonlinear random-forest analysis (Breiman, 2001), a machine-
learning strategy only recently applied to genomic analysis that can 
help to account for interaction and covariation between variables 
(Brieuc, Ono, Drinan, & Naish, 2015). We extend a previous study 
identifying latitudinal clinal trends in allele frequency across the range 
using 7163 RAD-seq-derived SNPs (Van Wyngaarden et al., 2017) and 
identify environmental associations and possible mechanisms.

2  | METHODS

2.1 | Sample collection and RAD-seq

Sample collection and RAD-seq follow Van Wyngaarden et al. (2017). 
Using divers or bottom trawls, 252 adult scallops were collected from 
a total of 12 locations across the entire range of the species between 
2011 and 2013 (Table 1, Figure 2). A minimum of 12 scallops were 
collected per population (mean ± SD, 20.4 ± 2.8 scallops).

Muscle tissue samples were collected and preserved in AllProtect 
(Qiagen) or 80% ethanol. DNA extraction and RAD-seq library prepa-
ration were performed at the Aquatic Biotechnology Lab, Bedford 
Institute of Oceanography in Dartmouth, Nova Scotia. RAD-seq 
libraries were prepared using Sbf1 as described by Etter, Preston, 
Bassham, Cresko, and Johnson (2011) (see also Etter, Bassham, 

Hohenlohe, Johnson, and Cresko, 2011) with modifications. Each 
library was created using 22 individuals from each sampling loca-
tion (or 20 individuals for SUN) with a unique in-line barcode in the 
P1 adapter for each individual. The P1 adapter barcodes were 6 bp 
in length for all populations except for SSB, GEO, and SUN where 
the barcodes ranged from 5 bp to 9 bp. The barcodes for SSB, GEO, 
and SUN were chosen to ensure equal distribution of all nucleotides 
at each base position and to maximize the edit distance (Faircloth 
& Glenn, 2012). Based on edit tags analysis (Faircloth & Glenn, 
2012), the variable length barcodes edit distance ranged from two 
to eight (modal edit distance was six). Sequencing was performed 

F IGURE  2 Map of sea scallop collection locations from the 
Northwest Atlantic. Site MDA (Mid-Atlantic Bight) represents 
the middle of several nearby collection locations grouped as one 
population
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TABLE  1 Site name, site code, 
coordinates, and the number of sequenced 
P. magellanicus from each of 12 collection 
sites in the Northwest Atlantic Ocean

Site name Site code Latitude Longitude
Number of scallops 
used in analysis

Sunnyside, NL SUN 47.82 −53.87 20

Little Bay, NL LTB 47.15 −55.10 21

Magdalen Islands MGD 47.11 −62.02 21

Northumberland Strait NTS 46.13 −63.77 22

Passamaquoddy Bay PSB 45.06 −67.02 12

Bay of Fundy BOF 44.68 −66.07 22

Scotian Shelf - Middle SSM 44.52 −60.64 19

Gulf of Maine Inshore GMI 44.52 −67.03 20

Browns Bank SSB 42.84 −66.14 22

Gulf of Maine Offshore GMO 42.44 −70.39 22

George’s Bank GEO 41.61 −66.36 22

Mid Atlantic Bighta MDA 38.82 −73.60 22
aSeveral neighbouring sites sampled as one location
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at the McGill University and Génome Québec Innovation Centre, 
Montréal, Canada, using a HiSeq 2000 (Illumina) as 100-bp paired-
end sequences with one library per lane.

SNPs were detected using the de novo pipeline in STACKS v.0.9999 
(Catchen, Amores, Hohenlohe, Cresko, & Postlethwait, 2011). Loci 
were assembled using ustacks, requiring a minimum depth of cover-
age for a stack (m) of five and allowing four maximum nucleotide mis-
matches (M) between stacks. The catalog of loci was assembled using 
cstacks allowing a distance between loci in the catalog (n) of six. The 
final dataset was filtered using PLINK v.1.07 (Purcell, 2009; Purcell 
et al., 2007) to include only RADtags present in 75% of individuals in 
SNP discovery and calling; all SNPs included in the analysis were pres-
ent in 75% of individuals with a minor allele frequency (MAF) greater 
than 5%. Furthermore, we excluded individuals with more than 20% 
missing loci from the analysis. Loci were filtered for Hardy–Weinberg 
equilibrium using the program GENEPOP v.4 (Rousset, 2008), exclud-
ing loci out of equilibrium in six or more populations from the analysis 
(<0.7% of all loci).

2.2 | Environmental data collection and processing

We amalgamated environmental data from several databases; from 
Fisheries and Oceans Canada: Climate (Gregory, 2004) (years 1970–
2013), BioChem (Devine et al., 2014; DFO 2014) (years 2009–2014), 
and AZMP (DFO 2015), and from the National Oceanographic and 
Atmospheric Administration in the United States of America (NOAA, 
years 1990–2010), and the MODIS satellite database (NASA Goddard 
Space Flight Center Ocean Ecology Laboratory 2014) (years 2002–
2013). Data were averaged over multiple years available to remove 
the signatures of short-term variation in the marine environment. 
Available physical and chemical variables included water temperature, 
salinity, sigma-t (a measure of water density related to temperature 
and salinity), chlorophyll a (a measure of primary productivity), and 

concentrations of SiO4
4−, NO3

−, NO2
−, and PO4

3− (nutrients required 
for many marine primary producers).

We averaged data from all data sources within a bounding box 
of one square degree around each sample site to create site-specific 
averages for each data type used in the analysis. Data were sepa-
rated into surface and depth values based on the collection depth 
for each sampling location. Surface values encompassed depths 
between zero and 20 m except for collection sites less than 20 m 
depth, where 10 m was used as the surface cutoff. We averaged 
values from a cutoff approximately 10 m above a given collection 
depth to the collection depth for depth-profiled variables. In cases 
where multiple sample collection depths were provided, depth cut-
off parameters were altered to include the entire range of collection 
depths (Table 2).

Data validation and preparation were completed using R (R Core 
Development Team 2012). To address natural seasonal variation in 
the data, we calculated z-scores for each variable for each sample 
site per month and removed outliers where necessary. Variables with 
missing data for more than six sites were removed from subsequent 
analyses (29 variables in total were removed). For the remaining vari-
ables with missing data, we used single imputation using neighboring 
sites to estimate missing values (sites arranged by latitude, averaging 
sites directly north and south of the missing site). Following outlier 
removal and imputation, we standardized data to zero mean and unit 
variance by subtracting the mean and dividing by the standard devi-
ation. We then identified site-specific maximum and minimum values 
as well as seasonal averages for each variable, basing seasons largely 
on equinoxes. Winter included January, February, and March; spring 
included April, May, and June; summer included July, August, and 
September; and autumn included October, November, and December. 
The final dataset contained 90 variables spanning all available data 
types (hereby referred to as AllEnv). The 29 variables removed due to 
missing data translated to only six removed final variables following 

TABLE  2 Depth and surface ranges and bounding box coordinates used to select environmental data from databases for each of 12 
P. magellanicus collection sites in the Northwest Atlantic Ocean

Site name Site code Depth range (m) Surface range (m)

Bounding box top left
Bounding box bottom 
right

Latitude Longitude Latitude Longitude

Sunnyside, NL SUN −10 to −20 0 to −10 48.82 −54.87 46.82 −52.20

Little Bay, NL LTB −30 to −40 0 to −20 48.15 −56.10 46.15 −54.10

Magdalen Islands MGD −35 to −45 0 to −20 48.11 −63.02 46.11 −61.02

Northumberland Strait NTS −15 to −25 0 to −10 47.13 −64.77 45.13 −62.77

Passamaquoddy Bay PSB −20 to −30 0 to −20 46.06 −68.02 44.06 −66.02

Bay of Fundy BOF −30 to −140 0 to −20 45.68 −67.07 43.68 −65.07

Scotian Shelf - Middle SSM −35 to −50 0 to −20 45.52 −61.64 43.52 −59.64

Gulf of Maine Inshore GMI −60 to −80 0 to −20 45.52 −68.03 43.52 −66.03

Browns Bank SSB −50 to −125 0 to −20 43.84 −67.14 41.84 −65.14

Gulf of Maine Offshore GMO −70 to −90 0 to −20 43.44 −71.39 41.44 −69.39

George’s Bank GEO −50 to −100 0 to −20 42.61 −67.36 40.61 −65.36

Mid Atlantic Bight MDA −70 to −90 0 to −20 39.82 −74.60 37.82 −72.60
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minimum, maximum, and seasonal calculations. We repeated all anal-
yses using only the temperature, salinity, and chlorophyll a variables 
(n = 36 variables, henceforth CST), given that we expected these to be 
the most likely to associate with selection; they not only provide evi-
dence of food availability but also characterize water mass properties 
that can affect all trophic levels.

2.3 | Detection of outlier loci

We used two separate methods to detect outlier loci using both en-
vironmental datasets (four tests in total). The first method used a 
Bayesian framework implemented in the program BAYENV2 (Coop, 
Witonsky, Di Rienzo, & Pritchard, 2010; Guenther & Coop, 2013). 
This method calculates a set of “standardized allele frequencies” that 
controls for population history and structure when detecting loci 
whose allele frequencies show significant associations with environ-
mental variation. This method then calculates a Bayes factor (BF), 
which measures the weight of evidence for a model in which the 
environmental variable affects the allele frequency of a locus ver-
sus a null model with no environmental variable effect. To calculate 
the “standardized allele frequencies,” we randomly selected 700 loci 
(9.8% of total loci) identified as neutral (not under selection) in Van 
Wyngaarden et al. (2017). The null model correlation matrix was 
estimated from these loci in three repetitions of 100000 iterations. 
We visually compared correlation matrices from the final iterations 
of each run to each other and to an FST matrix of the neutral loci 
and determined there were no differences in the major patterns of 
the matrices. The final matrix from the first run was selected as the 
neutral matrix for use in further analysis. The final analysis detected 
locus-specific deviations from the “standardized allele frequencies” 
using 100,000 iterations. BFs were calculated at every locus for each 
environmental variable separately. To assess the significance of each 
BF (and the likelihood of classifying a locus as an outlier), we created 
five bins of loci based on the global minor allele frequency, as rec-
ommended in Coop et al. (2010) and implemented in Hancock et al. 
(2010) (Table 3). We selected loci with BFs in the top 5% of the range 
of BFs for each bin as outliers.

Latent factor mixed models (LFMMs) as described in Frichot, 
Schoville, Bouchard, and François (2013) were implemented as the 
second method of outlier detection in the R package LEA (Frichot 
& François, 2015). This method uses latent factors in a linear mixed 
model to control for population structure (the number of genetic clus-
ters within a group of populations, K) while detecting correlations 
between environmental and genetic variation. Previous analysis using 
the program STRUCTURE v.2.2.4 (Pritchard, Stephens, & Donnelly, 
2000) detected two genetic clusters (K = 2) (Van Wyngaarden et al., 
2017), and the genomic inflation factor analysis (GIF) in LEA corrob-
orated this result. The models were run for three repetitions, with a 
burn-in of 5,000 followed by 15,000 iterations. We combined Z-scores 
from the three repetitions using the median, calculated adjusted p-
values to correct for multiple testing, and produced a list of candidate 
outlier loci for each environmental variable (FDR = 0.05) following 
Frichot, Schoville, de Villemereuil, Gaggiotti, and Francois (2015). To 

ensure we included any loci potentially under selection, for AllEnv and 
CST separately, we combined the list of detected outliers from both 
BAYENV2 and LFMM to create two final outlier lists (AllEnvOutlier for 
AllEnv and CSTOutlier for CST).

2.4 | Environmental factors that influence 
genetic variation

We conducted principal components analysis (PCA) using the 
AllEnvOutlier and CSTOutlier loci using the R package adegenet 
(Jombart, 2008) to examine population structure among the sam-
pled populations at outlier loci. To examine the relationship between 
environmental and genetic variation among our collection sites, we 
calculated population-specific allele frequencies for AllEnvOutlier 
and CSTOutlier using the R package gstudio (Dyer, 2014). Next, we 
ran PCA on population-specific allele frequencies for AllEnvOutlier 
and CSTOutlier (AllEnvOutlierPCA and CSTOutlierPCA), and 
the population-specific environmental data in AllEnv and CST 
(AllEnvPCA and CSTPCA) using the R package adegenet. Linear re-
gression was then performed between the first principal compo-
nent (PC) from AllEnvOutlierPCA (AllEnvOutlierPC1) and the first 
PC from the PCA on AllEnv (AllEnvPC1) as well as the first PC from 
CSTOutlierPCA (CSTOutlierPC1) and the first PC from the PCA on 
CST (CSTPC1).

We then conducted redundancy analysis (RDA), a multivariate ca-
nonical correlation analysis, using the R package vegan (Oksanen et al., 
2015) on population-specific allele frequencies for AllEnvOutlier and 
CSTOutlier and selected PCs from AllEnvPCA and CSTPCA, respec-
tively. This analysis allowed us to determine which environmental 
variables used as explanatory variables in the RDA best explain the 
genetic population structure. Each PC that explained more than 5% of 
the total explainable variance in the AllEnvPCA (five axes) and CSTPCA 
(four axes) was selected as an explanatory variable. Backward stepwise 
variable selection using 1,000 or 10,000 iterations selected the most 
valuable environmental PCs within the model. To determine the pro-
portion of model variation attributable to climate versus geographic 
distance between populations versus combined effects, we next 
performed partial RDA (pRDA), conditioning the genetic matrix on 
the distances from the furthest north population (SUN) along a one-
dimensional transect that included all populations [estimated using 
GOOGLE EARTH (2013)].

TABLE  3 Number of loci and minor allele frequency (MAF) range 
included in each of five bins (based on global minor allele frequency) 
used by the program BAYENV2 to detect loci potentially under 
selection among 12 populations of Placopecten magellanicus

Bin Number of loci MAF range

A 3,566 0.05–0.139

B 1,390 0.14–0.229

C 908 0.23–0.319

D 691 0.32–0.409

E 608 0.41–0.5
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Multiple linear regressions quantified the direction and magnitude 
of the effect of environmental variables on genetic variation. We used 
results from RDA to select environmental variables used in the analy-
ses. After examining weightings of the environmental variables on the 
important PCs selected during RDA, we selected the five most highly 
weighted variables from each PC for use as explanatory variables in 
linear mixed models. Based on results from the initial linear mixed 
models (see Section 3), we generated models focusing on measure-
ments of water temperature at surface and at depth (Table 4). For each 
response variable (AllEnvOutlierPC1 and CSTOutlierPC1), we fitted a 
global multiple regression model with all selected environmental vari-
ables. We then used the R package MuMIn (Barton, 2014) to run all 
possible configurations of the global model and pinpointed the best 
model fits with AICc model selection. We examined cumulative AICc 
model weights to rank each parameter in order of importance and es-
timated coefficients for each environmental parameter using model 
averaging (Arnold, 2010).

We also used nonlinear random-forest (RF) analysis to identify 
important environmental variables and then compared key drivers 
with those identified using multiple linear regressions. One key at-
tribute of RF is the automatic computation of variable importance, 
which allows us to determine which environmental variables influ-
ence population structure. Additionally, RF considers interaction 

between predictor variables and may manage the covariation among 
environmental variables more effectively than the multiple linear 
regression approach (Brieuc et al., 2015). This ensemble approach 
benefits from growing a large group of decision trees to improve 
overall performance.

RF cannot tolerate missing data, so we used a method based on 
weighted k nearest neighbors (KNN) called KNNcatImpute (Schwender, 
2012) to impute the missing genotypes in our genetic SNP data using 
the scrime package in R (Schwender & Fritsch, 2013). After imputation, 
the individual genotypes at each outlier SNP were transformed to cat-
egorical data. SNPs are a biallelic genetic marker and only two alleles 
and three types of genotypes can be present at each SNP; the built 
RF is thus a three-class classification model. Environmental variables 
were used as predictors of individual genotypes at each outlier SNP 
using 1,001 trees.

We used permutation importance, the variable importance func-
tion built in RF, to rank the relative roles of environmental variables 
in influencing population structure. To obtain a reliable estimation of 
variable importance, we applied 10-fold cross-validation, dividing the 
entire dataset into 10 subsets. Nine subsets trained the RF model, and 
the other subset was used for validation; this process was repeated 10 
times for each SNP genotype. In each of the 10 runs, we calculated a 
permutation importance array for all environmental variables. Noting 

TABLE  4 Data included in all multiple linear regression models used to determine the direction and magnitude of the effect of 
environmental variables on genetic variation among 12 populations of Placopecten magellanicus

Method of variable selection Variables included Response variable

Most highly weighted variables from AllEnvPCs selected by RDA Deep average autumn salinity AllEnvOutlierPC1

Deep minimum SiO4

Surface average autumn salinity

Surface average winter temperature

Surface minimum temperature

Most highly weighted variables from CSTPCs selected by RDA Deep average winter temperature CSTOutlierPC1

Deep average minimum temperature

Surface average winter temperature

Deep maximum salinity

Deep average autumn salinity

Surface maximum chlorophyll A

Surface average spring chlorophyll A

Surface average summer chlorophyll A

Deep minimum chlorophyll A

Surface minimum chlorophyll A

Temperature variables selected following the results of initial linear mixed models Deep average autumn temperature AllEnvOutlierPC1, 
CSTOutlierPC1Deep average spring temperature

Deep average summer temperature

Deep average winter temperature

Surface average autumn temperature

Surface average spring temperature

Surface average summer temperature

Surface average winter temperature
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that importance values can be negative, we computed the exponential 
values of the importance array and averaged each importance value 
over the total importance sum of all environmental variables to gener-
ate an importance proportion array. The importance proportions were 
averaged over the 10 runs to determine average importance propor-
tions. For each SNP genotype output (621 for AllEnv and 285 for CST), 
an RF model was built to calculate an array of permutation importance 
proportions for all environmental variables. We calculated the overall 
average importance proportion for each environmental variable over 
all loci. All RF analyses were performed using randomForest package in 
R (Liaw & Wiener, 2002).

2.5 | Gene ontology

We performed gene ontology (GO) analysis on AllEnvOutlier and 
CSTOutlier in the program Blast2GO (Conesa et al., 2005) using the 
program default parameters and InterProScan to improve GO annota-
tion quality.

3  | RESULTS

3.1 | Sample collection and RAD-seq

Following filtering and quality control steps, we included 245 individ-
ual scallop samples in our analysis (97.2% of sequenced individuals), 
19672 RADtags (14.9% of initial RADtags), and 7216 SNPs (4.2% of 
initial SNPs) (Table 5). Read count per individual per RADtag averaged 
56.12 ± 46.64 (mean ± SD). Final filtering required SNPs to be present 
in >95% of individuals with a MAF >5% and removed individuals with 
>20% missing data. The final dataset included 245 individual scallop 
samples and 7163 SNPs. Average pairwise r2 values indicating linkage 
disequilibrium remained low overall (0.0044 ± 0.0098, mean ± SD) 
(Van Wyngaarden et al., 2017).

3.2 | Detection of outlier loci

The neutral matrices calculated to generate “standardized allele fre-
quencies” for BAYENV2 varied little within runs and when compared 
to the FST matrix calculated for the neutral loci; we therefore chose a 
single matrix for further calculations with BAYENV2. LFMM identified 

K = 2 as the most supported number of clusters (and thus latent fac-
tors) using GIF analysis, with values of 0.85 for AllEnv and 0.83 for 
CST. According to Frichot and François (2015), p-values in this analy-
sis calibrate correctly when GIF approaches one.

Overall, LFMM identified more loci potentially under selection than 
BAYENV2. Combining the results from both programs, AllEnv identi-
fied 621 loci (8.7% of all loci) as under selection, whereas CST identi-
fied 285 loci (4.0% of all loci) as under selection; 250 loci were shared 
between the two datasets (Table 6). Using AllEnv, BAYENV2 detected 
128 loci as putatively under selection (1.8% of total loci), whereas 
LFMM detected 511 (7.1% of total loci). Only 18 loci were common 
to both the BAYENV2 and LFMM sets. Using CST, BAYENV2 detected 
72 loci (1.0% of total loci), whereas LFMM detected 218 (3.0% of total 
loci), with only five loci shared between the two methods. Within the 
BAYENV2 results, the AllEnv outlier list and CST outlier list shared 37 
loci (Table S1). The LFMM analysis of AllEnv and CST overlapped com-
pletely in loci identified (Table S2). We also compared our combined 
outlier lists to the FST-based outliers reported in Van Wyngaarden et al. 
(2017) (112 outliers). The combined AllEnv outlier list and the FST-based 
list shared 53 loci, the combined CST outlier list and the FST-based list 
shared 35 loci, and all three lists shared 28 loci (Table S3).

3.3 | Patterns of genetic and environmental variation

PCA of all individuals and sets of outlier loci detected using AllEnv and 
CST both split north and south populations along the first PC, separat-
ing the populations into two clusters as seen in the BAYENV2 results 
(Figure 3). Using AllEnvOutlier, the first PC explained 2.38% of the 
total explainable variance in the model, and using CSTOutlier, the first 
PC explained 3.33% of the total explainable variance. The PCA on the 
population-specific allele frequencies for AllEnvOutlier and CSTOutlier 

TABLE  5 Number of Placopecten magellanicus individuals and 
number of SNP loci included in initial RAD-sequencing and final 
analysis following quality control

Parameter Value

Individuals sequenced 252

Individuals following QC 245 (97.2% of Individuals sequenced)

Initial RAD tags 131,897

RAD tags following QC 19,672 (14.9% of initial RAD tags)

Initial SNPs 173,482

SNPs following QC 7,216 (4.2% of Initial SNPs)

SNPs in HWE 7,163 (99.3% of SNPs following QC)

TABLE  6  (A) Matrix of the number of outlier loci detected in P. 
magellanicus out of 7163 total loci by the methods BAYENV2 and 
LFMM using two environmental datasets, AllEnv and CST. The 
number of loci shared between different environmental datasets and 
programs are italicized. (B) Combined total number of loci detected 
from two methods, BAYENV2 and LFMM, using two environmental 
datasets, AllEnv and CST. The number of loci shared between the 
different environmental datasets is italicized

(A)

BAYENV2 LFMM

AllEnv CST AllEnv CST

BAYENV2

AllEnv 128 37 18 –

CST – 72 – 5

LFMM

AllEnv – – 511 218

CST – – – 218

(B) AllEnv CST

AllEnv 621 250

CST – 285
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(not shown) produced a similar clustering pattern; however, the first 
PC explained much more variance, with AllEnvOutlierPC1 explaining 
26.47% of the total model variance and CSTOutlierPC1 explaining 
31.93% of the total model variance.

The environmental data produced the same pattern of north–
south population clustering for both datasets (AllEnv and CST, 
Figure 4). However, these PCAs further separated the southernmost 
population, Mid-Atlantic Bight (MDA), along the second PC. The first 
PC of the environmental data explained much more variance than in 
the genetic models, with AllEnvPC1 explaining 40.18% of the total 
model variance and CSTPC1 explaining 51.35%. Linear regressions 
between genetic and environmental data (i.e., AllEnvOutlierPC1 
and AllEnvPC1 as well as CSTOutlierPC1 and CSTPC1) showed a 
strong and significant relationship (Figure 5), with adjusted R2 values 
of .79 for AllEnv and .66 for CST, further indicating similar spatial 
patterns in genetic and environmental variation among our sample 
sites. The north–south population split can be seen in heat maps 

of standardized major allele frequency and standardized values for 
environmental variables in AllEnv and AllEnvOutlier and CST and 
CSTOutlier (Figure 6). In Figure 6b,d, lower standardized values can 
be seen in the four furthest north populations, and in Figure 6a,c, a 
similar split can be seen in standardized major allele frequencies, al-
though only for a subset of alleles showing the strong clinal pattern 
driving the north–south split.

3.4 | Environmental factors that influence 
genetic variation

To examine the effects of climate versus geography on the genetic vari-
ation within the outlier SNP loci, we selected five PCs from AllEnvPCA 
and four from CSTPCA for use as explanatory variables in RDA, each ex-
plaining more than 5% of the total variance in the PCA. In AllEnvPCA, the 
five selected axes explained 89.78% of the total model variance, and in 
CSTPCA, the four selected axes explained 88.96% of the total variance. 
Backwards stepwise variable selection on the RDA for AllEnv retained 
only AllEnvPC1 as an important explanatory variable, whereas selection 
on the RDA for CST retained both CSTPC1 and CSTPC4 (Figure 7). Both 

F IGURE  4 Principal components analysis plots for environmental 
variables used in the detection of potentially adaptive signals among 
12 populations of Placopecten magellanicus. Environmental variables 
were separated into two datasets, (a) AllEnv (90 environmental 
variables) and (b) CST (36 environmental variables)
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F IGURE  3 Principal components analysis plots for loci detected 
as potentially under selection through environmental correlation 
with (a) AllEnv (90 environmental variables, n = 621 loci), (b) CST 
(36 environmental variables, n = 285 loci) in 12 populations of 
Placopecten magellanicus
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models demonstrated significant relationships, despite low adjusted R2 
values (AllEnv, R2

adj = .15, p = .001; CST, R2
adj = .23, p = .001). Variance 

partitioning showed that climate explained a significant component of 
the model variation in both cases, explaining 32.36% of model variation 
in AllEnv (compared to 30.37% explained by geography and 37.28% 
explained as joint effects) and 41.34% of model variation in CST (com-
pared to 21.27% explained by geography and 37.39% explained by joint 
effects).

The RDAs for AllEnv and CST both separated north and south pop-
ulation groups. AllEnv retained only one environmental PC axis, and we 
therefore show only one RDA axis in the plot (Figure 7a); however, this 
axis clearly divides the north and south populations. In CST, RDA1 divided 
north and south but further division among sample sites can be seen 
along RDA2, including separation of populations from Newfoundland 
and the Gulf of St. Lawrence (Figure 7b). Partial RDA, following condition-
ing of the genetic matrix on the distance between populations, no longer 
separated north and south populations once the effect of population sep-
aration distance was removed (Figure 8, AllEnv, R2

adj = .04, p = .06; CST, 
R2

adj = .07, p = .03). We expected this result given the strong relationship 

between environmental parameters and latitude in this region and the 
large latitudinal but small longitudinal span of the samples.

To choose environmental parameters to include in the multiple linear 
models, we examined variable weightings on the PC axes selected during 
RDA and retained the five most highly weighted variables from each 
axis. For all variables included in each global model, we calculated cumu-
lative AICc weights and model-averaged parameter estimates (Table 7). 
Model selection using CSTEnv and all 10 selected environmental vari-
ables could not determine best fit models and provide accurate estimates 
for parameter weights and coefficients due to overfitting of the model. 
Upon further examination of the RDA results, CSTPC1 appeared more 
important in driving the north–south population split. We repeated our 
multiple linear regressions and model averaging using only the five most 
highly weighted variables from CSTEnvPC1. In all cases, model weights 
averaged over all possible iterations of the models containing a partic-
ular variable indicated surface average winter temperature as the most 
important variable. Surface minimum temperature (occurred in winter) 
and deep average winter temperature also ranked highly, suggesting 
that the coldest temperatures encountered by both juvenile and adult 
scallops may play an important structuring role for scallop populations. 
Parameter estimates for all three variables were positive; increased mini-
mum temperatures in the model corresponded to larger values of the first 
PC (higher PC values match the south population cluster).

Using RF, we calculated the importance proportion for all environ-
mental variables using both AllEnvOutlier and CST Outlier (Figure 9). 
Using AllEnvOutlier, deep average summer salinity, deep minimum 
salinity (occurred in spring), and deep maximum salinity (occurred in 
autumn) ranked as the most important environmental variables. Surface 
average autumn temperature, deep average winter temperature, and 
deep minimum temperature (occurred in winter) were also selected as 
important variables. CSTOutlier once again ranked salinity-associated 
variables as most important; however, deep average winter tempera-
ture and deep minimum temperature ranked highly and the impor-
tance proportions for CSTOutlier exceeded those from AllEnvOutlier.

3.5 | Gene ontology

Blast2GO functionally annotated very few outlier loci. CSTOutlier de-
termined annotation matches for only four loci (1.4% of loci), with a 
BLAST hit but no GO annotation at one further locus. In AllEnvOutlier, 
only five loci (0.8% of total loci) matched, with a BLAST hit but no 
GO annotation in one further locus. The two lists of outliers shared 
three matches, with GO annotations split between molecular func-
tion (calcium ion and carbohydrate binding) and metabolic processes 
(regulation of transcription and steroid hormone-mediated signal-
ing). In CSTOutlier, GO annotation of the remaining locus identified a 
molecular function (oxidoreductase activity) and a metabolic process 
(oxidation–reduction process). In AllEnvOutlier, the GO annotations 
of the remaining two loci differed, one locus with molecular functions 
(oxidoreductase activity) and metabolic processes (oxidation–reduc-
tion process) and the other locus with several annotations (molecular 
function/catalytic activity, transferase activity, and folic acid binding, 
and metabolic processes/cellular metabolic processes) (Table 8).

F IGURE  5 Linear regressions between the first principal 
component of PCA on population-specific allele frequencies (Genetic 
PC1) and population-specific environmental parameter values 
(Environmental PC1) for 12 populations of Placopecten magellanicus 
for (a) AllEnv (90 environmental variables, 621 loci), and (b) CST (36 
environmental variables, 285 loci)
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4  | DISCUSSION

The identification of environmental factors regulating marine popu-
lation structure can both inform fisheries management through the 
identification of management units and help predict species’ re-
sponses to environmental change. Here, we applied a landscape 
genomics approach using 7163 RAD-seq-derived SNPs (previously 
identified in Van Wyngaarden et al., 2017) and 90 environmental vari-
ables to identify oceanographic factors associated with a latitudinal 
genomic cline in sea scallops in eastern North America. Our results 
support the hypothesis that seasonal periods of extreme cold restrict 
gene flow and influence population structure in this species. This work 
builds on previous studies on population structure in P. magellanicus 
(Kenchington et al., 2006; Owen & Rawson, 2013), particularly the 
identification of a major genomic discontinuity separating the north 
and south of the species range (Van Wyngaarden et al., 2017). Our 

multivariate analysis using the outlier loci and environmental variables 
identified minimum and average winter temperatures as the most im-
portant variables describing genetic variation among populations of 
the scallop, indicating that overwinter survival may strongly influence 
structure of these populations. We also identified minimum salinity as 
a potential structuring force, although to a lesser extent and affecting 
fewer populations than temperature changes over the range of the 
species. Overall, the observed genomic and environmental correla-
tions support the hypothesis of latitudinal structuring driven predomi-
nantly by ocean temperature.

4.1 | Environmental variables driving adaptation

Our results highlight ocean temperature as a critical environmental 
factor contributing to population structuring of the sea scallop. The 
sea scallop’s distribution spans almost 10° latitude encompassing an 

F IGURE  6 Heat map of (a) standardized major allele frequencies (AllEnvOutlier, 621 loci), (b) standardized environmental variable value 
(AllEnv, 90 variables), (c) standardized major allele frequencies (CSTOutlier, 285 loci), and (d) standardized environmental variable value (CST, 
36 variables) for 12 populations of Placopecten magellanicus. Loci in (a) were selected as potentially under selection through correlation with 
environmental variables in (b). Loci in (c) were selected as potentially under selection through correlation with environmental variables in (d). 
SNPs in (a) and (c) are arrange in order of strongest to weakest differentiation pattern with major alleles based on SUN as a reference population. 
Variables in (b) and (d) are automatically grouped by similarity, and the main components of each group are listed below the plot

SNP
MDA
GEO
GMO
SSB
GMI

SSM
BOF
PSB
NTS

MGD
LTB

SUN
P

op
ul

at
io

n

0.00 0.50 1.00
Standardized allele frequency

MDA
GEO
GMO
SSB
GMI
SSM
BOF
PSB
NTS
MGD
LTB
SUN

P
op

ul
at

io
n

−2 −1 0 1 2
Standardized value

Environmental variable
ChlASalTempNutrients

(b)

(a)

MDA
GEO
GMO
SSB
GMI
SSM
BOF
PSB
NTS
MGD
LTB
SUN

P
op

ul
at

io
n

−2 −1 0 1 2
Standardized value

Environmental variable
ChlA Sal Temp & Sal ChlA

(d)

(c)

SNP
0.00 0.50 1.00

Standardized allele frequency

MDA
GEO
GMO
SSB
GMI

SSM
BOF
PSB
NTS

MGD
LTB

SUN



2834  |     VAN WYNGAARDEN et al.

extremely large range of environmental conditions (approximately 
5–10°C difference in temperatures year-round), primarily caused by 
prevailing currents (Townsend et al., 2006). The Labrador Current, a 
cold Arctic current, flows south from the coasts of northern Canada and 
Greenland, splitting around Newfoundland and circulating through the 
Gulf of St. Lawrence (Townsend et al., 2006). In contrast, the warm Gulf 
Stream moves north from the Gulf of Mexico along the east coast of 
North America. These two currents meet and move roughly offshore 
around Nova Scotia, exposing scallop populations to large differences 
in water temperature (and other oceanographic variables) in different 
areas of their range (Townsend et al., 2006). Our environmental PCAs 
clearly detected the differences in environment associated with these 
currents. The first PC in our environmental PCAs illustrates the split 
between northern and southern populations and for both AllEnv and 
CST explains more than 40% of the variation in the environmental data. 
Using FST-based outlier detection methods, Van Wyngaarden et al. 
(2017) identified a strong genetic population separation related to these 
currents and the other oceanographic and environmental features in the 
region; populations in the north, generally exposed to colder tempera-
tures, clustered separately from the southern populations, which are 

often exposed to warmer temperatures. This genetic split also clearly 
appears in the first PC of our genetic outlier PCAs, however the first 
PC in both of our analyses explains little variance, especially when com-
pared with outliers used in Van Wyngaarden et al. (2017). This differ-
ence in explained variance among the genetic PCs likely results from the 
method used to detect outlier loci given some differences between the 
outlier lists detected here and in Van Wyngaarden et al. (2017) (Table 
S3). Van Wyngaarden et al. (2017) used BayeScan (Foll & Gaggiotti, 
2008), which uses an FST-based method to detect outliers and gener-
ally selects the most divergent loci. In comparison, both BAYENV2 and 
LFMM use environmental correlations to detect outlier loci. Although 
these methods may also identify highly divergent loci as outliers, if a 
highly divergent locus (likely to be detected by BayeScan) does not cor-
relate with the environmental variation captured in our environmental 
dataset, it would not be included in the final outlier list and would not 
contribute to the variance explained by the first PC in our genetic PCAs.

F IGURE  7 Redundancy analysis plots for loci detected as 
potentially under selection through environmental correlation 
with (a) AllEnv (90 environmental variables, n = 621 loci), (b) CST 
(36 environmental variables, n = 285 loci) in 12 populations of 
Placopecten magellanicus. Explanatory variables (arrows) were 
principal components axes from PCA on (a) AllEnv and (b) CST, 
retained as important following backwards stepwise variable 
selection
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F IGURE  8 Partial redundancy analysis plots for loci detected 
as potentially under selection through environmental correlation 
with (a) AllEnv (90 environmental variables, n = 621 loci), (b) CST 
(36 environmental variables, n = 285 loci) in 12 populations of 
Placopecten magellanicus. Explanatory variables used were principal 
components axes from PCA on (a) AllEnv and (b) CST, retained 
following backwards stepwise variable selection. The genetic matrix 
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effects of geographic separation between populations
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Van Wyngaarden et al. (2017) documented a genetic discontinuity 
between northern and southern scallop populations in all SNP loci, 
although the magnitude of differentiation was significantly higher at 
outlier loci. This pattern indicates that although neutral processes may 

play a role in population structuring, selection plays a dominant struc-
turing role across the geographic range of the sea scallop. Considering 
this finding, we focused on environmental-based outlier detection 
methods to identify putative causes of population structure in the sea 
scallop. Of the environmental variables we examined, temperature pri-
marily drives the separation of northern and southern populations and 
the coldest temperatures (winter and minimum) differ most between 
these groups. This finding is consistent with other studies in the North 
Atlantic, where temperature variations (particularly with latitude) rep-
resent some of the strongest differences among regions (Townsend 
et al., 2006); temperature is likely the dominant selective force in 
this region and among scallop populations. Strong correlations be-
tween genetic variation and ocean temperatures have been observed 
in many North Atlantic fish species (e.g., Berg et al., 2015; Bourret, 
Dionne, Kent, Lien, & Bernatchez, 2013; Bradbury et al., 2010, 2014; 
Limborg et al., 2012) and other North Atlantic invertebrates, spe-
cifically in Benestan et al. (2016) where the population structure of 
American lobster (Homarus americanus) was also found to be driven by 
minimum annual water temperatures.

TABLE  7 Cumulative Akaike information criterion model weights 
(Σ ωi) and model-averaged parameter estimates (full: variables 
assumed to be present in all models with a coefficient of 0 in some 
cases; subset: variables only present in models where the coefficient 
was not 0) in models predicting whether genetic variation in outlier 
loci among populations of Placopecten magellanicus is a function of 
environmental variation. (A) Outlier loci were detected through 
correlations with an environmental dataset of 90 variables (AllEnv, 
n = 621 loci). Environmental variables were selected following the 
results of principal components analysis and redundancy analysis. (B) 
Outlier loci were detected through correlations with an 
environmental dataset of 36 variables (CST, n = 285 loci). 
Environmental variables were selected following the results of 
principal components analysis and redundancy analysis. (C) Outlier 
loci were the same used in (A). Environmental variables were 
selected following the results from (A) and (B). (D) Outlier loci were 
the same used in (C). Environmental variables were selected 
following the results from (A) and (B)

Parameter Σ ωi

Model-averaged parameter 
estimates

Full Subset

(A) SurfAvWinTemp 0.426 0.6767452 1.5889694

SurfMinTemp 0.315 0.1673587 0.5337035

SurfAvAutSal 0.272 0.2465678 0.9065121

DepMinSiO4 0.256 0.2009489 0.7841225

DepAvAutSal 0.152 0.02467925 0.16288929

(B) SurfAvWinTemp 0.437 0.5586436 1.2785748

DepAvWinTemp 0.344 0.5687936 1.6505098

DepMaxSal 0.343 −0.4611794 −1.3452456

DepMinTemp 0.275 0.3441115 1.2523863

DepAvAutSal 0.109 −0.001612218 −0.014871888

(C) SurfAvWinTemp 0.643 1.031135 1.604291

DepAvWinTemp 0.282 0.04939479 0.17471122

SurfAvAutTemp 0.142 0.1584858 1.0963318

SurfAvSumTemp 0.141 −0.09856687 −0.69285742

DepAvSprTemp 0.103 0.04809931 0.45494143

DepAvAutTemp 0.095 0.04477454 0.46824153

DepAvSumTemp 0.083 0.01956854 0.23171602

SurfAvSprTemp 0.080 −0.01290984 −0.1627252

(D) SurfAvWinTemp 0.587 0.6509583 1.10358

DepAvWinTemp 0.302 0.1932762 0.6457666

DepAvSprTemp 0.131 0.004951037 0.067160279

SurfAvAutTemp 0.121 0.08023971 0.5923327

SurfAvSumTemp 0.095 0.01497057 0.16543456

DepAvAutTemp 0.092 −0.02916119 −0.30036982

DepAvSumTemp 0.089 0.02933703 0.312122

SurfAvSprTemp 0.072 0.07923188 0.63938784

F IGURE  9 Proportion of importance (average per variable 
importance/importance sum of all variables) for the top 15 
environmental variables determined using random forest and (a) 
AllEnv and AllEnvOutlier, and (b) CST and CSTOutlier
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However, in many regions other environmental features often co-
vary with temperature (e.g., salinity or ChlA) and in some analyses tem-
perature may act as an unintentional proxy for the true selective force 
(a species may appear to adapt to temperature when in fact they are 
experiencing selection due to another variable such as ocean produc-
tivity). This may have particular relevance for the sea scallop, because 
our sampling locations and temperature gradient both span the same 
north–south axis. There is also some evidence of a slight north–south 
salinity gradient, with the lowest salinities in MGD and NTS and the 
highest salinity in MDA (Figure 6b,c). Although clear associations be-
tween genetic variation and temperature have been reported in sev-
eral other species, including Pacific invertebrates (Pespeni & Palumbi, 
2013), studies also demonstrate genomic adaptation to environmental 
gradients other than temperature, such as adaptation to salinity gra-
dients in several Baltic Sea species (Berg et al., 2015; Limborg et al., 
2012; Sjöqvist et al., 2015). In our analyses, in addition to cold tem-
peratures RF analysis also identified salinity as an important environ-
mental variable, likely driven by very low salinity values at NTS and 
MGD in the Gulf of St. Lawrence. Our RF analyses used allele frequen-
cies across all populations; however, by handling covariation between 
environmental data RF may have been able to detect the smaller-scale 
variation associated with salinity in the Gulf of St. Lawrence that may 
have been masked by the strong temperature associations influenc-
ing the multiple linear regression analysis. Overall, genetic variation 
reflects the geographic patterns present in the significant environmen-
tal variables (Figure 10). When plotted against pairwise FST (calculated 
using ARLEQUIN v.3.5 (Excoffier & Lischer, 2010)), the winter and 
minimum water temperatures clearly differ between Van Wyngaarden 
et al. (2017)’s northern and southern population groups. Additionally, 
NTS has a higher differentiation from SUN than other nearby popu-
lations, potentially reflecting a response to the lower minimum and 
summer salinities present at that location. Further sampling along a 

salinity gradients not confounded by a temperature gradient may help 
to disentangle the covarying effects.

4.2 | Mechanisms of adaptation

The genomic associations with ocean temperature during periods of 
extreme cold (i.e., winter) suggest temperature-associated mortality 
may significantly structure sea scallop populations. Sea scallops re-
produce via broadcast spawning, generally in the autumn, although 
timing varies along their range. Given that scallops tend to spawn in 
the warmest water (Thompson, 1977), generally between August and 
October (Beninger, 1987; Langton, Robinson, & Schick, 1987; Naidu, 
1970), and they likely settle before December (Naidu & Robert, 2006), 
a link between winter temperatures and larval mortality appears un-
likely. Our analyses point to the overwinter survival of juvenile scal-
lops as a potentially important structuring force limiting the effective 
dispersal of scallops between our northern and southern population 
groups, rather than selective mortality of planktonic larval scallops, and 
future experimental studies on larval and juvenile scallops may help to 
clarify this possibility. Some evidence suggests that temperatures ex-
perienced by adults can help ensure a healthy larval year class (Dickie, 
1955; DuPaul, Kirkley, & Schmitzer, 1989; Kirkley & Dupaul, 1991; 
Langton et al., 1987; Macdonald & Thompson, 1985). Interestingly, 
our study identified surface temperature rather than temperature at 
depth as the most important driver of selection, contrary to expecta-
tions of juvenile scallop survival. One possible explanation is that deep 
temperature values are often estimated or provided as a range at col-
lection sites, presumably reducing accuracy of those measurements 
relative to those for surface temperature. Our Blast2GO results iden-
tified possible genetic matches with several cellular processes, which 
may be temperature dependent, highlighting potential mechanisms 
of thermal adaptation in the sea scallop. Unfortunately, the lack of 

Environmental data Locus name GO name

AllEnv 16087_68 F: catalytic activity; 
P: metabolic process; 
F: transferase activity; 
F: folic acid binding; 
P: cellular metabolic processes

AllEnv 24384_24 F: oxidoreductase activity; 
P: metabolic process; 
P: oxidation–reduction process

AllEnv and CST 12228_13 P: regulation of transcription; 
P: steroid hormone-mediated signaling 
pathway

AllEnv and CST 20561_41 F: carbohydrate binding

AllEnv and CST 25748_78 F: calcium ion binding

CST 15446_21 F: oxidoreductase activity, acting on paired 
donors, with incorporation or reduction of 
molecular oxygen, reduced pteridine as one 
donor, and incorporation of one atom of 
oxygen; 
P: oxidation–reduction process

TABLE  8 Blast2GO functional 
annotation of outlier SNP loci from 12 
populations of Placopecten magellanicus. 
Outliers were detected through 
environmental correlations with 90 
environmental variables (AllEnv, 621 loci) 
or a subset of 26 environmental variables 
(CST, 285 loci)
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available genetic resources (i.e., reference genome) for the sea scallop 
impedes our ability to evaluate fully the functional importance of the 
loci identified here. Until improved genetic data resources for the sea 
scallop or related species are available, any conclusions drawn from 
annotation results are preliminary.

4.3 | Alternative contributions to 
population structure

Despite the clear association observed with ocean temperature and 
population structure, selective processes may not be the sole driving 
mechanism of population structure in the sea scallop. Neutral oceano-
graphic barriers to connectivity have been documented in other ma-
rine bivalves in the Northwest Atlantic, including Mytilus sp. in the 
Gulf of Maine (Yund et al., 2015). As described in a review by Bierne, 
Welch, Loire, Bonhomme, and David (2011), in many cases local ad-
aptation alone may not explain the genetic structure detected among 
populations or the geographic location of the strong break between 
population clusters. Tension zones (caused by endogenous barriers 
to gene flow) may have arisen independent of selection caused by 
environmental variation along the range of the species, potentially 
influencing the separation of population groups between the north 
and south of the species range. These tension zones may associate 
with environmental clines, and a combination of both endogenous and 
exogenous barriers (tension zones and selection) could contribute to 
the detected structure. This scenario could also reinforce local adapta-
tion associated with environmental adaptation (Sexton, Hangartner, 
& Hoffmann, 2014; Shafer & Wolf, 2013), furthering differentiation 
between regions. The detection of a genetic discontinuity between 
northern and southern populations of the sea scallop in both outlier 
and neutral loci (Van Wyngaarden et al., 2017) suggests that a combi-
nation of neutral and selective forces leads to the population structure 
detected, although the magnitude of the genetic break in outlier loci 
is larger than that of neutral loci indicating that selective forces play a 
larger structuring role than neutral forces in the sea scallop.

The sea scallop range encompasses an area of complex oceanogra-
phy and several processes could contribute to the neutral genetic sep-
aration of populations including potential current-related fronts that 
may prevent larval movement between regions, upwelling and water 
movement related to the continental shelf, and storm mixing along the 
coast (Townsend et al., 2006). These factors may inhibit the successful 
movement, settlement, and growth of larvae and can be difficult to 
accurately incorporate into models of connectivity that try to calculate 
larval dispersal. Additionally, larval behavior significantly impacts dis-
persal in many cases (Shanks, 2009) and can be difficult to accurately 
model and evaluate. Using postsettlement genetic structure to deter-
mine what processes influence connectivity among sea scallop popula-
tions, our methods inherently account for the effects of larval behavior 
and complexity when drawing conclusions. Although we believe our 
results to be robust to complications of neutral population structure 
and geographic distance, additional sampling (especially from popula-
tions at the same latitude) will help to more thoroughly separate the 
joint effects of climate and geography on scallop population structure 

as it may allow sampling of populations with a similar climatic profile at 
varying separation distances.

4.4 | Challenges and limitations

Many reviews on environmental association studies recommend re-
moving the effects of neutral population structure to fully assess the 
effect of selection on population structure in natural systems (e.g., 
Rellstab, Gugerli, Eckert, Hancock, & Holderegger, 2015) and account-
ing for geographic distance and isolation by distance when examining 
potential isolation by ecology (e.g., Shafer & Wolf, 2013); however, 
this is a particular challenge in our system. Because a single north–
south population split characterizes our sample sites rather than a 
classic isolation-by-distance pattern (Van Wyngaarden et al., 2017), 
geographic distance among populations may not influence our results 
the way it would in a system characterized by a classic stepping-stone 
pattern. Our samples also align along the north–south axis of the pop-
ulation range providing few opportunities to examine the effects of 
distance between samples without also removing the effects of lati-
tude. To minimize the potential bias of neutral population structure on 
our results, we focused our analysis solely on outlier loci potentially 
under selection in the genome, likely making our analyses less prone 
to the confounding effects of neutral population structure. We also 
compared the results of RDA and pRDA, which controls for geographic 
distance among populations. Even when controlling for geographic dis-
tance, our results nonetheless indicate climate as a significant popula-
tion structuring force, although the patterns of population clustering 
change slightly.

Another source of bias in population genomics studies is the ef-
fect of age-related structuring in population samples, which has been 
documented in scallops previously (Owen & Rawson, 2013), poten-
tially due to recruitment events or yearly environmental fluctuations. 
Although our samples were collected over a relatively short time pe-
riod (2011–2013), we made attempts to cover multiple age classes to 
avoid this issue.

Our analyses pinpointed potential environmental influences on 
sea scallop population structure; however, annotating the outlier 
SNPs of interest remains challenging. Although RAD-seq generates 
vast quantities of SNPs in organisms without reference genomes 
(Benestan et al., 2015; Catchen et al., 2013; Hohenlohe et al., 2012; 
Reitzel, Herrera, Layden, Martindale, & Shank, 2013), the lack of more 
detailed genetic resources makes inference on the causal mechanisms 
contributing to local adaptations in sea scallops difficult, as noted by 
our lack of GO matches. Fortunately, with continued development of 
resources for P. magellanicus and related species, future studies will 
likely identify and study the features most important in characterizing 
sea scallop population structure.

5  | CONCLUSIONS

Our results show that ocean climate plays a role in structuring 
populations of sea scallops, particularly the influence of the coldest 
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temperatures experienced. The association with coldest temperatures 
points to the overwinter survival of juvenile scallops as a structuring 
force rather than survival of larval scallops, contrary to what might 
be expected for broadcast spawning marine species. This work and 
similar landscape (or seascape) genetic studies highlight the possibility 
that local adaptation and the differential survival of dispersers (rather 
than solely limited dispersal) may have greater impact on the popula-
tion structure of marine species than previously hypothesized. Our 
results can be useful in the effective management of P. magellanicus 
by helping managers in both Canada and the United States accurately 
determine geographic sources of larvae for exploited populations and 
predict the potential reactions of this species to a changing ocean cli-
mate, particularly with changes to the location and strength of domi-
nant currents. Our results also provide an important starting point 
for future studies. If temperature drives variation in the reproductive 
rates of scallops, then increasing water temperatures associated with 
global warming may alter scallop reproductive cycles and subsequent 
recruitment (Robinson, Martin, Chandler, & Parsons, 2007). Genetic 
and genomic studies to examine further effects of selection on popu-
lation structure in scallops, in tandem with experimental studies to 
identify adaptations among scallop populations, may be critical for 
predicting how the species will react to future climate change and 

harvesting pressures. Additionally, access to further genetic resources 
will continue to improve identification of the genes and pathways in-
volved in adaptation and population structuring among sea scallop 
populations.
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F IGURE  10  (a) Pairwise FST values 
calculated between all populations 
(ordered north to south) and the 
furthest north population (SUN). (b) 
Values of the temperature variables 
found to be important determinants of 
population structure using multiple linear 
regression and random-forest analysis 
for all populations. (c) Values of the 
salinity variables found to be important 
determinants of population structure using 
random-forest analysis for all populations. 
The dashed line represents the split 
between the northern (four populations) 
and southern (eight populations) population 
groups reported in Van Wyngaarden et al. 
(2017)
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