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A three-dimensional (3D) weighted helical cone beam filtered backprojection (CB-FBP) algorithm (namely, original 3D weighted
helical CB-FBP algorithm) has already been proposed to reconstruct images from the projection data acquired along a helical tra-
jectory in angular ranges up to [0, 27r]. However, an overscan is usually employed in the clinic to reconstruct tomographic images
with superior noise characteristics at the most challenging anatomic structures, such as head and spine, extremity imaging, and
CT angiography as well. To obtain the most achievable noise characteristics or dose efficiency in a helical overscan, we extended
the 3D weighted helical CB-FBP algorithm to handle helical pitches that are smaller than 1 : 1 (namely extended 3D weighted
helical CB-FBP algorithm). By decomposing a helical over scan with an angular range of [0, 27 + Af] into a union of full scans
corresponding to an angular range of [0, 27], the extended 3D weighted function is a summation of all 3D weighting functions
corresponding to each full scan. An experimental evaluation shows that the extended 3D weighted helical CB-FBP algorithm can
improve noise characteristics or dose efficiency of the 3D weighted helical CB-FBP algorithm at a helical pitch smaller than 1 : 1,
while its reconstruction accuracy and computational efficiency are maintained. It is believed that, such an efficient CB recon-
struction algorithm that can provide superior noise characteristics or dose efficiency at low helical pitches may find its extensive
applications in CT medical imaging.

Copyright © 2006 Xiangyang Tang et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

1. INTRODUCTION

Along with the fast evolution in theoretically exact heli-
cal cone beam (CB) reconstruction algorithms [1-5], in
the recent years comes the exciting progress in theoreti-
cally approximate helical CB reconstruction algorithms [6—
9]. A three-dimensional (3D) weighted helical CB filtered
backprojection (CB-FBP) algorithm (namely, original 3D
weighted helical CB-FBP algorithm) has been proposed to
reconstruct images from the projection data acquired along
a helical trajectory within an angular range up to [0,27]
[6]. Except for the adoption of 3D weighting functions, the
original 3D weighted helical CB-FBP algorithm is essentially
similar to the FDK algorithm [10] and its extensions [11].
By using phantoms simulated by computer and scanned by
CB volumetric CT scanners, the reconstruction accuracy and
other properties of the original 3D weighted helical CB-FBP
algorithm have been experimentally evaluated and verified.
Although it is theoretically approximate, the experimental
evaluation shows that, at a moderate cone angle up to 4° that

corresponds to a detector z-dimension of 64 X 0.625 mm, the
original 3D weighted helical CB-FBP algorithm reaches the
reconstruction accuracy comparable to that of theoretically
exact helical CB-FBP algorithms, such as the algorithm pro-
posed by Katsevich [1, 2], and its extensions [3-5]. More-
over, other imaging performances, such as noise characteris-
tics or dose efficiency, noise uniformity, spatial resolution,
temporal resolution, computational efficiency, and robust-
ness over clinical applications, are maintained comparable
with the FDK-like CB reconstruction algorithms [10, 11].

A helical trajectory angular range of [0, 27] corresponds
to a full scan [12, 13], under which the normalized helical
pitch is usually about 1 : 1. However, a helical overscan is
usually employed in the clinic to reconstruct tomographic
images with superior noise characteristics at the most chal-
lenging anatomic structures, such as head and spine, ex-
tremity imaging, and CT angiography as well. In an over-
scan, the projection data acquired along a helical trajec-
tory angular range larger than [0,27] should be utilized to
reconstruct an image, and the corresponding normalized
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helical pitch is usually smaller than 1 : 1. Due to the [0, 27]
constraint in helical trajectory angular range, a direct appli-
cation of the original 3D weighted helical CB-FBP algorithm
in an overscan cannot make full use of available projection
data, resulting in a degraded noise characteristics or dose ef-
ficiency.

To improve noise characteristics or dose efficiency in an
overscan, we extended the original 3D weighted helical CB-
FBP algorithm to handle helical pitches that are lower than
1 : 1 (namely extended 3D weighted helical CB-FBP algo-
rithm). As in the original algorithm, the extended algorithm
can be implemented in either the native CB geometry or
the cone-parallel geometry (or wedge-geometry) that is ob-
tained through row-wise fan-to-parallel rebinning from the
native CB geometry. An experimental study is conducted in
this paper to evaluate the reconstruction accuracy and noise
characteristics or dose efficiency of the extended 3D weighted
helical CB-FBP algorithm. Since image reconstructed in the
cone-parallel geometry is of better noise uniformity and
computation efficiency, the experimental evaluation is car-
ried out in the cone-parallel geometry using the helical body
phantom (HBP) [14, 15] and the Defrise phantom [16] sim-
ulated by computer. As shown below, at helical overscan, the
extended 3D weighted helical CB-FBP algorithm can pro-
vide significantly improved noise characteristics or dose ef-
ficiency in comparison to the original 3D weighted helical
CB-FBP algorithm, while other advantages of the original al-
gorithm, such as reconstruction accuracy and computational
efficiency, can be maintained.

2. MATERIALS AND METHODS
2.1. Native cone beam and cone-parallel geometries

The native cone beam geometry for the helical projec-
tion data acquisition and image reconstruction is shown in
Figure 1(a), where Oxyz denotes the coordinate system, S
the source focal spot, D the cylindrical multirow CT detector,
and R the radius of the helical source trajectory. P(x, y,z) is
a point within the object to be reconstructed. The ray ema-
nating from focal spot S and passing through point P(x, y, z)
is uniquely determined by its view angle f3, fan angle y, and
cone angle a. The helical source trajectory can be mathemat-
ically represented by

ST(B) = (Rsinﬁ,Rcos/i, %ﬁ)» B<lBsfel, (1)

where f3; and f3, are the starting and ending points of the he-
lical source trajectory, respectively. Notice that view angle f3
is defined in relative to the y-axis, and H is the distance trav-
eled by the source focal spot per rotation along the z-axis.

Through row-wise fan-to-parallel rebinning in the na-
tive CB geometry, the cone-parallel geometry for image re-
construction is attained as shown in Figure 1(b) [17-19].
The ray emanating from focal spot S and passing through
point P(x, y,z) is uniquely determined by its view angle j3,
orthogonal distance t from the iso-ray (namely orthogonal
iso-distance), and cone angle a.

FI1GURE 1: Schematic diagrams showing the geometries in which the
extended 3D weighted helical CBFBP reconstruction algorithm is
derived: (a) the native CB geometry; (b) the cone-parallel geometry.

2.2. 3D weighted CB-FBP reconstruction algorithm

In the cone-parallel geometry shown in Figure 1(b), the orig-
inal 3D weighted helical CB-FBP reconstruction algorithm
for a full scan is [6]

~ 1 (Botm R N
f(x,y,z)=5 fon mW&j(“,ﬁ, t)S(OC, ﬁ, t)dﬁ,
(2)
Sla, B, 1) = s(a, B, 1) ® q(2), (3)

where Z(x,y,z) is the projected z-coordinate of point
P(x,y,z) onto detector D, and q(t) is the conventional
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ramp filter kernel in parallel beam geometry. The interval
[Bo — 7, Bo + ] defines the view angle range over which the
projection data are used to reconstruct an image intersecting
the helical source trajectory at view angle f. It is important
to note that the filtering in (3) is naturally tangential [6, 20]
due to the row-wise fan-to-parallel rebinning.

The 3D weighting function can be expressed in the form

waa(B, 1)g (ac, p(h))
W2d(ﬁ> l‘)g(lxu P(h)) + Wad (ﬂcy tc)g(“) P(h)) ’
(4)

WSd((X’ ﬁ’ t) =

where « and «, are the cone angles corresponding to a di-
rect ray and its conjugate ray, respectively [6], and A is the
normalized helical pitch defined by

h="» (5)
where L represents the height of the detector along z-direc-
tion at the iso-center.

g(lal, p(h)) is a monotonically increasing function over
the magnitude of cone angle «, that is, given a normalized
helical pitch h, one has

while |a;| < |z ],

(6)

g(lar|,p(h) <g(laz|, p(h)),

where p(h) is a monotonic increasing function of helical
pitch A, that is,

p(hl) < p(l’lz), while ]’11 < hz, (7)

and the 3D weighting function ws4(a, 8, y) has to satisfy the
normalization condition

WSd((x)ﬁ) t) + W3d(ac>ﬁ6) tc) = 1.0. (8)

Any 3D weighting function wsg(a, 3, y) satisfying the
conditions specified by (6)—(8) is acceptable, and a special
example is given by [6]

waa(B, ) tan*" (a)
WZd(ﬁ) t) tan*" ((xc) + wag (/36) tc) tankh(a) ’

)

W3d(‘X) ﬁ) V) =

where k is a parameter that varies over different helical
pitches, and can be adjusted to get a balanced capability be-
tween artifact suppression and noise characteristics. wa4(f3, t)
is a 2D view weighting function and can find its examples in
the literature [12, 13, 21-24].

2.3. Projection of reconstruction plane and
3D weighting

Prior to extending the original 3D weighted helical CB-
FBP algorithm presented above, it is insightful for us to in-
vestigate the projection of reconstruction plane in helical
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F1GURE 2: The schematic diagram showing the projection of image
plane as a function over view angle at (a) helical pitch 33/64 : 1;
and (b) helical pitch 63/64 : 1. (The vertical direction is parallel
to the rotation axis of a CT gantry, while the horizontal direction
corresponds to the latitudinal direction of the gantry.)

—~

scanning in the cone-parallel geometry. Supposing the re-
construction plane is orthogonal to the z-axis and inter-
sects the helical source trajectory at § = 0°, shown in
Figure 2(a) are the projections of reconstruction plane at
helical pitch 63/64 : 1 corresponding to view angle § =
—180°,-90°,—45°,0°,45°,90°,180°, respectively, in which
the white area corresponds to the projection of the recon-
struction plane, and the grey area the outside of the detec-
tor. At such a helical pitch, about half projection of the re-
construction plane at § = *180° is outside the detector
boundary (detector z-dimension: 64 X 0.625 mm), and this
is the reason why 3D weighting is needed in the original
3D weighted helical CB-FBP algorithm to reconstruct im-
ages in a full scan [6]. However, at a lower helical pitch, such
as 33/64 : 1 as shown in Figure 2(b), projections of the re-
construction plane at § = =180° are within the detector
boundaries. Notice that, even at § = +240°, a larger portion
of the projection of reconstruction plane at pitch 33/64 : 1
is within the detector boundaries than that at helical pitch
63/64 : 1. Hence, it is intuitive to deduce that projection data
corresponding to an overscan can be utilized at helical pitch
33/64 to reconstruct images with better noise characteristics
or dose efficiency if the original 3D weighted helical CB-FBP
algorithm can be extended to deal with overscan.
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2.4. Extended 3D weighted helical CB-FBP algorithm

Suppose the angular range of projection data corresponding
to an overscan is

[ﬁmin) ﬁaxn] =

A direct extension of the original algorithm by just
stretching the angular range from [0, 27] to [0,27 + AB] vi-
olates the normalization condition specified in (8) and can
result in artifacts in reconstructed images. However, if the
helical trajectory angular range of an overscan [0, 27 + AS] is
decomposed into a union of N overlapped subangular ranges

0,27 + AB. (10)

N-
[ﬁmin: /gmax U ﬁmm i> ﬁmax i (1 1)

and each subangular range spans 27, that is,

[ﬁmm i> ,Bmm 1]

the original 3D weighted helical CB-FBP algorithm can be
extended to reconstruct images from projection data corre-
sponding to an overscan in the way specified below:

fxy, Z)

[0,27], (12)

PBnax,i

o o e e 5 )0,

(13)

where the support of each 3D weighting function wsg(a,
Bi>t) is [Bmin,i> Pmax,i], that is, view angle f; has to be deter-
mined within each subangular range, respectively.

Since a filtered backprojection reconstruction algorithm
is linear from the perspective of system analysis, (13) can be
rearranged as

Binax
flx,p,2) = 2 W3d(oc,/3, t)s(a, B, t)d,
Brmin A R2 +Z(X y,
(14)
with
WSd(‘qu) t) % Z 3d1 ﬁl) > (15)
) kh
Waas(a By y) = waa (B, t) tan*" ()

(“c) + Wad (ﬁi,c: tc) tankh(‘x) '
(16)

waa (B, t) tan"

This means that the reconstructed image under a helical
overscan is just a linear summation of the images recon-
structed from data acquired over a series of full scans cor-
responding to each subangular range [Bumin,i» Bmax,i] (Bmax,i —
Pmini = 27). The reconstruction accuracy corresponding to
a full scan [Bmin,i> Pmax,il (Bmax,i — Pmini = 277) has been eval-
uated and verified in [6]. Consequently, the reconstruction
accuracy of the extended 3D weighted helical CB-FBP al-
gorithm specified by (13) or (14) is warranted as long as

the overscan angular range [Bmin,o> fmaxo] (Bmaxoe — Pmine =
27 + Af) is decomposed into subangular ranges appropri-
ately. Note that N is a parameter that can be optimized under
various low helical pitches to achieve a balance between the
most achievable image quality and computational efficiency,
and w4 (i, t) can be in the form [12]

wad (Bi t)
0.0, p=-m,
0.25-(ﬁ;”), —m<B<-m+2Bs
0.5, t —m+2B < B < —2Bs
0.5+0'25(737t+2/3"), 2B < <0,
10— 0'/235ﬁ : 0<B <28,
0.5, t 2B <P =m—2B,
0.5—0.25-%, 7-2B<p<m,
0.0, t p>m,

(17)

where f3; is the parameter that can be adjusted to optimize the
capability of suppressing artifacts and maintenance of noise
characteristics or dose efficiency.

2.5. Evaluation

Just like the original algorithm, the extended 3D weighted
helical CB-FBP algorithm is essentially approximate. Hence,
the reconstruction accuracy of the extended algorithm has
to be evaluated and verified experimentally. Two computer-
simulated phantoms are utilized to evaluate the reconstruc-
tion accuracy. The first phantom is the helical body phantom
(HBP) [14] to evaluate the reconstruction accuracy in trans-
verse view, and the second is a modified Defrise phantom
consisting of 5 cylindrical discs [15], rather than ellipsoidal
discs in the original Defrise phantom, to evaluate the recon-
struction accuracy in coronal view. The dimension of each
disc is 200 x 200 x 10 mm?, centered at the z-axis, and their
linear attenuation coefficient is equivalent to a CT number
of 600 HU in reconstructed tomographic images. The cen-
tral disc is located at z = 0.0 mm, and other 4 discs are
20 mm apart along the z-direction. In the computer simu-
lation, the distance from source to the iso-center of the vol-
umetric CT is 541.0 mm, the X-ray detector consists of 64
detector rows and each detector row is made up of 888 de-
tector cells with a dimension of 0.625 mm along z-axis and
0.5836 mm in xy-plane at the iso-center, respectively. The
scanning techniques for the computer phantom simulation
are 120 kVp, 300 mA, and 1.0 sec/rot, respectively. To quan-
titatively investigate noise characteristics or dose efficiency,
a 20 cm water phantom scanned by a volumetric CT scan-
ner (LightSpeed VCT, GE Healthcare, Waukesha, W1, USA)
is employed. The matrix dimension of a reconstructed trans-
verse image is 512 X 512, no matter the projection data is
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(d)

F1Gure 3: Tomographic images of the helical body phantom reconstructed by (a) the original algorithm using full-scan data at helical pitch
33/64 : 1; (b) the extended algorithm using overscan data at helical pitch 33/64 : 1; (c) the original algorithm using full-scan data at helical
pitch 63/64 : 1; and (d) the extended algorithm using overscan data at helical pitch 63/64 : 1 (w/l = 200/0 HU).

simulated or scanned by the volumetric CT system, and 984
projections are simulated or scanned in one turn of the heli-
cal scanning (360°).

3. RESULTS

In general, the extended 3D weighted helical CB-FBP algo-
rithm is applicable at any helical pitch lower than 1 : 1. Due
to space limitation, only the results corresponding to helical
pitch 33/64 : 1 and 63/64 : 1 are presented here. At heli-
cal pitch 33/64 : 1, the parameters of the weighting function
are selected as ; = 0.157, Bmax — Pmin = 2.57, and N = 3,
while the parameters of the weighting function are selected
as B = 0.2257, Pmax — Pmin = 2.5m and N = 3, at helical
pitch 63/64 : 1.

3.1. Evaluation of reconstruction accuracy

3.1.1.  Evaluation by the HBP phantom

At helical pitch 33/64 : 1, the transverse image of the com-
puter-simulated HBP phantom reconstructed by the origi-
nal algorithm using full-scan projection data is presented in
Figure 3(a), while the one at the same location but recon-
structed by the extended algorithm using overscan projec-
tion data is in Figure 3(b). The reconstruction field of view
(FOV) is 450 mm, and no helical artifact is observed in both
images, showing that the reconstruction accuracy of the ex-
tended algorithm is as good as that of the original algorithm.
More specifically, it has to be revealed that kh = 0.25 for
the original algorithm using full-scan projection data, while
kh = 0.125 for the extended algorithm using overscan pro-
jection data to reconstruct the image.

At helical pitch 63/64 : 1, the transverse image of the HBP
phantom reconstructed by the original algorithm using full-
scan projection data is presented in Figure 3(c), while that
at the same location but reconstructed by the extended algo-
rithm using overscan projection data is in Figure 3(d). Again,
no helical artifact is observed in both images, showing that
the reconstruction accuracy of the extended algorithm is as
good as that of the original algorithm at such a moderate he-
lical pitch. Moreover, it has to be indicated that kh = 0.5
for both the extended and original algorithms using full-scan
and overscan projection data, respectively.

3.1.2.  Evaluation by the Defrise phantom

Multiple planar reformatted images in the coronal view of
the Defrise phantom reconstructed by the original algorithm
at helical pitch 33/64 : 1 using full-scan projection data is
shown in Figure 4(a), while that by the extended algorithm
using overscan projection data in Figure 4(b). Meanwhile,
the coronal view of the Defrise phantom reconstructed by
the original algorithm at helical pitch 63/64 : 1 using full-
scan projection data is shown in Figure 4(c), while that by
the extended algorithm using overscan projection data is in
Figure 4(d). Just like the original reconstruction algorithm,
the extended algorithm can reconstruct the Defrise phantom
very well, showing that its reconstruction accuracy is compa-
rable to the original 3D weighted helical CB-FBP algorithm.

3.2. Evaluation of noise characteristics or
dose efficiency

A total of 5 ROIs are chosen within the 250 mm FOV of
the 20cm cylindrical water phantom to gauge the noise
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FIGURE 4: Multiple planar reformatted (coronal) images of the De-
frise phantom reconstructed by (a) the original algorithm using
full-scan data at helical pitch 33/64 : 1; (b) the extended algorithm
using overscan data at helical pitch 33/64 : 1; (c) the original al-
gorithm using full-scan data at helical pitch 63/64 : 1; and (d) the
extended algorithm using overscan data at helical pitch 63/64 : 1
(w/1=600/0 HU).

FiGURE 5: The schematic diagram showing the ROIs in the tomo-
graphic image of the 20 cm water phantom to gauge noise charac-
teristics: ROI A, B, C, D, and E are square consisting of 3030 pixels;
the center of ROI A, B, C, and D is 67.5 mm from the iso, while the
center of ROI E is at the iso.

characteristics. As shown in Figure 5, the ROI labeled by E is
at the iso-center, while those ROIs labeled by A, B, C, and D,
respectively, are located at 6, 3, 12, and 9 o’clock orientation
at 62.5mm from the iso-center. Each ROI contains 30 x 30
pixels, and the noise is measured as the standard deviation of
Hounsfield Unit variation within the ROL

At helical pitch 33/64 : 1, the measured noise at those
ROIs corresponding to the original algorithm are itemized

TaBLE 1: Noise measurement of the ROIs specified in Figure 5 at
helical pitches 33/64 : 1 and 63/64 : 1, respectively.

Pitch = 33/64 : 1 Pitch = 63/64 : 1
ROI Full scan Overscan Full scan  Overscan
(kh =0.125)  (kh = 0.125) (kh=0.5) (kh=0.5)
A 7.98 7.42 8.40 8.23
B 7.89 7.31 8.49 8.27
C 7.51 7.28 8.09 7.95
D 7.14 6.74 7.61 7.49
E 8.89 8.58 9.49 9.34

in the Ist column of Table 1, and those corresponding to the
extended algorithm are in the 2nd column. Apparently, the
noise level at each ROI in the image reconstructed by the ex-
tended algorithm is significantly smaller than that in the im-
age reconstructed by the original algorithm. Moreover, the
noise uniformity at those ROIs in the image reconstructed
by the extended algorithm is significantly better than that in
the images reconstructed by the original algorithm. However,
as shown in the right columns of Table 1, there is virtually no
improvement in noise level and uniformity at helical pitch
63/64 : 1 in the images reconstructed by the extended algo-
rithm over the original algorithm. This is consistent with our
observation in Section 2.2, in which it has been shown that
there is almost no extra projection data in comparison to a
full scan can be utilized to reconstruct an image at helical
pitch 63/64 : 1.

4. DISCUSSIONS AND CONCLUSIONS

It is well recognized that the 3D backprojection is the most
computationally expensive process in image reconstruction
using CB-FBP algorithms. It is important to point out that,
the rearrangement of (13) into (14) not only simplifies al-
gorithm expression but also improves image generation ef-
ficiency. In the implementation of (13), a total of N images
corresponding to projection data acquired along each sub-
angular range and weighted by ws4;i(a, f;,t) have to be re-
constructed using the original algorithm. However, in the
implementation of (14), only one 3D backprojection is de-
manded to reconstruct image from projection data acquired
along [Bmin,i> Pmaxi] (Pmaxi — Pmini = 27) and weighted by
wsd(a, B, t). Apparently, such an N : 1 ratio in computational
complexity assures that the implementation of the extended
3D weighted helical CB-FBP algorithm by (14) is a better
choice than that by (13) in practice.

It is worthwhile indicating that (11) and (12) do not de-
mand each subangular range [Bmin,i> Bmax,i] (Bmaxi — Pmini =
27) evenly shifting in the decomposition to cover the whole
angular range [0, 277+Af], while an even shifting can result in
data manipulation efficiency. Moreover, it is not mandatory
for the 3D weighting function wsg(«, 3,t) corresponding to
[Bmin,os Bmaxo] (Bmaxo = Bmin,e = 27+ APB) to be the average of
each 3D weighting function wss—i(«, i, t) corresponding to
[Bmin,is Bmax,i] (Bmax,i — Pmini = 27) as specified by (15). In-
deed, other weighted summation strategies can be exercised
in practice.
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As indicated in [6], the original 3D weighted helical CB-
FBP algorithm can be implemented in the native CB geome-
try, although its derivation in the cone-parallel geometry was
given as an example in [6]. Hence, the extended 3D weighted
helical CB-FBP algorithm can also be implemented in the na-
tive CB geometry as its counterpart. Moreover, it has to be
pointed out that the determination of the parameters Af3 and
kh is not optimized in the experimental evaluation shown
above. All the parameters chosen are just to show how the
extended 3D weighted helical CB-FBP algorithm works in
overscan corresponding to helical pitches lower than 1 : 1.

It has to be emphasized that both the original 3D weight-
ing scheme proposed in [6] and the extended 3D weighting
scheme presented in this manuscript are ray-wise weight-
ings. This means that, by making use of the cone angle corre-
sponding to both direct and conjugate rays, the 3D weighting
is actually a ray-wise optimization process to obtain balanced
image quality and most achievable dose efficiency over he-
lical pitches. By making use of the cone angle information
corresponding to conjugate rays, our ray-wise 3D weighting
scheme distinguishes itself from other 3D weighting schemes
existing in the literature [7-9]. The readers that are interested
in the difference between our ray-wise 3D weighting scheme
and that proposed in [7] are referred to [6], where a brief dis-
cussion on the difference is given. Detector-row-dependent
weighting schemes have been proposed in [8, 9], respectively.
By using predefined weighting distribution, the ray inter-
cepting inner detector rows are given favorable weights and
those intercepting outer detector rows are given unfavorable
weights, in which the cone angle information corresponding
to conjugate ray is not utilized. The weight in our method is
ray-wise calculated and such a ray-wise optimization process
can make use of redundant projection data as much as pos-
sible over helical pitches, particularly at high helical pitches.
However, it seems very hard, if not impossible, to make use
of projection data as much as possible by using a predefined
weighting distribution in the detector as done in [8, 9]. Inter-
ested readers are referred to references [8, 9] for more detail.

Moreover, it should be indicated that, the extended
3D weighted helical CB-FBP algorithm proposed in this
manuscript is quite different from the n-PI CB reconstruc-
tion methods existing in the literature [25-27]. The concepts
of Tam-window, PI-line, N-PI window, and N-PI line play
critical roles in the derivation of both exact and approxi-
mate n-PI CB reconstruction algorithms. However, as clearly
shown above, none of these concepts has been utilized in de-
riving the extended 3D weighted helical CB-FBP algorithm.

In summary, recognizing the clinical importance of re-
constructing tomographic images from overscan projection
data, the original 3D weighted helical CB-FBP algorithm
has been extended in this manuscript to reconstruct tomo-
graphic images at helical pitches lower than 1 : 1. As shown
in previous sections, such an extension can make use of
projection data as efficient as possible, resulting in signifi-
cantly improved noise characteristics or dose efficiency. In
principle, the extended 3D weighted helical CB-FBP algo-
rithm is approximate, but its reconstruction accuracy has
been evaluated and verified at a relatively moderate cone

angle (4°) corresponding to a detector with the dimension
of 64 X 0.625mm at the source to iso-center distance of
541.0 mm. In fact, the extended algorithm is expected to be
applicable in volumetric CT scanners with the detector z-
dimension corresponding to larger cone angles, and more in-
vestigation is being carried out to assure the maximum cone
angle up to which the proposed algorithm can still provide
acceptable reconstruction accuracy for diagnostic CT imag-
ing applications.
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