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A B S T R A C T

Background and objectives: Ischemic events, such as ischemic heart disease and stroke, are the num-

ber one cause of death globally. Ischemia prevents blood, carrying essential nutrients and oxygen,

from reaching tissues, leading to cell and tissue death, and eventual organ failure. While humans are

relatively intolerant to ischemic events, other species, such as marine mammals, have evolved a

unique tolerance to chronic ischemia/reperfusion during apneic diving. To identify possible molecular

features of an increased tolerance for apnea, we examined changes in gene expression in breath-

holding dolphins.

Methodology: Here, we capitalized on the adaptations possesed by bottlenose dolphins (Tursiops

truncatus) for diving as a comparative model of ischemic stress and hypoxia tolerance to identify

molecular features associated with breath holding. Given that signals in the blood may influence

physiological changes during diving, we used RNA-Seq and enzyme assays to examine time-dependent

changes in gene expression in the blood of breath-holding dolphins.
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Results: We observed time-dependent upregulation of the arachidonate 5-lipoxygenase (ALOX5) gene and increased lipoxygenase ac-

tivity during breath holding. ALOX5 has been shown to be activated during hypoxia in rodent models, and its metabolites, leukotrienes,

induce vasoconstriction.

Conclusions and implications: The upregulation of ALOX5 mRNA occurred within the calculated aerobic dive limit of the species, sug-

gesting that ALOX5 may play a role in the dolphin’s physiological response to diving, particularly in a pro-inflammatory response to

ischemia and in promoting vasoconstriction. These observations pinpoint a potential molecular mechanism by which dolphins, and

perhaps other marine mammals, respond to the prolonged breath holds associated with diving.

Lay Summary: Reductions in blood flow are associated with tissue damage in humans; however, marine mammals have evolved

remarkable tolerance to reductions in tissue blood flow during diving. We found that changes in gene expression in breath-holding dol-

phins may support a response to diving highlighting a potential molecular underpinning for apnea tolerance.

K E Y W O R D S : ischemic stress tolerance; cetaceans; diving physiology; oceans and human health; ALOX5; lipoxygenase

INTRODUCTION

Ischemic stress and hypoxia are associated with negative

clinical outcomes in humans

Maintenance of homeostatic function in mammalian tissues is

directly dependent on a continuous supply of oxygenated blood.

Interruption of this blood supply, known as ischemia, results in

reduction in local oxygenation compared to normal physiologic

levels, or hypoxia, and can lead to inflammation and cell/tissue

death in humans [1–5]. In the case of a stroke, disruption of

cerebral blood flow can result in cell death at the core of infarc-

tion within minutes [6]. Ischemia is the causative factor in mul-

tiple clinical settings, and ischemic heart disease is the number

one cause of death globally, accounting for over 9 million

deaths each year [7, 8].

Marine mammals experience regular ischemic events

While humans have little tolerance for ischemic stress and hyp-

oxia, a number of species have evolved unique physiologies

that allow them to seemingly thrive despite regular tissue-level

ischemia and low-oxygen environments. Marine mammals are

one group of animals that undergo repeated daily ischemic

events. During a dive, a marine mammal experiences a suite of

cardiovascular changes that aid in reducing whole-body oxygen

(O2) demand [9, 10]. As part of this response, both heart rate

(fH) and stroke volume decrease, resulting in reduced cardiac

output [11, 12]. Increased peripheral resistance, through select-

ive vasoconstriction, helps assure that mean arterial blood pres-

sure is maintained, at least in studies on forced diving in seals

[13, 14]. Ultimately, this response conserves oxygen in the blood

and lungs for O2-sensitive tissues like the brain and the heart,

while the skeletal muscles rely on endogenous myoglobin-

bound O2 for aerobic metabolism [15, 16]. As the dive contin-

ues, however, O2 stores are consumed. The hypoxemia that

develops during a dive can be extreme—blood O2

concentrations as low as 2.7 ml O2/dl have been measured in

the diving elephant seal. In comparison, the lowest blood O2

concentration ever measured in a human of 9 ml O2/dl was in a

climber near the top of Mount Everest [17, 18]. In vitro studies

of the seal brain indicate an increased reliance of cerebral tissue

on anaerobic metabolism during hypoxia [19]. Similarly, seal

neurons demonstrate an ability to continue to discharge four

times longer under severely hypoxic conditions compared to

mouse neurons [20]. While the responses to submersion in

water are largely conserved across all vertebrates, it is clear that

many of the physiological adaptations that support diving are

exaggerated in marine mammals compared to other taxa to

match the demands of extreme hypoxia [21, 22]. These physio-

logical differences highlight the tremendous potential to study

marine mammals as model organisms for the investigation of

adaptations to ischemic and hypoxic stress tolerance, and the

cardiorespiratory plasticity that helps prevent hypertension [11,

12, 23].

Marine mammals have evolved molecular adaptations to

ischemic stress tolerance

Increasing attention has been paid to the defenses marine

mammals possess against the oxidant by-products and inflam-

mation associated with ischemic, hypoxia, and reperfusion at

the molecular level [24–26]. Elevated levels of heme degradation

and concentrations of endogenous carbon monoxide (CO) in

northern elephant seals have been suggested to potentially pro-

tect against damage from ischemia/reperfusion injury due to

the known role of CO in supporting vasodilation and decreasing

hypertension [27]. Several studies have highlighted the import-

ance of highly-adapted antioxidant systems in marine mammals

for reducing oxidative stress [28, 29] resulting from ischemia/

reperfusion secondary to elevated glutathione [30–32], super-

oxide dismutase [32, 33] and catalase [32]. Using phylogenetic

and evolutionary convergence approaches, several gene families
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have been identified that may contribute to the increased ische-

mic stress tolerance of marine mammals, including hypoxia-

inducible factor 1 (HIF-1) [34–36], genes relating to the glutathi-

one system and peroxiredoxins [27, 37–39] and several genes

linked to O2 storage, particularly hemoglobin and myoglobin

[40–43]. Yet, few studies have examined differential gene expres-

sion in marine mammals under conditions of ischemia and hyp-

oxia (i.e. diving conditions).

Here, we investigate the dynamic molecular changes that

occur during an apnea in bottlenose dolphins using molecular

analysis of peripheral blood mononuclear cells (PBMCs) and

serum sampled at regular intervals during breath holds.

Dolphins are a particularly tractable and well-studied model for

understanding the molecular drivers of diving adaptations. Our

integrated analyses pinpoint a gene regulatory network centered

around the arachidonate 5-lipoxygenase (ALOX5) gene and its

downstream metabolites, leukotrienes, as differentially acti-

vated during breath holding. This activation of ALOX5 is con-

sistent with cardiovascular control through a reduction in fH
and peripheral vasoconstriction to efficiently manage O2 use

during diving. Based on our collective results, we propose a

model in which the ALOX5 pathway is upregulated by blood

cells in response to extended breath holds as a mechanism to

sustain vasoconstriction and maintain O2 stores for critical

organs while diving.

RESULTS

Analysis of baseline RNA-Seq data from dolphins pinpoints

enriched gene regulatory networks

All samples produced between 30 and 40 million reads, with no

time-dependent changes in read counts across samples

(Supplementary Fig. S1A). Principal component analysis and

hierarchical clustering of all samples (three individual dolphins

� three time points) revealed both individual- and within-

individual time-dependent grouping of the data (Supplementary

Fig. S1B and C). Analysis of baseline RNA-Seq data by GSEA

identified multiple pathways enriched in dolphin PBMCs when

ranked by total expression, including hedgehog signaling and

several pathways relevant to blood cell metabolism, including

heme metabolism, coagulation, IL6/JAK/STAT3 activation, ap-

ical junctions, and allograft rejection (Supplementary Fig. 1B

and C). GSEA also identified enrichment of pathways related to

apical junctions, interferon-alpha response, estrogen response,

complement activity and heme metabolism in RNA-Seq data from

GTEx human whole blood transcriptomes (Fig. 1D). Comparison

of dolphin baseline RNA-Seq data ranked by total expression with

the top 100 and 500 most highly expressed genes in human whole

blood showed significant enrichment (FDR< 0.0001; Fig. 1E).

Together these analyses suggest that significant overlap exists in

mRNA expression at both the gene-level and pathway-level be-

tween dolphin and human blood at baseline.

Breath holding induces upregulation of multiple regulatory

pathways

We next reasoned that patterns of step-wise increases in mRNA

expression may pinpoint molecular responses to breath holding

common across individuals. We constructed gene regulatory

networks for 136 genes with step-wise increases in mRNA ex-

pression from baseline to 3 min and again from 3 min to

4.5 min (Fig. 2A). We performed network analysis to identify

genes that are upregulated and have the most network interac-

tions. To do this, we analyzed the time-dependent gene regula-

tory network for the following parameters: degree, clustering

coefficient, closeness, betweenness, neighborhood connectivity

and stress. We then plotted the sum rank score of these net-

work parameters with gene expression for each gene in the net-

work. These analyses pinpointed arachidonate 5-lipoxygenase

(ALOX5) as among the most connected genes with a time-

dependent increase in expression (Fig. 2B and C). Additional

genes, including EPX, PTGDR2, SIX5, DCN, ADAMTS12, and

GLRX2 demonstrated upregulation and/or high network con-

nectivity (Fig. 2B and C). We used GeneMANIA to infer tran-

scription factor and microRNA targets from this time-

dependent network. The gene regulatory network produced

from these genes displayed enrichment in targets from several

transcription factor families, including GATA and the small,

mothers against decapentaplegic (SMAD) families (Fig. 2D),

both of which have been implicated in hematopoietic develop-

ment and regulation [44, 45]. Network inference also pinpointed

enrichment of targets of multiple microRNAs, including the

miR148A/B/152 family, miR492, miR186, miR518A-2, the

miR130A/B/301 family, and miR205 (Fig. 2E). Consistent with

the identification of ALOX5 as a core network node, the network

was functionally enriched in the synthesis of 5-eicosatetraenoic

acid pathway, which is an initial step in the production of ara-

chidonic acid by ALOX5 (Fig. 2F).

Arachidonate 5-Lipoxygenase (ALOX5) and subsequent

lipoxygenase activity is enhanced in breath-holding

dolphins

At the gene level, ALOX5 was one of just two genes, along with

IL5RA, that was significantly upregulated in all three individuals

during breath holding (Fig. 3A and B). Lipoxygenase assays

from serum of three individual dolphins collected in 2019

revealed time-dependent increases in lipoxygenase activity dur-

ing breath holding in all three individuals, consistent with the

RNA-Seq analyses (Fig. 3C). Comparison of the timing of these

molecular changes with previously-published fH measurements
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from the same dolphins demonstrated that changes in gene ex-

pression and enzymatic activity were coincident with the

expected timing of bradycardia based on the heart rate data

(Fig. 3D). Overlay of the RNA-Seq data for ALOX5 mRNA ex-

pression with the heart rate data shows the upregulation of

ALOX5 is concomitant with lower heart rate (Fig. 3E).

DISCUSSION

Dolphins and other cetaceans have evolved exquisite physio-

logical adaptations to deal with the challenges of a fully aquatic

lifestyle including having a hydrodynamic shape to reduce drag

[49], counter-current heat exchangers for thermoregulation [50,

51], and cardiorespiratory plasticity for exquisite management

of circulation and respiratory gases [11, 12, 23, 52, 53]. The

well-known dive response, a suite of adaptations that support

reduced aerobic metabolism during diving, involves apnea,

bradycardia, and peripheral vasoconstriction that assures

maintained mean arterial blood pressure as blood flow to per-

ipheral tissues is reduced and allows regulation of perfusion

to conserve O2-rich blood for the brain and heart. To maintain

a constant mean arterial blood pressure and prevent hyper-

tension, these adaptations must work in concert to ensure ef-

ficient autoregulation; however, extended dives also result in

frequent events of ischemia and hypoxia [17, 54–58]. Still,

knowledge of the molecular adaptations that contribute to the

response to diving, enhanced tolerance to hypoxia and ische-

mic stress, and prevent reperfusion injury during and follow-

ing a dive, is rudimentary at best. To address this lack of

understanding, we combined analysis of breath-hold

responses at the molecular level with existing physiological

measurements to define the molecular responses to breath

holding in dolphins.

While this study is limited by a small sample size and rela-

tively short breath-hold durations, our analyses provide a proof-

of-principle design to study molecular alterations in breath-

holding dolphins. Analyses of baseline blood RNA-Seq profiles

demonstrates similarity to transcriptional profiles of humans,

indicating conserved transcriptional profiles across species. We

also identified candidate genes and pathways with time-

dependent changes in expression throughout the breath holds

that were validated in functional studies using independently

Figure 1. RNA-Seq from dolphin peripheral blood mononuclear cells reveals enrichment of pathways similar to humans. (A) Whole blood from dolphins

undergoing fasted breath holds at baseline (0–30 s), 3 min, and 4.5 min was collected from tail flukes and stored in PAXgene tubes for RNA extraction of per-

ipheral blood mononuclear cells and RNA-Seq. (B) Gene set enrichment analysis of baseline RNA-Seq data ranked by total expression pinpoints highly

expressed relevant pathways. (C) Enrichment plots for heme metabolism, coagulation and IL6/JAK/STAT3 signaling from baseline dolphin RNA-Seq data. (D)

GSEA-based pathway enrichment from GTEx human whole blood RNA-Seq data ranked by total expression. (E) GSEA enrichment plots comparing dolphin

RNA-Seq data ranked by total expression with top 100 and top 500 expressed genes in human whole blood.

Molecular mediators of breath-hold capacity in dolphins Blawas et al. | 423



collected samples and assays. These molecular changes

occurred within the calculated aerobic dive limit (cADL) of

bottlenose dolphins—the duration of a dive that can be sus-

tained without requiring anaerobic respiration at the cellular

level, which has been estimated to be approximately 6.5 min

[59]. It is also worth considering the possibility that changes in

gene expression could occur to support specific physiological

responses to diving during a dive, and that this gene expression

differs when the animal is at the surface. Future studies will be

focused on using novel technologies, such as GRO-Seq [60] and

others to measure nascent mRNAs, as well as measuring later

time points to understand the changes that occur upon recov-

ery from breath holds.

To provide physiological context for these molecular altera-

tions on the time scales observed, we compared molecular

changes to changes in previously published fH patterns in the

same individual dolphins during submerged breath holds [11,

23]. If we assume that the appearance of vasoconstriction is coin-

cident with bradycardia, our data provide evidence of an increase

in the expression of a gene in blood cells, ALOX5, known to pro-

mote vasoconstriction coincident with the onset of vasoconstric-

tion [61]. As potential first responders to hypoxemia, blood cells

may produce signals for extended vasoconstriction to slow O2

consumption. Indeed, vasoconstriction, or a narrowing of the

blood vessels, has been observed during forced dives and sug-

gested as a mechanism by which marine mammals optimize the

use of onboard oxygen stores in the blood and muscle [14, 15,

62]. Given the long assumed link between vasoconstriction and

bradycardia in marine mammals, the rapid bradycardia we

observed suggests that vasoconstriction was occurring in the

dolphins in this study during breath holds [63, 64]. We found that

changes in gene expression occurred in all animals during the 5-

min breath-hold trials and that the same gene families that were

upregulated in the dolphins during breath holds help manage

vasoconstriction in mice [65] and humans [66]. It is important to

note, however, that these pathways are upregulated during an

extended breath hold when the animals are reaching their max-

imum breath-hold tolerance. We have no evidence that these

pathways are activated during single-breath dives in nature, as

many of these dives are 30 s–1 min.

Our integrated approach reveals possible molecular under-

pinnings that may support and act synergistically with the car-

diac response to breath holding in bottlenose dolphins.

Specifically, we identified candidate genes that may provide de-

fense against ischemic and hypoxic stress in dolphins, including

the GATA and SMAD transcription factors, several microRNAs,

Figure 2. Time-dependent upregulation of gene regulatory pathways during dolphin breath holding. (A) Gene regulatory network formed by the time-depend-

ent increases in mRNAs from baseline to 3 and 4.5 min. Fold changes for each gene over time are indicated by darker red and larger nodes. (B) Network ana-

lysis of genes within a co-expression network with increased expression over time. (C) Top genes with increased expression are sorted by their network

analysis parameters. (D) GeneMANIA-based transcription factor inference pinpoints GATA and SMAD transcription factor targets within the time-dependent

network. (E) MicroRNA enrichment inference based on the time-dependent network. (F) Functional pathway enrichments for the time-dependent gene regula-

tory network.
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a disintegrin and metalloproteinase with thrombospondin

motifs 12 (ADAMTS12), mitochondrial glutaredoxin-2 (Glrx2)

and ALOX5. Interestingly, many of these factors play known

roles in regulating hypoxia, hematopoiesis, and ischemic stress

responses. For example, the GATA transcription factor family is

an important modulator of hematopoietic development of T

lymphocytes, mast cells, and erythrocytes [45]. Likewise, the

SMAD family regulates hematopoietic stem cells [44]. Of the

microRNAs identified from our analysis of target enrichments,

nearly all have been shown to be protective against ischemia-

induced cell death, including miR148A [67], miR492 [68],

miR186 [69–71], miR130 [72], and miR205 [73]. At the protein-

coding gene level, ADAMTS12 genetic variation is associated

with pediatric stroke [74], GLRX2 is implicated in neuroprotec-

tion during hypoxia and ischemia [75], and ALOX5 is known to

be induced by hypoxia [76] and mediates the production of pro-

inflammatory leukotrienes, which induce bronchoconstriction

and vasoconstriction [58] as well as the generation of lipid per-

oxidases secondary to lipoxygenase production [77]. This

suggests that ALOX5 may play a role in an inflammatory cas-

cade in response to changes during breath holding. In addition,

both ALOX5 and IL5RA have been identified as susceptibility

genes associated with asthma and asthmatic inflammation in

humans [78, 79], and a monoclonal antibody to the IL5RA lig-

and, IL5, is FDA-approved for the treatment of severe eosino-

philic asthma [80, 81]. Given the intricate connection between

molecular control and physiologic function to manage ische-

mia, hypoxia and inflammatory responses in humans and ro-

dent models [82], it is intriguing to speculate as to how

dolphins and other marine mammals may uncouple or leverage

these interconnected processes for improved tolerance to ische-

mic/hypoxic stress without the pathological consequences

associated with hyper-stimulation of these processes.

Our results reveal upregulation of ALOX5 mRNAs and

increased lipoxygenase activity in bottlenose dolphins during

breath holds. The changes in gene expression and enzyme activ-

ity were measured in unpaired breath-hold trials collected in

separate years.

Figure 3. Dolphins induce ALOX5 activity during breath holding. (A) ALOX5 and (B) IL5RA mRNA expression is significantly increased over time during breath

holding. (C) Individual dolphin lipoxygenase activity in whole blood was collected at an independent sampling date. (D) Physiological measurements of heart

rate for three individual dolphins (black lines from ECG data previously published in Blawas et al. [23], and dashed lines from echocardiogram data previously

published in Fahlman et al., 2020) over time. Inset shows heart rate for humans performing breath holds with facial immersion in water (dark gray in inset)

overlaid on dolphin heart rate. Human heart rate traces were digitally extracted from [46–48]. (E) Overlay of heart rate data with ALOX activity in three individ-

ual dolphins.
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By examining molecular data through a physiological lens,

these data connect the cellular and tissue-level responses of

dolphins to apnea to understand whether the bottlenose dol-

phin may be genetically tuned to dive and withstand the hypoxia

and the potential implications of this to translational medicine.

Our results uncover potential candidates at the intersection of

ischemia, hypoxia, and vasoconstriction that may contribute to

the exquisite adaptation of dolphins and other marine mam-

mals to life in the ocean.

MATERIALS AND METHODS

Data collection and animal information

Four adult male bottlenose dolphins (Tursiops truncatus) housed

at Dolphin Quest Oahu (Honolulu, HI, USA) with an average

(6 S.D.) age of 22.8 6 9.9 years (range ¼ 11–35 years) and body

mass of 198.1 6 42.9 kg (range ¼ 147.0–251.7 kg, Table 1) par-

ticipated in this study. All data were collected under voluntary

participation and the animals could end a trial at any time.

Routine veterinary assessments include venous blood sam-

pling, and the dolphins that participated in this study had previ-

ously been desensitized to the blood sampling protocol. The

study protocols were accepted by Dolphin Quest and the

Animal Care and Welfare Committee at the Oceanogràfic (OCE-

17-16, amendments OCE-29-18 and OCE-3-19i).

Experimental trials

Whole blood samples were collected at baseline, 3 min and 4.5–

5 min of breath holding on fasted dolphins at Dolphin Quest,

Oahu, March 2018 and May 2019. All trials were performed in

the morning, when the animals were fasted with at least 12 h

having passed since the last meal on the previous day to min-

imize the potential confounding effect of nutritional state. To

ensure that the samples were collected during resting behavior

each breath hold was proceeded by 2 min of rest or slow swim-

ming at the surface. A trial was initiated when the dolphin rolled

into dorsal recumbency with its blowhole submerged and con-

tinued for approximately 5 min (Supplementary Movie S1). The

breath hold ended when the animal rolled into ventral recum-

bency and took a breath (Supplementary Movie S1). Prior to

this study, the animals had previously participated in breath-

hold experiments of durations up to 5 min [11, 51].

Blood collection and processing for RNA-Seq

Whole blood was collected from tail flukes at baseline

(0–30 seconds into the breath hold) and during breath holding

for 3 min and 4.5 (2018) or 5 (2019) min while the animals

were in dorsal recumbency with their blowholes submerged

(Fig. 1A and Supplementary Movie S1). For RNA-Seq blood

was collected into PAXgene tubes, and RNA-Seq was per-

formed after shipping, red blood cell lysis, and RNA extraction

(Fig. 1A). All samples were shipped the same day via overnight

courier to Duke University for downstream processing. For RNA

extraction, tubes were equilibrated to room temperature for 2 h

to achieve complete lysis of blood cells. Subsequently, tubes

were centrifuged at 4000 � g for 10 min. Pellets were resus-

pended in 4 ml of RNase-free water and RNA was extracted

according to the PAXgene Blood RNA kit (PreAnalytiX #762164).

Prior to library prep, RNA quality was evaluated on a Bioanalyzer

2100 (Agilent). Stranded mRNA-seq libraries were prepared

using the Nugen Universal Plus mRNA-seq Library preparation

kit with Globin AnyDeplete (Tecan #9147-A01). Libraries were

sequenced at 150 bp paired-end on one lane of an Illumina

NovaSeq 6000 instrument S-Prime flow cell. Library preparation

and sequencing were performed in conjunction with the Duke

University Sequencing and Genomic Technologies Shared

Resource. Samples collected in 2018 were used to conduct RNA-

Seq analysis and samples collected in 2019 were used for the lip-

oxygenase assays.

RNA-Seq data analysis

RNA-seq data were processed using the TrimGalore toolkit [83]

which employs Cutadapt [84] to trim low-quality bases and

Illumina sequencing adapters from the 30-end of the reads. Only

reads that were 20 nt or longer after trimming were kept for fur-

ther analysis. Reads were mapped to the turTru1v92 version of

Table 1. Animal ID, age (years), body mass (kg) and included analyses for all dolphins in the study.

Animal ID Age (years) Body mass (kg) RNA-Seq Lipoxygenase assay

6JK5 24 200.9 x x

9FL3 35 251.7 x

9ON6 21 192.8 x x

83H1 11 147.0 x

Mean6SD 22.8 6 9.9 198.1 6 42.9

426 | Blawas et al. Evolution, Medicine, and Public Health

https://academic.oup.com/emph/article-lookup/doi/10.1093/emph/eoab036#supplementary-data
https://academic.oup.com/emph/article-lookup/doi/10.1093/emph/eoab036#supplementary-data
https://academic.oup.com/emph/article-lookup/doi/10.1093/emph/eoab036#supplementary-data


the dolphin genome and transcriptome [85] using the STAR

RNA-seq alignment tool [86]. Reads were kept for subsequent

analysis if they mapped to a single genomic location. Gene

counts were compiled using the HTSeq tool [87]. Only genes

that had at least 10 reads in any given library were used in sub-

sequent analysis. Normalization and differential expression

across the time points were carried out using the DESeq2 [88]

Bioconductor [89] package with the R statistical programming

environment [90]. The false discovery rate was calculated to

control for multiple hypothesis testing. To identify relevant mo-

lecular features of dolphin breath holding, we first analyzed the

RNA-Seq data from all individuals at baseline using gene set en-

richment analysis (GSEA) [91, 92]. GSEA is a standard pathway

analysis tool that calculates enrichment scores for annotated

pathways based on the rank order of genes present in the data

for each pathway. Pathways with genes that are more upregu-

lated or downregulated are more likely to be enriched in a data

set than pathways whose genes are randomly distributed

throughout the data. Pathway enrichment in dolphin PBMCs at

baseline, with genes ranked on total expression value, were

compared with human whole blood pathway enrichments from

the Genotype-Tissue Expression (GTEx) project.

Construction of gene regulatory networks

Gene expression networks were created using GeneMANIA [93],

implemented within the Cytoscape platform [94]. For time-

dependent gene network construction, all nodes with 0 or 1 con-

nection were trimmed out of the networks. Two additional non-

coding RNA genes were eliminated (RF00016 and RF00026). To

quantify network connectivity, all genes in the network were indi-

vidually ranked by the following network parameters: degree,

clustering coefficient, closeness, betweenness, neighborhood

connectivity and stress. These rankings were summed to gener-

ate a sum rank score for each gene. Pathway enrichments were

performed in STRING using the trimmed network of 123 genes.

Human whole blood transcriptomics data used for the analyses

described in this manuscript were obtained from the Genotype-

Tissue Expression (GTEx) Program Portal (https://gtexportal.

org/home/, accessed on 20 September 2020).

Lipoxygenase assays

Briefly, 5 ml of blood was collected directly into BD VacutainerVR

SSTTM Tubes (SST) using a 21 g, 3=4 in. winged infusion set with

a BD Vacutainer adapter and holder. Tubes were gently inverted

five times to activate clotting reagent and allowed to clot at

room temperature for 30 min in an upright position. Tubes were

centrifuged at 1500 � g for 15 min to separate serum fractions,

and serum was transferred to 15 ml conical tubes, frozen on dry

ice, and shipped to Duke University for downstream analyses.

Sera were stored at �80�C until use. Lipoxygenase activity was

quantified from 1 lg of total protein using a Fluorometric

Lipoxygenase Activity Assay Kit (BioVision Inc; cat. #K978). All

lipoxygenase activity assays were performed in triplicate bio-

logical replicates from three individual dolphins. Differences in

lipoxygenase activity across each time point were analyzed

using analysis of variance with Tukey’s post-hoc adjustment for

multiple testing in Graphpad Prism 8.

Supplementary data

Supplementary data is available at EMPH online.
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