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Ischemic stroke (IS) and Parkinson’s disease (PD) are two neurological diseases that

often strike individuals of advanced age. Although thought of as a disease of old age, PD

can occur in younger patients. In many of these cases, genetic mutations underlie the

disease. As with PD, stroke can also have a genetic component. Although many of the

risk factors for IS are considered to be modifiable, a significant portion is not, suggesting

that some of stroke risk factors may have a genetic origin. Large-scale genome-wide

association studies (GWAS) have identified several IS and PD gene variants recently.

Converging epidemiologic and pathological evidence suggests that IS and PD may

be linked. However, it is still unclear whether these two conditions share a common

mechanism. Here, we sought to determine the genetic mechanism underlying the

possible association between IS and PD. We conducted a multi-step systemic analysis

comprising (1) identification of IS and PD variants validated by known GWAS, (2) two

separate gene-based tests using Versatile Gene-based Association Study 2 (VEGAS2)

and PLINK, (3) a transcriptome-wide association study (TWAS), and (4) analyses of gene

expression using an online tool in Gene Expression Omnibus. Our investigation revealed

that IS and PD have in common five shared genes: GPX7, LBH, ZCCHC10, DENND2A,

and NUDT14, which pass gene-based tests. Functionally, these genes are expressed

differentially in IS and PD patients compared to neurologically healthy control subjects.

This genetic overlap may provide clues on how IS and PD are linked mechanistically. This

new genetic insight into these two diseases may be very valuable for narrowing the focus

of future studies on the genetic basis of IS and PD and for developing novel therapies.

Keywords: ischemic stroke, Parkinson’s disease, genome-wide association studies, gene-based test, gene

expression analyses

INTRODUCTION

Stroke and Parkinson’s disease (PD) are two neurological diseases that have great worldwide impact
and that share certain clinical and pathological features. Stroke is amajor cause of disability inmany
western countries. Moreover in 2015, it was the second leading cause of death, accounting for 11%
of total deaths (6.3 million) (1, 2). Ischemic stroke (IS) accounts for up to 85% of all stroke cases.
PD similarly affects many people and in 2015, it resulted in about 117,400 deaths globally (2, 3).
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Both IS and PD have substantial genetic components.
Evidence for a substantial genetic contribution for IS risk comes
from genome-wide association studies (GWAS) and twin and
family history studies (4–7). GWAS have uncovered risk loci for
IS (4–7). Falcone et al. reviewed several common genetic variants
of certain forms of IS that do not follow a clear Mendelian
pattern of inheritance. These variants include ABO, PITX2,
ZFHX3, HDAC9, SUPT3H/CDC5L, and CDKN2A/CDKN2B (6).
Candidate-gene analyses and GWAS have identified a new locus
at chromosome 6p25 (rs12204590, near FOXF2) that is related to
all-stroke risk (8). Also, a new locus at chromosome 1p13.2 near
TSPAN2was recently identified; this latter locus is related to large
artery atherosclerosis (LAA)-related stroke (9). Many researchers
suspect that several other variants are yet to be identified.

As with IS, emerging evidence shows that PD has a
substantial genetic component (10–12). GWAS and linkage
analysis have confirmed the role of genes involved in familial
and sporadic forms of PD (13, 14). Analysis of five large-
scale GWAS datasets from Europe and the USA has identified
some risk SNPs (p < 5.00E-08) through meta-analysis of PD
susceptibility genes, including MAPT, SNCA, HLA-DRB5, BST1,
GAK, LRRK2, SYT11, ACMSD, STK39, MCCC1/LAMP3, and
CCDC62/HIP1R (13). There is now abundant GWAS data on
numerous phenotypes of various diseases. Simultaneous analyses
of multiple phenotypes can increase the detection of shared
pathways, a procedure that could prove to be fruitful for
identifying common genes of IS and PD.

Converging molecular, cellular, genetic, and clinical evidence
has been reported for IS and PD. In a large population-based
study, Huang et al. (15) and Becker et al. (16) confirmed
that PD is related to an increased risk of IS and vice versa,
implying that the two diseases may share some pathological
mechanisms or processes. One possible link between IS and
PD may involve α-synuclein, especially oligomeric forms (17).
Abnormal aggregations and form conversion of α-synuclein
are thought to result from the induction of oxidative stress
and may be the pathological basis for PD (18). α-synuclein
appears to be similarly elevated in red blood cells of IS
and PD patients, being significantly higher than that in
healthy people (17). α-synuclein induces microglia-mediated
neuroinflammation, and α-synuclein aggregation indirectly
damages neurons (19–21). Taken together, it is reasonable to
hypothesize that, although IS and PD are two very different
diseases, they may share pathophysiological processes that link
them at some level. Building on this hypothesized relationship,
one might expect to detect common immune-related genetic
risk factors.

While GWAS has been revolutionary in unraveling disease
genetics in general, for IS and PD, a large proportion of
genetic variants remain undiscovered, serving as a reminder
that more work are necessary to identify other genes that
contribute to the pathology of these two diseases.We hypothesize
that combining analyses of genes identified from different
gene-based tests may be a powerful approach for identifying
genes shared by IS and PD. We tested this hypothesis by
conducting two gene-based meta-analyses using VEGAS2 and

PLINK on IS and PD data from GWAS. In addition, we
examined the shared genes by TWAS, and further validated
the shared gene data with gene expression analyses utilizing
GEO datasets.

MATERIALS AND METHODS

Participant Samples
PD GWAS Dataset
Pankratz et al. (22) originally analyzed the PD GWAS dataset.
They also conducted a large meta-analysis on two new datasets
obtained directly from the investigators who performed the
original GWAS (23–25) and on publicly available GWAS data
obtained from dbGaP (10, 26), PROGRNI/GenePD (23), NIA
Phase I (26), NIA Phase II (10), HIHG (24), andNGRC (25). They
designed a two-stage study, which comprised a discovery stage
and an independent replication stage. All the datasets used in
the discovery stage came from Caucasian PD patients who were
diagnosed using standard UK Brain Bank criteria for PD (27).
Since familial PD cases may have a stronger genetic contribution
than sporadic PD cases (22), they additionally included data from
cases with a family history of PD. Anyone with a PD onset age
younger than 18 years was excluded from the study. They also
removed data of cases that had a known pathogenic factor, such
as two parkin mutations or single LRRK2mutations.

In the original publication, each study underwent rigorous
quality assessment and data cleanup before performing
imputation with MACH1.0 (28). To control population
stratification, the researchers used principal component analysis.
ProbABEL (https://cran.r-project.org/src/contrib/Archive/
GenABEL/), a tool for genome-wide association analysis of
imputed data, and METAL (http://www.sph.umich.edu/csg/
abecasis/Metal), a tool for meta-analysis, were then used to
analyze the data. Finally, we acquired summary PD GWAS
statistics data from the discovery samples, which included
2,525,704 SNPs from 4,238 PD cases and 4,239 control cases [for
additional details, see the original article (22)].

IS GWAS Dataset
The IS summary GWAS data was obtained from phase
I of the METASTROKE collaboration, which consisted of
10,307 Caucasian IS cases and 19,326 Caucasian control cases
(29). These cases came from 12 studies (ASGC, BRAINS,
GASROS_affy, GASROS_illumina, GEOS, HPS, ISGS-SWISS,
MILANO, VISP, WHI, WTCCC2-D, and WTCCC2-UK) with
previously genotyped data. The etiologic stroke subtypes were
classified according to the criteria of the Trial of ORG 10172 in
Acute Stroke Treatment (TOAST) (30).

For all datasets, the researchers performed genotyping
individually and quality controls using methods documented
previously (30). Using 1000 Genomes phase I data, the
researchers imputed the raw autosomal data following a genome-
wide logistic regression analysis and a meta-analysis (31). In
order to determine whether the effector alleles were identical,
SNPs were analyzed across the cohort in a meta-analysis.
Additionally, genomic control was also used for test statistics to
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correct for incidental inflation. Finally, we obtained summary IS
GWAS data, including 9,541,572 SNPs [for additional details, see
the original article (29)].

Statistical Analysis
Gene-Based Testing Using VEGAS for

GWAS Datasets
To test the IS and PD GWAS datasets, we calculated gene-based
p values with VEGAS2 after assigning variants to genes. We
chose a broad reference population group, having a European
ancestry (1000G EURO). For gene boundary selection for SNP,
we implemented option 5, “0kbldbin” (SNPs within this gene
and SNPs in high LD outside of this gene with SNPs within
this gene). In gene-based tests, distant SNPs with r2 > 0.8
with associated SNPs were usually not taken into consideration
systematically, and yet ignoring LD might lead to deficiency
of some valuable information, therefore we chose this larger
gene boundary. For every gene definition, the gene-based test
statistics were calculated by adding the p values of n SNPs
after conversion to upper tail χ2 statistics with one degree of
freedom (df ). Under the null hypothesis, these should have a
χ2 distribution with n df, if SNPs are in linkage equilibrium
(LD) (32).

SNP correlation was modeled using
∑

, a n × n matrix
of LD (r) values estimated from a 1000 Genomes European
reference population (32). We used this method because LD
for the n SNPs scarcely occurs (32). Significance was calculated
by comparing the sum of χ2 statistics for every gene with
simulated repeats from a multivariate normal distribution, where
the mean = 0 and variance =

∑

(32). The formula p =

r+1/m+1 was used to calculate empirical p values for every
gene, where r represents the number of instances in which
the simulation statistic exceeds the observation data, and m
represents the number of simulations (32). This gene-based test
included all top SNPs (by default, all SNPs are considered).
We submitted IS and PD variants to VEGAS2 separately, and
then identified shared genes that were nominally associated
in each disease separately (PIS−GWAS < 0.05; PPD−GWAS <

0.05) (33).

Gene-Based Testing Using PLINK for GWAS Datasets
To test IS and PD GWAS datasets, we used Fisher’s method
implemented in PLINK software (SET SCREEN TEST). If the
performed tests are independent for each SNP, for a given gene,
the combined Fisher’s statistic

x20 = −2

N
∑

i=1

ln (pi)

follows aχ2 distribution, with 2Ndf under the null hypothesis. In
this formula,N represents the number ofmarkers (tests), and pi (i
= 1,. . . , N) represents the corresponding p values. If the tests are
not independent, the statistic x20 has mean m = 2N and variance
(σ2) is

σ 2
= 4N +

N−1
∑

i=1

N
∑

j=I+1

cov(−2 ln
(

pi
)

, −2 ln (pj))

In the formula above, pi and pj (i, j = 1, . . . , N) represent the p
values for each test. The covariance (cov) can be calculated as

cov(−2 ln
(

pi
)

, −2 ln
(

pj
)

) = pij(3.25+ 0.75pij)

where pij approximates the correlation between SNPi and SNPj.
These are the non-negative correlation coefficients between the
two variables.

Thus, the significance of a complete set of non-independent
tests is calculated as

x2 = −2

N
∑

i=1

ln (pi)×
4N

σ 2

where x2 follows the central Chi-squared distribution, with 8N2

/σ 2 as df.
This method was applied to the PD GWAS dataset and IS

GWAS dataset using LD information from the HapMap CEU
population. An approximate Fisher’s test was used for all the
SNPs in genes to combine p values (34). By combining a group
of p values that were acquired from independent tests with the
same null hypothesis, we found that the Fisher’s method was
asymptotically optimal to achieve overall significance (34). Genes
with many of SNPs are well suited to using this approach (34–
36). After performing calculations in PLINK, we identified shared
genes that were associated with each disease (PIS−GWAS < 0.05;
PPD−GWAS < 0.05).

Meta-Analysis of Shared Genes
We combined the two p values of the shared genes of IS and PD
derived fromVEGAS using the simplest meta-analysis method in
GWAS: Fisher’s method. We conducted the same meta-analysis
for shared genes identified by PLINK. For a given gene, we chose
the following formula for the statistic

x2 = −2

k
∑

i=1

ln (Pi)

where in the ith study, Pi is the gene’s p value; and k represents
the overall number of studies. Under 2k df, x2 follows a χ2

distribution (37).We used the programR (https://www.r-project.
org/) to finish the analysis.

Transcriptome-Wide Association Study
TWAS combines gene expression data with GWAS data to
identify genes that could regulate the expression of complex traits
in cis-action (38). We performed a validation of the shared genes
using TWAS in different tissues to determine whether they played
significant roles in expression-trait associations. The process of
TWAS have been widely described in previous articles (38).
Here, TWAS integrated pre-computed gene expression weights
of whole blood and brain RNA-seq with GWAS data to estimate
the associations of gene to traits. The reference data of whole
blood comprised 1,264 samples of Cardiovascular Risk in Young
Finns Study (YFS) in Finland (39), and the reference data of
brain RNA-seq was collected from the dorsolateral prefrontal
cortex of 452 samples from the CommonMind Consortium
(CMC) (40).
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Gene Expression Analyses
To bolster our gene-based testing results with biological
functional data of shared genes and to further validate the
shared genes of IS and PD, we used GEO2R (41), an online
tool that can identify differentially expressed genes under
different experimental conditions. This tool compares two
or more sample groups in the Gene Expression Omnibus
(GEO) database.

Gene expression data from analyses of peripheral whole blood
of 39 IS patients and 24 non-stroke, neurologically healthy
control subjects were obtained from GEO dataset GSE16561.
Patients were recruited if they were ≥18 years and diagnosed
definite IS by MRI. In addition, patients diagnosed hemorrhage
and uncertain IS were excluded from the group. There were no
significant differences in gender and race between patients and
controls, but more vascular risk factors (such as hypertension,
diabetes, etc.) were found in stroke subjects. More details about
clinical characteristics were provided in the original report
(42). The samples were analyzed on an Illumina HumanRef-8
Expression BeadChip. We also used another publically available
stroke RNA expression dataset, GEO dataset GSE58294 (43).
These data were derived from analyses of peripheral whole blood
of 23 cardioembolic stroke patients and 23 vascular risk factor
controls (VRFC). Race was not statistically significantly different
between stroke cases and VRFC. More subject demographics
were described in the original article (43).

For changes in gene expression in PD patients, global
expression data derived from analyses of postmortem brain
tissue were acquired from GEO dataset GSE20295 (44, 45). This
dataset comprises three subseries (GSE20168, GSE20291, and
GSE20292). The tissue blocks which were from three brain areas,
prefrontal cortex area 9, the putamen, and the entire substantia
nigra, were collected from 15 patients with neuropathologically
confirmed PD and 15 controls without major brain disease.
PD patients diagnosed with additional neuropathological disease
were excluded from the study. Between PD and control groups,
some variables, for example gender, which could greatly affect
the expression profile of RNA in postmortem brain tissues, were
matched closely and had no significant differences (p > 0.05).
[for more details, see the original report (44, 45)]. The data
were analyzed using an Affymetrix Human Genome U133A
Array platform.

NCBI GEO can be used as a public repository for a variety
of high-throughput experimental data. Currently, GEO contains
nearly 140,000 samples and more than 3,000 different microarray
platforms (46). GEO2R uses the GEO query (46) and Linear
Models for Microarray Analysis (47) (limma) R packages from
the Bioconductor project (https://www.bioconductor.org) to
compare the processing data tables provided by the original
submitter. Although our main goal was to identify the consensus
genes (listed above) in each dataset, we also screened and
ranked by significance all of the genes shared by IS or PD.
The latter was done by assessing their differential expression
relative to control subjects. The permutation allowed a null
distribution of gene ranking per experiment. Then we evaluated
whether the shared genes deviated significantly from the
null distribution.

RESULTS

Gene-Based Testing
Gene-Based Meta-Analysis With VEGAS2
Using VEGAS2, we assigned variants to genes and calculated p
values for IS and PD datasets separately. From those analyses,
we obtained 20,946 IS genes and 19,858 PD genes with at
least two SNPs. We subsequently identified 75 genes that were
nominally associated with each individual disease (PIS−GWAS <

0.05; PPD−GWAS < 0.05) and shared by IS and PD. Following
meta-analysis of the 75 genes and Bonferroni correction with p
< 3.33E-04 (p = 0.05/75/2), we ultimately identified nine shared
genes between IS and PD: GAK (p = 1.24E-06 for IS and PD,
3.55E-02 for IS, and 2.00E-06 for PD); MMRN1 (p = 1.82E-05
for IS and PD, 3.38E-02 for IS, and 3.70E-05 for PD); GPX7 (p
= 2.70E-05 for IS and PD, 2.00E-03 for IS, and 9.52E-04 for PD);
NUDT14 (p= 3.65E-05 for IS and PD, 3.56E-04 for IS, and 7.40E-
03 for PD); LBH (p = 4.55E-05 for IS and PD, 1.57E-03 for IS,
and 2.13E-03 for PD); ZCCHC10 (p = 5.68E-05 for IS and PD,
6.30E-03 for IS, and 6.75E-04 for PD); P2RX6 (p = 1.03E-04 for
IS and PD, 6.23E-03 for IS, and 1.30E-03 for PD); DENND2A (p
= 2.24E-04 for IS and PD, 2.42E-03 for IS, and 7.78E-03 for PD);
and LOC101928455 (p= 3.07E-04 for IS and PD, 2.69E-03 for IS,
and 9.90E-03 for PD). Detailed information about these genes is
provided in Table 1.

Gene-Based Meta-Analysis With PLINK
Using PLINK, wemapped IS and PD SNPs to genes and identified
16,724 IS genes and 16,610 PD genes with at least two SNPs. We
subsequently identified 33 genes shared by IS and PD that were
nominally associated with each individual disease (PIS−GWAS <

0.05; PPD−GWAS < 0.05). Following meta-analysis of the 33 genes
and Bonferroni correction with p < 7.58E-04 (p = 0.05/33/2),
we finally identified nine genes associated with the two diseases.
Theses nine genes are NUDT14 (p = 3.86E-05 for IS and PD,
3.58E-04 for IS, and 7.82E-03 for PD); PARP3 (p = 5.28E-05 for
IS and PD, 2.30E-03 for IS, and 1.71E-03 for PD); GPX7 (p =

8.08E-05 for IS and PD, 2.50E-03 for IS, and 2.49E-03 for PD);

TABLE 1 | Nine genes shared by ischemic stroke and Parkinson’s Disease cases

identified with VEGAS2 (adjusted p < 3.33E-04).

Ischemic

stroke

Parkinson’s disease

ChrGene nSNPs p nSNPs p χ
2 Meta-

analysis

4 GAK 383 3.55E-02 79 2.00E-06 32.92 1.24E-06

4 MMRN1 142 3.38E-02 51 3.70E-05 27.18 1.82E-05

1 GPX7 19 2.00E-03 3 9.52E-04 26.34 2.70E-05

14 NUDT14 18 3.56E-04 10 7.40E-03 25.69 3.65E-05

2 LBH 102 1.57E-03 40 2.13E-03 25.22 4.55E-05

5 ZCCHC10 81 6.30E-03 21 6.75E-04 24.74 5.68E-05

22 P2RX6 51 6.23E-03 13 1.30E-03 23.45 1.03E-04

7 DENND2A 243 2.42E-03 53 7.78E-03 21.76 2.24E-04

2 LOC101928455 118 2.69E-03 50 9.90E-03 21.07 3.07E-04

Chr, chromosome; nSNPs, number of single nucleotide polymorphisms.
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ZCCHC10 (p = 8.19E-05 for IS and PD, 7.22E-03 for IS, and
8.75E-04 for PD); MEX3A (p = 2.26E-04 for IS and PD, 4.54E-
04 for IS, and 4.20E-02 for PD); DENND2A (p = 5.03E-04 for
IS and PD, 5.51E-03 for IS, and 8.30E-03 for PD); CRNN (p =

6.31E-04 for IS and PD, 2.37E-02 for IS, and 2.48E-03 for PD);
RGS9BP (p= 6.31E-04 for IS and PD, 3.74E-03 for IS, and 1.57E-
02 for PD); and LBH (p = 7.44E-04 for IS and PD, 1.01E-02 for
IS, and 7.01E-03 for PD). Detailed information about these genes
is provided in Table 2.

Identifying Shared Genes Using Two

Different Approaches
Due to differences in identifying shared genes with either the
VEGAS2 or PLINKmethod, we expected that shared genes would
bemore strongly associated with the diseases if theymet the gene-
based testing criteria of both methods. By determining where
the results of statistically significant genes obtained by the two
methods intersected, we ultimately obtained five shared genes
satisfying the gene-based testing conditions. These genes are
GPX7, NUDT14, LBH, ZCCHC10, and DENND2A. Meanwhile 4
of these 5 genes were also shown to be significantly associated
with the two diseases in different tissues through TWAS (p <

0.05). Detailed results were summarized in Table 3. We next
sought validation through other functional analyses.

TABLE 2 | Nine genes identified with PLINK shared by cases with ischemic stroke

and Parkinson’s disease (adjusted p < 7.58E-04).

p

Chr Gene Ischemic

stroke

Parkinson’s

disease

χ
2 Meta-analysis

14 NUDT14 3.58E-04 7.82E-03 25.57 3.86E-05

3 PARP3 2.30E-03 1.71E-03 24.89 5.28E-05

1 GPX7 2.50E-03 2.49E-03 23.98 8.08E-05

5 ZCCHC10 7.22E-03 8.75E-04 23.94 8.19E-05

1 MEX3A 4.54E-04 4.20E-02 21.73 2.26E-04

7 DENND2A 5.51E-03 8.30E-03 19.99 5.03E-04

1 CRNN 2.37E-02 2.48E-03 19.48 6.31E-04

19 RGS9BP 3.74E-03 1.57E-02 19.48 6.31E-04

2 LBH 1.01E-02 7.01E-03 19.12 7.44E-04

Chr, chromosome.

TABLE 3 | Five genes identified with two methods were verified by TWAS.

Ischemic stroke Parkinson’s disease

Chr Gene pTWAS Comparative

tissue

pTWAS Comparative

tissue

1 GPX7 1.44E-02 Whole blood 1.10E-01 Whole blood

2 LBH 9.33E-02 Whole blood 3.16E-02 Whole blood

5 ZCCHC10 – – – –

7 DENND2A 8.58E-04 Brain RNA-seq 8.55E-03 Brain RNA-seq

14 NUDT14 4.31E-04 Brain RNA-seq 1.85E-02 Brain RNA-seq

Chr, Chromosome; –, Not available.

Gene Expression Analyses of Identified Genes
We further investigated whether these five shared genes
were differentially expressed in IS and PD patients compared
to neurologically healthy control subjects. We applied the
Bonferroni-corrected statistical test at a significance of p < 0.01
(p = 0.05/5) and log2-fold change (logFC) to measure changes
in the levels of gene expression. Compared to control subjects,
in IS patients we detected significantly altered transcript levels
of GPX7 (p = 1.46E-07); NUDT14 (p = 9.00E-03); LBH (p
= 5.45E-06) in the GEO dataset GSE16561; and ZCCHC10 (p
= 3.87E-08) in the GEO dataset GSE58294 (Table 3). In PD
brains, we found significantly altered expression levels of GPX7
(p = 8.81E-03); LBH (p = 7.05E-03); ZCCHC10 (p = 7.01E-
03); and DENND2A (p = 9.77E-03) in GEO dataset GSE20295
(Table 4). It is remarkable that transcript expression of GPX7
(GSE16561: logFC = −0.499; GSE20295: logFC = −0.802) and
LBH (GSE16561: logFC = −0.553; GSE20295: logFC = −1.058)
was significantly decreased in both IS patients and PD patients
compared to the corresponding control groups.

DISCUSSION

It has been widely reported that IS and PD share various
pathological and clinical features (17, 48, 49). However, until
now, the underlying genetic relationship between the two
diseases has remained unclear. Previous studies have investigated
IS and PD susceptibility genes independently and separately
through analysis of IS and PDGWAS datasets and by performing
independent linkage analyses (6, 8, 9, 13). Despite those efforts,
a large proportion of genetic variants related to IS and PD
remain undiscovered. What steps can be taken to identify these
variants? We hypothesized that combining the findings from
both IS and PD GWAS would lead to the identification of new
shared variants. In the current study, we performed two gene-
based tests on IS and PD GWAS datasets, examined the shared
genes by TWAS and then conducted gene-expression analyses for
validation. Through our analysis, it is significant to identify that
IS and PD have shared genes, which explain shared pathogenesis
between them to some extent. What’s more, it is also consistent

TABLE 4 | Shared genes in patients with ischemic stroke or Parkinson’s disease

vs. their corresponding healthy controls.

Ischemic stroke vs. control Parkinson’s

disease vs. control

GSE16561 GSE58294 GSE20295

Gene p logFC p logFC p logFC

GPX7 1.46E-07 −0.50 3.59E-01 −0.10 8.81E-03 −0.80

NUDT14 9.00E-03 −0.22 2.53E-02 0.17 – –

LBH 5.45E-06 −0.55 7.92E-01 0.03 7.05E-03 −1.06

ZCCHC10 2.92E-01 0.13 3.87E-08 0.85 7.01E-03 −0.84

DENND2A 4.18E-01 0.08 2.27E-02 0.19 9.77E-03 −0.95

–, Not available.
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with a previous large study that, not only did PD patients have
more frequent history of stroke thanmatched groups without PD,
but the incidence rates of IS were also increased for PD patients
compared with PD-free groups (16).

Through the two gene-based meta-analyses, we identified five
new genes shared by IS and PD, which were further examined by
TWAS. These five genes are GPX7, NUDT14, LBH, ZCCHC10,
and DENND2A. Although we have not replicated published
findings on IS/PD risk genes, these five shared genes we identified
here have been studied extensively, and many experiments show
that they play important roles in the pathogenesis of IS and PD
(50, 51). GEO2R analyses also confirmed that expression level of
these five genes in IS patients was different to that in control
subjects. The same was true regarding the expression of these
genes in PD patients and control subjects. Taken together, these
results suggest that various related genes may underlie certain
aspects of the pathogenesis of IS and PD.

Glutathione Peroxidase 7 (GPX7)
GPX7, also known as NPGPx, is a member of the glutathione
peroxidase (GPX) family of enzymes, which function to reduce
oxidative damage (52). Ectopic expression of GPX7 inhibits
H2O2-induced toxic effects, which is consistent with its essential
role in reducing oxidative stress (52). GPX7 also transmits
endoplasmic reticulum (ER) oxidative stress signals through the
formation of disulfide bonds. This signal activates downstream
ER glucose-regulated protein 78 (GRP78) and enhances its
chaperone activity. Consistently,GPX7-knockoutmice have been
shown to accumulate reactive oxygen species, and they have
a significantly shortened lifespan (53). Thus, it is clear that
GPX7 plays an important role as a stress sensor, functionally
contributing to the attenuation of ER oxidative stress damage.

Mounting evidence confirms that ER stress contributes to the
pathogenesis of PD and IS (51, 54, 55). Coppola-Segovia and
collaborators have shown that model mice constructed to develop
ER stress exhibit by injection of tunicamycin were induced PD
features, such as dopamine neuronal death, increased astroglial
reactivity, and extensive oligomerization of α-synuclein (55).
These features reinforce the notion that ER stress could play
a pivotal role in the pathogenesis of PD (55). ER stress also
appears to contribute to the pathogenesis of IS. During stroke,
the unfolded protein response (UPR) signaling pathway is
initiated by protein misfolding in energy-starved neurons, which
is associated with the toxic effects of reperfusion (54). GRP78
mainly regulates the UPR signaling pathway. The UPR signaling
pathway plays an important role in attenuating ER stress by
lessening protein translation, increasing folding capacity, and
promoting ER-associated degradation and expansion of the ER
membrane (56, 57). GPX7 has also been shown to enhance the
chaperone activity of GRP78 to attenuate ER stress in transgenic
animals (53).

In summary, the involvement of ER stress in pathogenesis
of both IS and PD has been confirmed in many studies. GPX7
could affect ER stress by direct regulation or by changing GRP78
indirectly, and hence participate in the pathological process of
both diseases. We predict that it might be helpful in therapies of

both diseases by interfering with GPX7 to change ER stress. We
need more validation studies in future.

Limb-Bud and Heart (LBH)
LBH is a highly conserved, tissue-specific transcriptional
regulator that plays a key role in the embryonic development
of vertebrates (58–60). In epithelial development and cancer,
LBH is a direct target gene for the canonical Wingless/Int
(Wnt) signaling pathway (61). The relationship between the Wnt
pathway and PD or IS has been widely reported (50, 62).

There is sufficient number of studies now suggesting that the
Wnt signaling pathway is critical for the normal functioning of
midbrain dopaminergic neurons. A growing number of genes
that encode components of the Wnt pathway are involved in
the development of dopaminergic neurons in the midbrain (63,
64), a region of early neuronal degeneration in PD, which is a
pathological hallmark of the disease (65). In recent years, studies
have revealed that the pathogenesis of PD can be traced back
to gene mutations. Surprisingly, the Wnt signaling pathway has
links with a striking number of PD susceptibility genes, such as
LRRK2 (66), PARK2 (67), VPS35 (68), Nurr1 (69), GSK3β (70),
and WNT3 (71). LRRK2, for example, has been suggested to
play a central role in the canonical Wnt pathway, and mutations
in LRRK2 decreases pathway activity (66). Taken together, it is
reasonable to think that deregulation of the Wnt pathway might
be an important precursor to the pathogenesis of PD. Does
deregulation of the Wnt pathway make IS more likely?

Pathologically, stroke is the culmination of various insults to
the vasculature. Recent work has shown that the Wnt pathway
is involved in the development of central nervous system blood
vessels, formation of the blood-brain barrier, and protection of
injured endothelial cells (72, 73). In addition, GWAS analysis of
IS patients and controls show that gender is implicated in the
etiology of stroke (74), and male-specific stroke genes have been
shown to be associated with theWnt pathway (74). Furthermore,
the Wnt pathway is involved in neuroinflammation, and it
is important for neurogenesis (72, 75); these two processes
are involved in PD and stroke. As LBH has been shown
to be associated with other inflammatory disorders such as
autoimmune diseases, in particular, rheumatoid arthritis (76), it
might play a valuable role in IS and PD.

In general, theWnt pathway has been demonstrated involving
in both IS and PD susceptibility pathways by GWAS analysis.
Numerous experiments have likewise demonstrated that Wnt
signaling pathway is involved in the development of central
nervous system, which comprises an important part of the
pathological process of IS and PD. While LBH acts as a direct
target gene for Wnt pathway, it is possible that LBH plays a role
in the common pathogenesis of PD and IS.

Zinc Finger CCHC Domain Containing
10 (ZCCHC10)
ZCCHC10 was found to be closely associated with IS and PD
in our analyses. However, to date, the function of ZCCHC10
has revealed few links to IS, PD, or any other human diseases.
One study suggested that ZCCHC10 interacts with tumor protein
p53 (TP53), LUC7 like 2 (LUC7L2), peptidylprolyl cis/trans
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isomerase (PIN1), and eukaryotic translation elongation factor
1 alpha 1 (EEF1A1) (77). One of ZCCHC10’s interaction
partners, EEF1A1, plays an important role in the ability of
monocyte locomotion inhibitory factor (MLIF) to protect the
brain from ischemic damage. Knockout of EEF1A1 attenuates
MLIF’s inhibitory effects on the expression of inflammatory
molecules and ultimately reduces the protective effect ofMLIF on
IS (78). EEF1A1 was identified to be an attractive candidate gene
for PD as well (79). Furthermore, another ZCCHC10-interacting
partner, PIN1, has been found to be dramatically upregulated in
the substantia nigra of PD patients and to have a proapoptotic
role in the pathophysiological mechanisms of PD (80). Thus,
ZCCHC10 could be an attractive gene by interacting with
EEF1A1/PIN1 for unraveling the pathophysiological relationship
between IS and PD to some extent.

DENN Domain Containing 2A (DENND2A)
DENND2A is a member of theDEEND2 gene family and has been
shown to be a specific guanine nucleotide exchange factor (GEF)
for Rab9, which is involved in trafficking between the trans-Golgi
network (TGN) and late endosomes (81). Although the function
of DENND2A has rarely been reported to be relevant to diseases,
Rab9-dependent mitophagy has been shown to contribute to
heart disease (82). Recently mitophagy has been reported to play
important roles in IS and PD (82–84). DENND2A, therefore,
might be a promising gene by playing a part in mitophagy for
determining the etiology of PD and IS.

Nudix Hydrolase 14 (NUDT14)
NUDT14 is one member of the 24 Nudix hydrolase genes of
the human genome (85). NUDT14 is proposed to be involved
in the control of glycogen metabolism, where it modulates UDP-
glucose levels during glycolipid and glycoprotein synthesis (86).
A recent study showed that NUDT14 could affect viral DNA
replication by interacting with human cytomegalovirus RL13
(87). However, the function ofNUDT14 has few connections with
IS or PD. In our study, NUDT14 was identified as a candidate
gene related to the pathogenesis of PD and IS. Additional
research is needed in order to confirm this.

Choice of Correction Method
As for the gene-based analysis, we used a more liberal cutoff
genetic association p< 0.05 as the criterion for determining genes
associated with IS or PD, rather than the multiple comparisons
according to some considerations. For some complex disorders,
the effect size of individual genetic variants is usually modest,
which suggests that individual genetic variants could account
for a minimal fraction of heritability of complex traits and
genetic risk (88). Association signals for complex traits tend
to be propagated throughout most of the genome, comprising
genes which are not significantly connected to disease (89). In
order to capture disease-related genes more comprehensively, we
chose genes with nominal associations (p < 0.05) (33, 90). In
addition, we obtained 20,946 IS genes and 19,858 PD genes with
corresponding p values through VEGAS2. If we select Bonferroni
correction for multiple test comparisons, the adjusted p value
of IS genes should be <0.05/20946 = 2.39E-06 and only 1 gene

passes the correction, meanwhile, the adjusted p value of PD
genes should be <0.05/19858 = 2.52E-06 and 11 genes are with
this significance level. If we take the same correction method
for genes and p values obtained from PLINK software, 9 PD
genes and 1 IS gene are with the significance level (PIS < 2.99E-
06, PPD < 3.01E-06). Thus, we chose genes that were nominally
associated in each disease for following analysis. For the obtained
share genes, we performed Bonferroni correction formultiple test
comparisons and genes with the significance level were verified as
associated with both diseases.

Limitations
The present study has some limitations despite of these
interesting results. Since the original datasets were derived
from patients who received clinical diagnosis of IS and PD,
misdiagnosis could have potentially influenced on our results. In
addition, we could not access the original SNP genotype data,
we had to use summary data from IS and PD GWAS, which
prevented us from using a polygenic risk score or BLUP method
to address the shared genetics of complex traits and could have
affected our results. We will improve our future work, when the
original data is available to us. Besides, we utilized a small size
of PD GWAS sample, compared with IS sample, which raised
the possibility that the findings might be driven primarily by
the IS sample. Moreover, as the multiple testing corrections we
used in our statistical analyses may be insufficient to explain all
biases, permutation testing should be used to adjust the results
at the single SNP level. What’s more, the data from different
tissues for PD and IS might be a potential limitation to the
results. We will further expand the size and tissues of expression
data in the future. Furthermore, we lacked transcriptomic and
epigenetic data, which may contribute to the identification of
more potential causal mechanisms and associations. Finally, we
did not further analyze the relationship between IS subtypes and
PD. There are still some differences among IS subtypes, even
though the pathological processes underlying each subtype have
a certain degree of commonality.

CONCLUSIONS

In conclusion, for two GWAS datasets for IS and PD, we used
two gene-based testing methods and gene-expression analyses to
identify several genes that are associated with neuroinflammation
and neuro-immunity and that are expressed differentially in IS
patients and PD patients. Based on previous work (91, 92),
our outcomes support the hypothesis that IS and PD may be
linked through shared neuroinflammation- and neuroimmune-
related genes.
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