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Purpose: In this study, we demonstrate the first combination of 3D FID proton 
MRSI and spatial encoding via concentric‐ring trajectories (CRTs) at 3T. FID‐MRSI 
has many benefits including high detection sensitivity, in particular for J‐coupled 
metabolites (e.g., glutamate/glutamine). This makes it highly attractive, not only for 
clinical, but also for, potentially, functional MRSI. However, this requires excellent 
reliability and temporal stability. We have, therefore, augmented this 3D‐FID‐MRSI 
sequence with single‐echo, imaging‐based volumetric navigators (se‐vNavs) for 
real‐time motion/shim‐correction (SHMOCO), which is 2× quicker than the original 
double‐echo navigators (de‐vNavs), hence allowing more efficient integration also 
in short‐TR sequences.
Methods: The tracking accuracy (position and B0‐field) of our proposed se‐vNavs 
was compared to the original de‐vNavs in phantoms (rest and translation) and in vivo 
(voluntary head rotation). Finally, the intra‐session stability of a 5:40 min 3D‐FID‐
MRSI scan was evaluated with SHMOCO and no correction (NOCO) in 5 resting 
subjects. Intra/inter‐subject coefficients of variation (CV) and intra‐class correla-
tions (ICC) over the whole 3D volume and in selected regions of interest ROI were 
assessed.
Results: Phantom and in vivo scans showed highly consistent tracking performance 
for se‐vNavs compared to the original de‐vNavs, but lower frequency drift. Up to 
~30% better intra‐subject CVs were obtained for SHMOCO (P < 0.05), with values 
of 9.3/6.9/6.5/7.8% over the full VOI for Glx/tNAA/tCho/m‐Ins ratios to tCr. ICCs 
were good‐to‐high (91% for Glx/tCr in motor cortex), whereas the inter‐subject vari-
ability was ~11–19%.
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1 |  INTRODUCTION

Proton MRSI (1H‐MRSI) allows the non‐invasive assessment 
of comprehensive neurochemical profiles in vivo1 and has 
been used to study many different neurologic, neuropsychi-
atric, and oncologic pathologies.1 The simultaneous acquisi-
tion of multiple voxels allows for regional mapping of various 
neurochemicals at 3T, including NAA, Cr, Cho, myo‐inositol 
(m‐Ins), and glutamate + glutamine (Glx).2

At higher B0 of 7T or higher, FID‐based MRSI sequences 
with short acquisition delays have shown great potential 
for high‐resolution metabolic mapping.3-5 The benefits in-
clude negligible signal losses caused by T2‐relaxation or 
J‐modulation, low specific absorption rates, low chemi-
cal‐shift displacement errors, and reduced sensitivity to  
B
+

1
errors. At 7T, FID‐MRSI sequences have been accelerated 

by non‐Cartesian k‐space sampling based on concentric‐
ring trajectories (CRTs).6 For high spectral bandwidths, the 
self‐rewinding and constant‐angular velocity properties of 
CRTs render them more SNR‐efficient, faster, and less sus-
ceptible to gradient imperfections than other spatial‐spectral 
encoding approaches. Although 3T MRI scanners are more 
widely available, so far only a few studies have used CRTs,7,8 
only 2 studies used FID‐MRSI,9,10 and no application has 
yet been reported for a combination of both at 3T. Besides 
being highly beneficial for clinical application, preliminary 
results11 also raise the hope that the efficient combination of 
FID‐MRSI and rapid CRT encoding could provide 3D map-
ping of glutamate with temporal and spatial resolutions high 
enough to observe stimuli‐induced changes via functional 
MRSI. However, this would require also excellent intra‐ 
session stability, which is challenging to achieve.

One of the most common sources of artifacts in MRSI is 
subject motion. Motion artifacts are less obvious to recognize 
in MRSI compared to MR imaging,12 but can nevertheless 
severely degrade localization accuracy and spectral qual-
ity (e.g., line broadening, lipid contamination, and spectral 
peak splitting).13,14 Rapid gradient switching within a heavy 
duty cycle sequence (e.g., CRTs, spirals, echo‐planar spec-
troscopic imaging [EPSI]) causes temporal B0 changes be-
cause of heating of the gradient coils and passive shims.15  
A prospective (real‐time) correction that updates the position 
of the imaging volume, carrier frequency, and B0‐shim using 

volumetric, dual‐echo EPI navigators (vNavs) has already 
been demonstrated.16-19 These vNavs are well‐suited to use 
in long‐TR sequences, where they can be deployed in the 
dead times between signal readout and the subsequent exci-
tation19,20 but prolong scan times of short‐TR sequences.

The aims of this study were 3‐fold: (1) to demonstrate 
that 3D‐FID‐MRSI accelerated by CRTs can provide high‐ 
resolution metabolic maps in sufficiently short scan times at 
3T; (2) to evaluate real‐time motion/shim correction based on 
shorter, single‐echo vNavs compared to previously proposed 
double‐echo vNavs; and (3) to report the intra‐session sta-
bility of real‐time motion/shim corrected 3D‐FID‐MRSI for 
major neurochemicals.

2 |  METHODS

2.1 | Volunteers and hardware
This study was performed on a 3T Prisma MR scanner with a 
64‐channel receive‐only head coil (all Siemens Healthineers) 
in 6 healthy volunteers (male/female, 4/2; age, 28.8 ± 5.4 y). 
Institutional Review Board approval and written, informed 
consent as well as a questionnaire to exclude abnormal medi-
cal conditions were obtained before the MR examinations.

2.2 | Volumetric echo‐planar‐
imaging navigators
Originally, head pose and B0‐field changes were obtained 
in real‐time from dual‐echo, volumetric EPI navigators   
(de‐vNavs).16,19 For this, each TR starts with a navigator ac-
quisition followed by an immediate online EPI reconstruc-
tion to create B0‐maps and magnitude images (Figure 1A,C). 
Position changes are computed using PACE21 by co‐registering  
the magnitude images (TE1) of different time points.16,18,19 
B0‐maps are generated per TR from phase images of both TEs. 
The total navigator block, including acquisition, reconstruction, 
update calculations, and feedback transmission of the current 
updates back to the MRSI sequence required ~760 ms.19

In contrast, our proposed single‐echo, volumetric EPI 
navigators  (se‐vNavs) acquire only a single echo, result-
ing in only 1 magnitude/phase image per TR (Figure 1C). 
Calculating motion updates remains unchanged, because only 

Conclusion: Real‐time motion/shim corrected 3D‐FID‐MRSI with time‐efficient 
CRT‐sampling at 3T allows reliable, high‐resolution metabolic imaging that is fast 
enough for clinical use and even, potentially, for functional MRSI.

K E Y W O R D S
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reproducibility, real time motion correction, reliability
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the magnitude image from the first echo is used for calculating 
updates. Although B0‐maps are originally generated from the 
2 TE phase images, we can reconstruct B0‐maps from the sin-
gle phase images after subtracting pre‐stored, coil‐dependent 
phase offsets.22,23 These are calculated using ASPIRE24 from 
a dual‐echo EPI reference pre‐scan whose parameters matched 
those of the se‐vNavs listed below, except for the dual‐echo 
TE1/TE2 of 7/14 ms (ASPIRE requires TE2 = 2 × TE1). The 
remaining processing pipeline (update calculation, feedback 
sending) is identical to the original pipeline (Figure 1C). Using 
our se‐vNavs, the total navigator block requires only ~360 ms.

The parameters for se‐vNavs were: TR = 17 ms; TE = 7 ms 
(de‐vNavs = TE1/TE2, 7/9.4 ms); matrix = 32 × 32; slices = 18;  
FOV = 256 × 256 × 144 mm3; bandwidth = 4734 Hz/pixel;  
flip angle = 4°; echo train length = 32; water excitation only; 
slice partial Fourier = 6/8.

2.3 | Data acquisition
All sessions started with a 3D, T1‐weighted, MPRAGE 
sequence to position the MRSI volume (Figure 1B). B0‐
map‐based, 1st and 2nd order B0‐shimming using standard 
Siemens routines was performed over the MRSI volume‐ 
of‐interest (VOI).

The position of the navigator was identical to that of the 
phase offset reference scan covering the subject’s brain and was 
set using a rapid “setter” sequence19 before the MRSI sequence.

The 3D‐FID‐MRSI sequence (Figure 1A) used the follow-
ing settings: TR= 850 ms; acquisition delay = 0.8 ms; flip 
angle = 70°; 600 µs sinc excitation pulse; B1 = 13.2 µT; VOI =  
220 × 220 × 76 mm3; FOV = 220 × 220 × 126 mm3; in vivo 
matrix size = 50 × 50 × 21 (in phantoms = 32 × 32 × 21); 
complex spectral data points = 360; acquisition bandwidth =  
1030 Hz; no temporal interleaving; acquisition window =  
350 ms; averages = 1; maximum slew rate = 200 mT/m/ms; 
maximum gradient strength = 80 mT/m; spherical k‐space cov-
erage; water suppression enhanced through T1‐effects (WET); 
outer‐volume saturation (OVS) band (30 mm thick) below VOI 
covering nasal cavity and skull base; TA = 5:40 min.

2.4 | Data processing
All measured data were processed with an in‐house developed 
pipeline25 based on Bash (Free Software Foundation, Boston, 
MA) and MATLAB (The MathWorks, Natick, MA). The 
post‐processing pipeline included a modified Pipe‐Menon 
pre‐gridding density compensation,26 an off‐resonance cor-
rection,27 convolution gridding28 using a Kaiser‐Bessel kernel 

F I G U R E  1  (A) Schematic diagram of the navigated 3D‐FID‐MRSI sequence: volumetric navigators (vNavs), iMUSICAL coil combination 
pre‐scan, water suppression enhanced through T1 effects (WET), outer‐volume‐suppression (OVS), and the 3D‐FID‐MRSI sequence with 
concentric‐ring readout (acquisition delay = 0.8 ms, TR = 850 ms). (B) Positioning of the MRSI volume including the placement of OVS slabs 
below the VOI. (C) Online reconstruction pipeline for our proposed single‐echo navigators and the original double‐echo navigators. The pipelines 
differ only by how the B0‐maps are created: for the single‐echo approach, the pre‐calculated phase offsets are subtracted from the single phase 
images, whereas for the double‐echo approach, B0‐maps are generated by subtracting the phase images from the 2 TEs
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(width 3), coil‐wise L2‐lipid regularization29 and iMUSICAL 
coil combination.30 Detailed steps have been described previ-
ously.6,25 LCModel 6.331 was used to fit in vivo spectra in the 
spectral range of 1.8–4.2 ppm.

2.5 | Part 1: tracking accuracy—se‐vNavs 
versus de‐vNavs
The accuracy and correlation of the position and B0‐field track-
ing (i.e., translation, rotation, frequency, and 1st‐order shims) 
were compared between se‐vNavs and de‐vNavs in phantom 
and in vivo measurements. To ensure comparable conditions 
for the se‐vNavs and de‐vNavs, the MRSI TR was set to 1120 
ms to accommodate the more time‐consuming de‐vNavs. A 
head‐shaped gel phantom (6.3 L 1% agarose, 2 µmol/kg gado-
linium, 0.1% NaCl, and 0.05% NaN3) was used.32 “Rest” and 
“push” phantom measurements were performed, where in the 
latter, the phantom was pushed once (4 mm into the scanner at 
1:45 min). For the in vivo measurements, an MR‐experienced 
volunteer was trained and acoustically instructed to perform 
a head rotation of ~3° left–right (at 1:30 min), return to the 
initial position (at 2:00 min), perform a head rotation of ~3° 
left–right (at 3:00 min), and finally return to the initial posi-
tion (at 3:30 min). A Styrofoam insert inside the coil provid-
ing the volunteer with a reference for the current head position 
ensured the reproducibility of the motion pattern.

2.6 | Part 2: variability of 3D‐FID‐MRSI—
no correction versus shim/motion‐correction
Five volunteers were scanned each within 1 session and 
without repositioning with a total of 8 3D‐FID‐MRSI scans: 
4 no correction (NOCO) and 4 shim/motion‐correction 
(SHMOCO) in an interleaved fashion.

Metabolic concentration ratios (Glx/tCr, tNAA/tCr,  
tCho/tCr, and m‐Ins/tCr) were obtained on a voxel‐by‐voxel 
basis and voxels with poor spectral quality (i.e., CRLBs of 
tCr, tCh, tNAA, Glx, and m‐Ins >20%) were excluded from 
analysis. Mean SNR, FWHM, and CRLBs of Glx, tNAA, 
tCr, tCho, and m‐Ins were compared between SHMOCO 
and NOCO using paired t‐tests (P < 0.05 was considered 
statistically significant). Further, the intra‐subject (within 
volunteers) reproducibility and inter‐subject (between vol-
unteers) variability were assessed by linear mixed effects 
models and are reported as coefficients of variation (CV). 
As a measure of method reliability, intra‐class correlation co-
efficients (ICC) were calculated by an absolute‐agreement, 
2‐way, mixed‐effects model among the 4 SHMOCO and 
NOCO scans, respectively. Besides the entire VOI, specific 
brain regions were investigated in a region‐of‐interest (ROI)‐
based analysis. ROIs with a volume of ~1 cm3 were manu-
ally placed in the upper part of the visual cortex (occipital 
lobe), in the motor cortex (frontal lobe), in the dorsolateral 
prefrontal cortex (DLPFC), and in the auditory cortex (tem-
poral lobe). High‐resolution T1‐weighted images guided the 
consistent placing of ROIs in the same anatomic locations.

3 |  RESULTS

3.1 | Part 1: tracking accuracy—se‐vNavs 
versus de‐vNavs
Figure 2 and Supporting Information Figure S1 show  
motion and B0‐field logs from the phantom and in vivo 
(volunteer 1) measurements. High similarities were found 
between the tracking of se‐vNavs and de‐vNavs. The mean 
differences of the total translation were 0.00 ± 0.01 mm, 
0.01 ± 0.15 mm, and 0.01 ± 0.16 mm for the phantom 

F I G U R E  2  Comparison of the tracking performance of our proposed single‐echo navigators (se‐vNavs) and the original double‐echo 
navigators (de‐vNavs). Translation, rotation, frequency, and 1st‐order shim logs are shown for both navigator approaches. For the in vivo 
measurement, a MR‐trained volunteer was acoustically instructed to perform a predefined head rotation pattern



1924 |   MOSER Et al.

“rest” and “push” as well as in vivo measurements, respec-
tively (all R > 0.99, P < 0.001). The mean differences in 
1st‐order shims (cor/sag/tra) were small and resulted in 
0.01 ± 0.02/0.01 ± 0.03/0.05 ± 0.10 Hz/mm (all R > 0.97, 
P < 0.001) for the phantom in rest and 0.10 ± 0.06/0.06 ± 
0.05/0.08 ± 0.05 Hz/mm (all R > 0.95, P < 0.001) for the  
in vivo scan. The frequency drift curves were similar in 
shape, but the total drifts for de‐vNavs were ~2.5‐fold (phan-
tom) and ~1.7‐fold (in vivo) higher than for the se‐vNavs.

3.2 | Part 2: variability of 3D‐FID‐MRSI—
NOCO versus SHMOCO
Sample spectra for volunteer 2 from the above mentioned 
ROIs are shown in Figure 3. Figure 4 depicts the 4 Glx/tCr  
metabolic ratio maps with SHMOCO for volunteer 3 in  

3 adjacent slices. Supporting Information Table S1 shows 
mean SNR, FWHM, and CRLBs of Glx, tNAA, tCr, tCho, 
and m‐Ins averaged over all 5 volunteers for the NOCO and 
SHMOCO measurements. Slightly improved results (higher 
SNR, lower FWHM, and lower CRLBs) were obtained for 
SHMOCO compared to NOCO, with only few values reach-
ing statistical significance (e.g., SNR in DLPFC). Supporting 
Information Figure S2 shows scatter plots of the longitudinal 
measurements per subject for Glx/tCr and tNAA/tCr in the 
visual and motor cortex ROI.

The average maximum translations from the NOCO (0.9 ± 
0.4 mm) and SHMOCO (1.2 ± 0.4 mm) scans were statisti-
cally non‐significant (P = 0.1).

Table 1 summarizes the means and SDs of the intra‐ 
subject CVs obtained for the different metabolites ratios and 
brain regions averaged over all 5 volunteers. Intra‐subject 

F I G U R E  3  Representative spectra for volunteer 2 from 4 different ROIs (motor cortex, visual cortex, dorsolateral prefrontal cortex [DLPFC], 
and auditory cortex). For every ROI, the voxel position is marked on T1‐weighted images. The spectra are 1st‐order phase corrected for display
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CVs obtained with SHMOCO were all lower (i.e., better) 
compared to NOCO, with improvements of up to ~30%. Intra‐ 
subject CVs of 9.3%, 6.9%, 6.5%, and 7.8% were obtained across 
the full VOI for Glx/tCr, tNAA/tCr, tCho/tCr, and m‐Ins/tCr 
with SHMOCO. For Glx/tCr, values of 9.8% and 8.2% were 
obtained in visual and motor cortex. Significant differences 
were found between NOCO and SHMOCO over the whole 
VOI (P < 0.001), but no moderation effect (P = 0.67) with 
the metabolites (i.e., no evidence that the difference between 
NOCO and SHMOCO) was more pronounced for certain me-
tabolites. No moderation effect was also found with the ROIs 

and metabolites (i.e., no significant evidence that SHMOCO 
performed better for certain metabolites in certain ROIs) 
(P = 0.92). Paired t‐tests (NOCO vs. SHMOCO) for the in-
dividual ROIs and metabolites revealed significant differ-
ences in intra‐subject CVs for all metabolites in the full VOI, 
but only in 12 of 28 combinations of ROI and metabolite  
(e.g., Glx/tCr in the visual cortex) (Table 1). As measure 
of method reliability, ICCs are summarized in Supporting 
Information Table S2. Consistently better ICCs were found 
for SHMOCO compared to NOCO. Overall good (ICC >75%) 
to high (ICC >85%) measurement reliability was observed 

F I G U R E  4  Metabolic ratio maps (Glx/tCr) for volunteer 3 depicted in 3 adjacent slices for the 4 scans with real‐time motion/shim correction 
turned on (SHMOCO); TR = 850 ms, acquisition delay = 0.8 ms, 50 × 50 × 21 matrix, nominal voxel size = 0.12 mL; TA = 5:40 min

T A B L E  1  Mean and SDs of the intra‐subject CV obtained with SHMOCO and NOCO for different metabolic concentration ratios

Intra‐subject CV (%) VOI Visual Motor_L Motor_R DLPFC_L DLPFC_R Auditory_L Auditory_R

SHMOCO                

Glx/tCr 9.3 ± 1.0* 9.8 ± 1.1* 8.3 ± 0.7 8.2 ± 0.3 10.9 ± 1.9 10.3 ± 0.5 9.3 ± 0.3 10.1 ± 0.5

tNAA/tCr 6.9 ± 0.7* 8.1 ± 1.4 6.3 ± 0.9* 6.1 ± 0.4* 7.7 ± 1.1* 8.5 ± 1.0* 8.1 ± 1.5 8.8 ± 0.3

tCho/tCr 6.5 ± 1.0* 7.2 ± 1.0 6.0 ± 1.4 6.0 ± 0.8 7.0 ± 0.8* 7.2 ± 0.6* 6.9 ± 0.5* 7.6 ± 0.6* 

m‐Ins/tCr 7.8 ± 1.4* 8.0 ± 1.3 6.7 ± 1.3 7.0 ± 1.5 8.7 ± 1.1* 9.0 ± 0.7* 8.2 ± 0.5* 9.1 ± 0.8

NOCO                

Glx/tCr 12.0 ± 1.6* 12.8 ± 1.2* 11.0 ± 1.8 11.3 ± 1.8 11.6 ± 1.8 12.2 ± 1.8 11.7 ± 1.3 12.5 ± 1.9

tNAA/tCr 9.6 ± 0.7* 10.3 ± 0.5 8.3 ± 0.6* 9.0 ± 0.7* 10.2 ± 0.8* 11.5 ± 0.8* 10.6 ± 0.4 10.9 ± 1.8

tCho/tCr 8.6 ± 0.7* 8.6 ± 1.3 7.6 ± 0.7 8.1 ± 1.1 9.3 ± 0.4* 10.0 ± 0.4* 9.8 ± 0.6* 9.5 ± 0.7* 

m‐Ins/tCr 9.5 ± 1.4* 8.3 ± 0.9 8.3 ± 1.3 8.8 ± 1.2 10.7 ± 1.7* 11.1 ± 1.2* 10.8 ± 1.0* 10.8 ± 1.7

Abbreviations: CV, coefficients of variation; NOCO, no correction; SHMOCO, motion/shim‐correction.
*P‐value of < 0.05 was considered statistically significant. 
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for SHMOCO with values of 85.1% and 91.1% for Glx/tCr 
in the visual and motor cortex, respectively. The inter‐subject 
variability for both SHMOCO and NOCO was generally (up 
to 2‐fold) higher than the intra‐subject variability and is sum-
marized in Supporting Information Table S3.

4 |  DISCUSSION

We presented the first use of CRTs in a 3D‐FID‐MRSI 
sequence at 3T to generate high‐resolution metabolic maps 
in 5:40 min. The sequence was further equipped with a 
shorter, single‐echo volumetric EPI navigator for real‐time 
motion/shim correction. The performance of this novel nav-
igator approach was compared to the previously published 
double‐echo navigator implementation, which had 
twice the duration. Finally, the temporal stability of the  
3D‐FID‐MRSI sequence was assessed and the benefits 
of real‐time motion/shim correction were investigated in 
healthy volunteers.

Distinct anatomic contrasts could be observed (e.g., gray/
white matter contrast in Glx or tCr)9 in the high‐resolution 
metabolic maps. The MRSI sequence was initially developed 
for 7T,6 but was adapted for 3T in this study and optimized 
by using a sub‐millisecond acquisition delay of 0.8 ms to 
maximize the signal and by shortening the water suppression 
module to reduce the TR.33 We acquired nominal voxel vol-
umes of 0.12 mL in clinically highly feasible 5:40 min, which 
is significantly faster than most 3D‐MRSI reports from 3T. 
EPSI‐based studies report 0.31 mL voxels in 16.4 min34 or 
in 18 min with additional lipid inversion nulling,35 whereas  
non‐water‐suppressed multi‐band (3 slices) MRSI using 
density‐weighted CRTs has featured 0.25 mL voxels in  
19.2 min.36 Overall, spectral quality in this study was good 
and allowed for reliable fitting of high‐concentrated me-
tabolites (tNAA, tCr, tCho, m‐Ins, and Glx). However, the 
available SNR and spectral resolution at 3T limited the quan-
tification of lower concentrated metabolites (e.g., glutathione, 
γ‐aminobutyric acid). Using a short acquisition delay of  
0.8 ms made an improved optimization of lipid contamina-
tion via L2‐lipid regularization and macromolecular signals37 
necessary because of their fast T2‐relaxation.

The potential for correction of motion and scanner‐insta-
bility related artifacts using vNavs has been shown in a broad 
range of MR techniques including anatomic imaging,38 
diffusion,39 chemical exchange saturation transfer,40 and 
edited/non‐edited MRS/MRSI.16,20,41 All of these methods 
provide sufficient sequence dead time to incorporate vNavs 
without prolonging scan times. Because of their shortened 
acquisition time, our proposed se‐vNavs can also be read-
ily integrated in MR sequences with little dead time, such 
as FID‐MRSI. Similar to Dymerska et al.,22 who generated  
B0‐maps for the dynamic correction of single‐echo EPI  

at 7T, we also used a dual‐echo reference scan for the cal-
culation of phase offsets, which have been shown to be sta-
ble during long measurements and for large head motions. 
However, instead of a gradient echo pre‐scan, we used the 
same EPI readout as for the vNavs to minimize geometrical 
misalignments. Phantom and in vivo tests showed a high 
agreement in the position and B0‐field tracking between 
our se‐vNavs and the original de‐vNavs. An additional ad-
vantage of se‐vNavs can be observed in the frequency drift 
curves, where the drift is reduced by a factor of ~2 compared 
to de‐vNavs because of less gradient‐intensive EPI readout. 
Using SHMOCO led to moderately higher SNR and lower 
CRLBs compared to NOCO, whereas the FWHMs were 
little affected. However, the intra‐session stability of met-
abolic ratio maps was significantly improved, which could 
potentially have important implications for functional MRSI 
(fMRSI).

Functional MRS studies have reported changes in glu-
tamate42 range from only subtle increases of 2–4% after  
visual or motor stimuli to more pronounced changes (up to 
22%) after pain stimuli. Although fMRSI has not yet been 
conducted so far, this report contributes to paving the way 
to fMRSI by assessing the stability of 3D‐FID‐MRSI that 
makes it possible to judge if small metabolite changes can 
actually be resolved on a single‐subject basis or on a group 
level. To date, most reproducibility MRSI studies have fo-
cused on longitudinal measurements (repeated scans across 
1 or several days with repositioning). Zhang et al35 have 
reported mean intra‐subject CVs in a longitudinal study  
(3 separate sessions) of 7.6% for metabolites relative to Cr, 
while Maudsley et al43 obtained median intra‐subject CVs of 
6.2%, 7.2%, and 9.7%, for NAA, Cr, and Cho, respectively, 
from 5 separate sessions. Only a small number of studies 
have investigated the intra‐session stability of 3D‐MRSI to 
date. Comparisons between these inter‐ and intra‐session 
CVs are not straight‐forward, but generally lower CVs are 
expected without repositioning. Ding et al44 have assessed 
the intra‐session reproducibility and found metabolite CVs 
of 12.8%, 19.3%, 14.5%, 30.6%, and 30.6% for NAA, tCho, 
tCr, Glx, and m‐Ins, respectively, whereas Bian et al45 have 
reported an intra‐session CV of the metabolite peak height 
of 12.4%. The intra‐subject CVs obtained in this study  
(Glx/tCr: 9.3%, tNAA/tCr: 6.9%, tCho/tCr: 6.5%, m‐Ins/tCr:  
7.8%) were significantly lower than those obtained in the 
above‐mentioned intra‐session reports. Further improve-
ments in intra‐subject CVs compared to 8–10% in Glx/tCr as 
observed here can be expected with higher SNR and spectral 
resolution at ≥7T,9,46 potentially enabling functional MRSI 
studies. Our results also confirm that the use of SHMOCO 
gives overall significantly better intra‐subject CVs than 
NOCO, which mainly reflects SHMOCO’s ability to correct 
for temporal frequency drifts and involuntary subject move-
ments. Method reliabilities measured as ICCs were good to 
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high and improved for SHMOCO compared to NOCO. The 
inter‐subject variability driven by differences in positioning, 
shim settings, and subject condition was generally higher 
than the intra‐session reproducibility, which is in accordance 
with literature.47

4.1 | Limitations
As an explorative proof‐of‐principle study, the number of 
volunteers was limited, thereby limiting the statistical power 
of the analysis. Nevertheless, a clear trend toward improved 
results when using SHMOCO compared to NOCO has been 
observed. Concerning motion correction, comparisons of 
methods without a ground truth (i.e., an ideally non‐moving 
subject) always need to be interpreted with caution.

For a real dynamic/functional MRSI experiment, instead 
of performing repeated MRSI scans, it would be more suit-
able to run a single scan with multiple measurements, which 
has not yet been implemented nor possible because of the 
amount of raw data generated.

The duration of se‐vNavs is still fairly long for integra-
tion into some MR sequences. Further acceleration could 
be achieved by k‐space undersampling such as shown for 
FatNavs.48

5 |  CONCLUSIONS

3D‐FID‐MRSI at 3T allows for reliable, high‐resolution 
metabolic imaging in clinically attractive scan times. 
Implementing accelerated, single‐echo, volumetric, im-
aging‐based navigators reduced the susceptibility to mo-
tion and B0‐instabilities and increased the spectral quality, 
while providing similar tracking accuracy as previously 
published double‐echo navigators. Using real‐time mo-
tion/shim correction improved the intra‐session stabil-
ity of 3D‐FID‐MRSI and makes it a potential basis for 
3D‐fMRSI.
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Additional supporting information may be found online in 
the Supporting Information section.
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FIGURE S1 Comparison of the tracking performance of our 
proposed single‐echo navigators (se‐vNavs) and the original 
double‐echo navigators (de‐vNavs). Translation, rotation, 
frequency, and 1st‐order shim logs are shown for both navi-
gator approaches. Phantom measurements were performed 
for “rest” and “push” conditions, where in the latter the 
phantom was manually pushed 4 mm into the scanner after 
1:45 min
FIGURE S2 Scatter plots of the longitudinal measurements 
for all 5 subjects in the visual and motor cortex ROI. The 4 
time points from the SHMOCO scans are depicted for Glx/tCr 
and tNAA/tCr (i.e., the mean concentrations within the afore-
mentioned ROIs obtained from the 4 SHMOCO scans)
TABLE S1 Mean and SDs of SNR, FWHM, and meta-
bolic CRLB values obtained with (SHMOCO) and without 
(NOCO) shim/motion correction for different metabolic con-
centration ratios. *P‐value of <0.05 was considered statisti-
cally significant

TABLE S2 Method reliability measured as intra‐class cor-
relation coefficients (ICCs). All values are given in percent 
and include mean ICC and lower and upper bounds (in brack-
ets) with alpha level of significance of 0.5. A clear trend  
toward higher method reliability was observed for SHMOCO 
compared to NOCO
TABLE S3 Means and SDs of the inter‐subject variability 
expressed as coefficients of variation (CV) for SHMOCO 
and NOCO. Slightly better (i.e., lower) values were obtained 
for SHMOCO
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