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Regulatory T cells (Tregs) are potent suppressors of immune responses and are currently 
being clinically tested for their potential to stop or control undesired immune responses in 
autoimmunity, hematopoietic stem cell transplantation, and solid organ transplantation. 
Current clinical approaches aim to boost Tregs in vivo either by using Treg-promoting 
small molecules/proteins and/or by adoptive transfer of expanded Tregs. However, the 
applicability of Treg-based immunotherapies continues to be hindered by technical lim-
itations related to cell isolation and expansion of a pure, well-characterized, and targeted 
Treg product. Efforts to overcome these limitations and improve Treg-directed therapies 
are now under intense investigation in animal models and pre-clinical studies. Here, 
we review cell and protein engineering-based approaches that aim to target different 
aspects of Treg biology including modulation of IL-2 signaling or FOXP3 expression, 
and targeted antigen-specificity using transgenic T cell receptors or chimeric antigen 
receptors. With the world-wide interest in engineered T cell therapy, these exciting new 
approaches have the potential to be rapidly implemented and developed into therapies 
that can effectively fine-tune immune tolerance.

Keywords: regulatory T  cells, chimeric antigen receptors, T  cell receptor, iL-2, autoimmunity, transplantation, 
inflammatory bowel disease, immunotherapy

inTRODUCTiOn

Regulatory T cells (Tregs) are essential to maintain self-tolerance and dampen immune responses 
during infection (1, 2). The best characterized subset of Tregs is defined by high expression of CD25 
and FOXP3, the master-regulator of their phenotype and suppressive function (3). The critical role 
of FOXP3 in controlling Treg development and function is illustrated by the study of Tregs from 
patients with immunodysregulation polyendocrinopathy enteropathy X-linked (IPEX) syndrome 
(4). Depending on the specific mutation, IPEX patients may or may not have circulating FOXP3+ 
T cells, but even if FOXP3+ T cells are present, they are functionally defective due to inadequate 
FOXP3 transcriptional function (5–7).

Mechanistically, Tregs suppress the proliferation and function of many immune cells, even at 
very low Treg:effector cell ratios (2). In terms of suppressive pathways, multiple possibilities have 

Abbreviations: CEA, carcinoembryonic antigen; EAE, experimental autoimmune encephalomyelitis; IPEX, immunodysregu-
lation polyendocrinopathy enteropathy X-linked; HSCT, hematopoietic stem cell transplantation; GVHD, graft-versus-host 
disease; MOG, myelin oligodendrocyte glycoprotein; T1D, type 1 diabetes; Th, T helper; TNP, 2,4,6-trinitrophenol; Treg, 
regulatory T cell; Tconv, conventional T cell.
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been described, such as immunosuppressive cytokines, contact-
dependent cytotoxicity, metabolic disruption, and suppression 
of antigen presenting cells via co-inhibitory molecule expres-
sion. Focusing on human Tregs, there is a dominant role for 
CTLA-4 and TGF-β. Monogenic mutations affecting CTLA-4 or 
proteins in its pathway affect Treg function (8, 9) and antibodies 
that block activation of TGF-β by human Tregs prevent their 
ability to control xenogeneic graft-versus-host disease (GVHD) 
(10). An additional aspect of Treg mechanisms is their ability 
to take on characteristics of other T helper (Th) cells (11, 12) 
resulting in sub-specialization and enhanced suppression of 
the Th cell subset they mirror (13). Whether or not these sub-
specialized Tregs have unique suppressive mechanisms or are 
simply better able to traffic to the relevant sites of inflammation 
remains to be defined.

The immunosuppressive properties of Tregs make them 
attractive candidates for cellular therapy, particularly for applica-
tion in conditions such as hematopoietic stem cell transplanta-
tion (HSCT), solid organ transplantation, and autoimmunity. 
However, harnessing Tregs for this purpose has not been trivial 
due to limitations related to cell isolation and expansion. In this 
review, we summarize the current state of Treg therapy in the 
clinic and discuss how engineering strategies can be used to 
improve upon current approaches.

CURRenT Treg CLiniCAL TRiALS

There are two main approaches to increase Treg numbers and 
function: in  vivo “boosting” using small molecules or proteins 
and adoptive cellular therapy. To date, the most successful strat-
egy to “boost” Treg in vivo is the use of low-doses of IL-2. When 
given in limiting concentrations, IL-2 preferentially expands 
CD25hi Tregs without significantly affecting cells expressing 
low-levels of CD25, such as resting conventional T (Tconv) 
cells or NK cells. This concept was first tested for treatment of 
hepatitis-C-virus-induced vasculitis where low doses of IL-2 
induced an increase in circulating Tregs and clinical improve-
ments in 8 of 10 patients (14). Subsequently, the beneficial effect 
of low-dose IL-2 therapy was also observed in GVHD, alopecia 
areata, type 1 diabetes (T1D), and systemic lupus erythematosus 
(15–19). However, a cautionary note is that in one study of T1D 
where IL-2 therapy was combined with rapamycin, there was an 
unexpected expansion of NK cells and worsening of disease (20). 
Thus, this approach may need further refinement to reduce the 
risk of expanding non-Tregs. Low-dose IL-2 and other strategies 
for in vivo-boosting of Tregs are discussed extensively in Zhang 
et al. and Boyman et al. (21, 22).

An alternate to in  vivo-boosting is adoptive therapy with 
ex vivo-enriched, often expanded, Tregs. This method aims to 
overcome defective or low numbers of Tregs by transfer of a large 
number of Tregs to re-set the Treg:Tconv cell balance. Adoptive 
Treg therapy has been applied in the clinic for many years. The 
first successful study reported that chronic GVHD patients treated 
with Tregs had a significant reduction in clinical symptoms and 
immunosuppression (23). Subsequently, Treg therapy has been 
tested in several other GVHD cohorts, overall showing that infu-
sion of autologous or third party (partially HLA-matched) Tregs 

is well tolerated, does not inhibit graft-versus-leukemia, and may 
be protective from GVHD (24, 25).

Adoptive transfer of Tregs has also been applied successfully 
in autoimmunity and organ transplantation. Children with 
T1D who received Tregs showed slowed disease progression 
and long-term preservation of residual beta-cells (26, 27). 
Adoptive transfer of Tregs in adults with T1D is also well toler-
ated, with evidence that the cells persist long term (>1 year) 
(28). A clinical trial of in  vitro-expanded naïve Tregs is also 
underway in Crohn’s Disease, the first application of FOXP3+ 
Treg immunotherapy for inflammatory bowel disease (IBD) 
(ISRCTN97547683) (29). In addition, several clinical trials are 
testing autologous polyclonal or antigen-expanded expanded 
Tregs in kidney or liver transplantation; these trials are reviewed 
extensively in Ref. (30–33). To date, all of these studies have 
shown that adoptive Treg therapy in humans is feasible and 
safe, and initial data suggest that this approach may also be 
effective.

enGineeRinG iL-2

With the early success of low-dose IL-2 therapy as an approach 
to expand Tregs in vivo, there are now several efforts to improve 
upon this approach by modulating the way IL-2 interacts with its 
receptors. One strategy to modulate IL-2 is to use IL-2/anti-IL-2 
monoclonal antibody (mAb) combination therapy to form “IL-2 
complexes” that enhance the half-life of IL-2 after intravenous 
injection and provide preferential selection of certain immune 
cell subsets. For example, IL-2 in complex with anti-IL-2 mAbs, 
JES6-1A12 (mouse), or 5344 (human), preferentially expands 
Tregs, but not other IL-2-dependent cells such as CD8+ T and 
NK cells (34). This approach enriches Tregs and treats disease in 
several different mouse models (22, 34). In 2015, Spangler et al. 
solved the crystal structure of IL-2/JES6-1A12, showing that this 
IL-2 complex preferentially binds cells with the trimeric IL-2R 
(CD25, CD122, and common gamma chain) and not dimeric 
complexes (CD122 and common gamma chain), thus selecting 
for Tregs because of their constitutive CD25 expression (35).

Another approach to modulate IL-2 is to directly mutate 
IL-2 itself to change how it interacts with its receptor complex. 
Specifically, IL-2 “muteins” have alterations in the CD25-
binding domain, thus decrease affinity for CD25, and enabling 
preferential binding to dimeric IL-2R complexes and activation 
of NK and CD8+ T cells (36–38). There is also much commercial 
interest in making IL-2 muteins with the opposite effect: IL-2 
muteins that preferentially activate Tregs have led to a $400 
million investment from Eli Lilly to Nektar Therapeutics and 
$300 million from Celgene to Delinia to develop this technol-
ogy (39).

A final approach to modulate IL-2 signaling is to change 
IL-2R’s affinity for IL-2. Specifically, it is well established that 
single nucleotide polymorphisms in the CD25 locus are associ-
ated with autoimmunity (40–43). Considering the power of 
CRISPR/Cas9 technology, in the future it could be possible 
to edit risk alleles of CD25 into protective alleles or otherwise 
engineer IL-2 signaling pathways to optimize therapeutic Treg 
function (44).
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enGineeRinG Tregs wiTH FOXP3

A hurdle in Treg therapy is generating sufficient numbers for 
clinical application (33). Since activated Tconv cells also express 
CD25 and FOXP3, and downregulate CD127, isolating Tregs on 
the basis of CD25 and CD127 alone introduces the risk of co-
purifying and co-expanding non-Tregs. One way to overcome this 
limitation is to isolate naive CD45RA+CD25hi cells from blood to 
enrich for a more homogeneous population (45, 46). However, 
this also significantly decreases the number of cells with which a 
culture can be started. Another potential solution to this problem 
is to isolate Tregs directly from the thymus for application as a 
third party cell therapy (47).

An additional approach is to find a way to engineer the 
desired Treg product. Indeed, the possibility of engineering 
Tregs via over-expression of FOXP3 has been considered since 
its discovery, with multiple studies showing that viral-mediated 
overexpression of FOXP3 in mouse or human T cells can induce 
suppressive function (48). Notably, in order to re-program human 
T cells into Tregs, FOXP3 has to be expressed at high and stable 
levels (49, 50); Treg suppressive capacity can be quickly reversed 
upon removal of FOXP3 (51).

Although FOXP3 is the master Treg transcription factor, evi-
dence that its over-expression alone does not fully recapitulate 
the Treg gene signature led to the search for other co-factors and 
the discovery that co-expression of other transcription factors 
is important for full lineage specification (52). A consideration 
is whether studies which found that FOXP3 expression alone is 
not sufficient to induce a complete Treg gene signature consid-
ered the time that may be required for epigenetic re-programing 
to take place. Epigenetic modification and the consequent 
change in expression of other transcription factors is neces-
sary to stabilize Treg phenotype and function (3). Since these 
epigenetic changes may require multiple rounds of cell division, 
re-programing Tconv cells into Tregs may not take place in 
short-term culture. The first application of FOXP3-engineered 
Treg therapy will likely happen as gene therapy for IPEX. CD4+ 
T  cells from IPEX patients can be efficiently converted into 
functional and stable Tregs by FOXP3 gene transfer in  vitro 
(53, 54). Testing these cells in vivo will rigorously determine if 
they have acquired sufficient Treg function to treat the severe 
autoimmunity in these patients.

enGineeRinG AnTiGen-SPeCiFiCiTY

Antigen-specific Tregs have the benefit of being directed toward 
desired therapeutic antigens, thus increasing their potency up to 
100-fold compared to polyclonal Tregs (55). Not only would fewer 
antigen-specific Tregs need to infused but they would also carry 
a lower risk of off-target suppression (55, 56). However, antigen-
specific Tregs are extremely rare and must undergo significant 
in vitro expansion to achieve clinical doses. Despite this technical 
barrier, the testing of antigen-specific Tregs is already underway 
in the clinic in the context of organ transplantation (31).

Engineering antigen-specific Tregs by genomic modification 
to confer expression of desired transgenic T cell receptors (TCR) 
or by chimeric antigen receptors (CARs) represents an exciting 

approach to solve the challenge of the rarity of antigen-specific 
Tregs (57). Attempts to re-program the specificity of Tregs have 
been underway for several years. The first application in human 
Tregs involved gene transfer of a melanoma-specific, MHC Class 
I-restricted, TCR (58). These human TCR-transduced Tregs 
proliferated in response to antigen and suppressed antigen-
specific Tconv cells in vitro and in vivo. Similarly, human Tregs 
transduced with a factor VIII (VIII)-specific TCR suppressed 
FVIII-specific Tconv cells and anti-FVIII antibody production 
from primed splenocytes (59). Human Tregs transduced with an 
islet antigen-specific TCR suppressed antigen-stimulated T cell 
responses. However, they were less efficient than Tregs expressing 
a viral antigen-specific TCR (60), possibly due to Treg-specific 
TCR affinity requirements (61). On the other hand, another 
study of human Tregs in which multiple class I-restricted TCRs 
recognizing the same peptide-MHC complex, but with affinities 
varying up to 3,500-fold, were tested, found TCR affinity had 
no effect on antigen-specific suppressive function (62). Thus, a 
consideration for future development of this approach is to find 
TCRs with an MHC restriction and specificity that would make 
them applicable in multiple patients, and which possess an 
optimal affinity for Tregs. TCRs which meet these requirements 
are most likely to be found in autoimmunity where there are 
well-known and relatively common MHC-peptide complexes 
that could be targeted.

CHiMeRiC AnTiGen ReCePTORS

Another approach to engineer antigen-specific Tregs is to use a 
CAR technology, an idea borrowed from cancer immunotherapy. 
CARs were first described by Eshhar et al. in 1993 (63) and now 
being applied in humans for cancer immunotherapy (64–66). 
CARs give T cells the B-cell-like ability to bind to antigen in an 
MHC-independent manner. Additionally, the modular design 
of CARs allows for customization of specific regions, such as 
the signaling domains, to tailor the desired response from the 
engineered cell (67).

Over the last decade, a number of publications demonstrated 
the utility of CARs in Tregs (56). All reports used a standard 
second-generation design and included the CD28 co-stimulatory 
domain (Table 1) (68). Beginning with mouse models in 2008, 
Elinav et  al. used Tregs from a mouse expressing a transgene 
for a hapten 2,4,6-trinitrophenol (TNP)-specific CAR (69). 
They found that transgenic TNP-specific CAR Tregs mediated 
antigen-specific suppression of effector T cells in vitro as well as 
in vivo resistance to colitis. The same group then demonstrated 
that the TNP-CAR could be introduced into mouse Tregs using 
retroviral-mediated gene transfer, giving these cells the ability to 
protect from disease in vivo in a dose-dependent manner (70). In 
a similar system, mouse CAR Tregs specific for a different model 
antigen, carcinoembryonic antigen (CEA), prevented disease in 
a model of colitis better than CAR Tregs specific for an irrelevant 
antigen. Importantly, these CEA-CAR Tregs homed to the loca-
tion of the antigen (71).

Apart from these studies in the context of IBD, there is cur-
rently only one other report of mouse CAR Tregs. Specifically, 
in 2012, Fransson et  al. developed a CAR specific for myelin 
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TABLe 1 | Summary of salient details from the current chimeric antigen receptor (CAR) regulatory T cells (Treg) publications.

Antigen and model 
disease

CAR structure Species and 
expression system

effects of CAR Treg therapy and points of significance Reference

TNP Hinge: CD28
TM: CD28
Co-stim: CD28
ITAMs: FcRγ

Mouse
Transgene

 – Protect from TNBS colitis
 – Bystander suppression of oxazolone-induced colitis
 – CD28 signaling required for CAR Treg function
 – In vivo imaging of Treg trafficking to site of inflammation

(69)
Colitis

TNP Hinge: CD28
TM: CD28
Co-stim: CD28
ITAMs: FcRγ

Mouse
Retrovirus

 – Ex vivo expansion through cognate antigen
 – Protect from TNBS colitis

(70)
Colitis

Carcinoembryonic antigen 
(CEA)

Hinge: IgG Fca

TM: CD28
Co-stim: CD28
ITAMs: CD3ζ

Human
Retrovirus

 – Suppression of CEA-specific antitumor response in humanized mouse 
model

(72)

Sarcoma

Myelin oligodendrocyte 
glycoprotein

Hinge: IgG Fca

TM: CD3ζ
Co-stim:CD28b

ITAMs: CD3ζ

Mouse
Lentivirus

 – Dual expression system of FOXP3 and CAR
 – Reversal of EAE clinical symptoms, given at peak of disease

(73)

Experimental autoimmune 
encephalomyelitis (EAE)

CEA Hinge: IgG Fca

TM: unknown
Co-stim: CD28
ITAMs: CD3ζ

Mouse
Retrovirus

 – Protect from CEA-CAR T effector cell induced colitis
 – In vivo imaging of Treg trafficking to site of inflammation
 – Presence of CAR-specific antibodies correlated with disappearance  

of CAR Tregs

(71)
Colitis

HLA-A2 Hinge: CD8α
TM: CD28
Co-stim: CD28
ITAMs: CD3ζ

Human
Lentivirus

 – CAR-stimulated Tregs maintain stable phenotype
 – Suppression of alloantigen-specific T cells in vitro
 – Prevention of xenogeneic GVHD in vivo

(74)
Transplant rejection

HLA-A2 Hinge: CD28
TM: CD28
Co-stim: CD28
ITAMs: CD3ζ

Human
Lentivirus

 – Prevention of skin allograft rejection in humanized mouse model
 – Partial effect of CAR-lacking CD28 and CD3ζ intracellular signaling  

domains

(75)
Transplant rejection

HLA-A2 Hinge: CD8α
TM: CD8
Co-stim: CD28
ITAMs: CD3ζ

Human
Retrovirus

 – Prevention of skin allograft rejection in humanized mouse models
 – CAR specificity tested against a panel of HLA-typed cells

(76)
Transplant rejection

Factor VIII Hinge: IgG Fca

TM: CD28
Co-stim: CD28
ITAMs: CD3ζ

Human
Retrovirus

 – CAR directed against clinically-relevant soluble antigen
 – Suppression of recall antibody responses
 – Direct comparison between CAR and T cell receptor engineered Tregs

(77)
Hemophilia A

A summary of the key features of the types of CARs that have been tested in Tregs. To date all CARs have utilized the CD28 co-stimulatory domain, but there are variations in the 
hinge and transmembrane (TM) regions employed. CARs containing Immune Tyrosine Activation Motifs (ITAMs) either from the FcRγ or CD3ζ proteins have been tested. All studies 
report superior effects of antigen-specific CAR Tregs compared to polyclonal or non-specific CAR Tregs.
aHinge region presumed to be derived from IgG Fc.
bThis CAR encoded CD3ζ amino-terminal to CD28.
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oligodendrocyte glycoprotein (MOG), the disease-causing agent 
for experimental autoimmune encephalomyelitis (EAE) (73). In 
this study, instead of isolating CD25+FOXP3+ Tregs, lentivirus 
was used to ectopically express FOXP3 and enforce a Treg 
phenotype. The resultant MOG-specific CAR Tregs suppressed 
responder T cell expansion in vitro and reversed symptoms of 
EAE. Overall, these publications provided important proof-of-
concept data supporting the development of CAR Tregs for use 
in human cells.

Several publications have demonstrated the application of 
CAR technology to human Tregs. Three reports investigated 
the utility of expressing a CAR specific for HLA-A*02:01 
(A2) to test whether CAR Tregs could be a new approach to 
control alloreactive T cells that cause rejection in HSCT and 
solid organ transplantation (74–76). The first publication 

showed that A2-CAR Tregs are activated and proliferate when 
stimulated through the CAR via coculture with A2-expressing 
cells (74). Additionally, A2-CAR Tregs prevented engraftment 
of A2+ PBMCs and development of xenogeneic GVHD in a 
humanized mouse model. Two other groups confirmed this 
approach, showing that A2-CAR Tregs suppress alloimmune 
responses better than polyclonal Tregs in humanized mouse 
models of A2+ skin xenografts (75, 76). A2 is an ideal antigen 
to target with CAR Tregs because it is broadly applicable in 
the transplant setting due to its high allelic frequency, mean-
ing that a significant proportion of organ transplants could 
potentially benefit from this therapy (74). Moreover, HLAs 
in general are likely good targets for CAR Tregs since they 
are a membrane-bound protein specifically expressed on the 
transplanted tissues.

http://www.frontiersin.org/Immunology/
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TABLe 2 | Comparison of the benefits and limitations of engineering regulatory T cells (Tregs) to express a defined T cell receptor (TCR) versus chimeric antigen 
receptor (CAR), see also Harris and Krantz (57).

TCR CAR

Pros:

 ✓  “Natural” protein; engineered cells should not be immunogenic
 ✓ Recall responses of TCR-transgenic Tregs may be more effective than CAR Tregs
 ✓ Designed to detect intracellular antigens
 ✓ Low affinity but high antigen sensitivity; fewer number of antigens required for TCR 

activation than CAR activation

Pros:

 ✓ MHC-independent antigen detection of soluble or cell-surface antigens
 ✓ Modular design enables more precise control over the type of antigen-

stimulated response
 ✓ Hinge region provides flexibility, allowing CARs to bind antigen in a variety 

of orientations
 ✓ Higher antigen affinity than TCRs

Cons:

 – MHC-dependent peptide detection; each TCR complex has limited patient applicability
 – May require a large library of several TCR genes to adequately cover MHC/peptide 

complexes for one disease
 – Mispairing with endogenous TCRs could create new specificities and reduce efficacy

Cons:

 –  “Unnatural” peptide sequence; construct may be immunogenic and limit 
ability to administer repeat doses

 – Ability to detect cell-surface antigens may be blocked by the presence of 
competing soluble antigen

5

Dawson et al. Engineered Tolerance

Frontiers in Immunology | www.frontiersin.org November 2017 | Volume 8 | Article 1460

Yoon et  al. reported the characterization of human CAR 
Tregs that target FVIII, the protein lacking in hemophilia 
which is immunogenic in patients receiving FVIII replace-
ment therapy (77). Of specific interest from this study is the 
finding that a CAR specific for soluble antigens is suitable for 
use in Tregs, widening the possible antigen-targets that could 
be considered. This study also demonstrated that both T  cell 
and antibody responses can be controlled by CAR Tregs. Also 
of note is that this study directly compared the effects of TCR 
versus CAR-engineered Tregs, finding that antibody recall 
responses were more effectively controlled by TCR-transgenic 
Tregs. More research is required to explore similarities and 
differences between TCR- and CAR-activated Tregs to better 
understand the affinity requirements and limitations of each 
approach (Table 2).

HOw MiGHT CAR Treg BeHAve  
in HUMAnS?

Many of the fundamental properties of Tregs are similar to 
Tconv cells so it may be possible to predict some aspects of 
in vivo Treg behavior on the basis of findings from CAR Tconv 
cells used in the oncology field. However, Tregs also have 
many unique properties, such as their strict dependence on 
other cells for IL-2 and constitutive expression of inhibitory 
proteins such as CTLA-4 and TGF-β. Thus, there is a need for 
more detailed studies in animal models to fully appreciate the 
similarities and differences between the two cell types. For 
example, will CAR Tregs be able to persist long term even if 
their antigen is not available? Some research has shown that 
Tregs have different activation requirements than Tconv cells 
(62, 78), meaning that optimal proliferation and long-term 
persistence may require Treg-specific CAR design. Will CAR 
Tregs traffic to the necessary locations and mediate tolerance? 
CAR Tconv cells have been found to traffic to the lungs before 
moving to secondary lymphoid organs and disease sites, 
delaying their tumor-killing effect (79, 80). If there is similar 
phenomenon with Tregs then regional cell delivery may be 

preferred (79). Will CAR Tregs induce tolerance, and if yes, 
what molecular mechanisms will be necessary? CAR-activated 
Tregs upregulate CTLA-4, LAP, GARP, and CD39 (74), but it 
is unknown which pathway(s) are necessary for CAR Treg-
mediated suppression. Further, what is the primary target of 
CAR Treg-mediated suppression? It is unknown whether CAR 
Tregs suppress immune cells at the site of inflammation, in 
secondary lymphoid organs, or both. Dissecting the mecha-
nisms important to CAR Treg function may also provide clues 
as to their primary mode and location of immune suppression. 
Many of these questions are ideally suited for study in models 
of transplantation where similar questions with polyclonal or 
transgenic Tregs have been addressed (55).

neXT STePS: wHeRe wiLL enGineeReD 
Treg THeRAPieS GO FROM HeRe?

Many clinical trials with low-dose IL-2 therapies, expanded poly-
clonal and antigen-specific Tregs for use in autoimmune diseases, 
HSCT and solid organ transplantation are underway (18, 31, 33). 
While initial reports from these trials show that the treatments 
are well tolerated, the aggregate safety and efficacy data from 
each approach will greatly inform future studies. Notably, the 
possible long-term effects, and in particular the potential risk of 
cancer and infection, of these treatments will not be known for a 
significant period of time.

We predict that in the next ~5 years there will be a rapid 
transition from the rather crude current approaches with 
unmodified IL-2 and/or polyclonal Tregs to engineered 
approaches that enable precise control over the desired effect 
(81). It is likely that, as for low-dose IL-2 and polyclonal Treg 
therapy, transplantation will lead the way in testing these 
new engineered approaches. HSCT is a setting with a wealth 
of experience in using engineered T  cells for cancer and it 
would be a natural transition to test engineered Tregs in this 
context. Moreover, in solid organ transplantation allogeneic 
HLA antigens represent an ideal target for antigen-specific 
Tregs because they are only expressed on the transplanted 
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issue, minimizing the risk of off-target suppression (56). 
Additionally, since solid organ transplant donors and recipi-
ents are usually not HLA-matched, there is a large pool of 
patients that could benefit from this treatment. CAR targets 
for autoimmunity will be more difficult to identify because 
there are few truly organ and/or cell-specific antigens that 
would be suitable CAR targets. This challenge is similar to 
that faced in oncology, where off-target effects of CAR T cells 
can have devastating consequences (67, 82). The field of 
engineered Tregs will benefit greatly from the huge resources 
being invested into solving this problem in oncology (64–66), 
creating an ideal landscape to support the rapid development 
of this next generation of Treg therapies.
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