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Abstract
Purpose. Due to its safe, low-cost, portable, and real-time nature, ultrasound is a prominent imaging method in computer-
assisted interventions. However, typical B-mode ultrasound images have limited contrast and tissue differentiation capability
for several clinical applications.
Methods. Recent introduction of imaging speed-of-sound (SoS) in soft tissues using conventional ultrasound systems and
transducers has great potential in clinical translation providing additional imaging contrast, e.g., in intervention planning,
navigation, and guidance applications. However, current pulse-echo SoS imaging methods relying on plane wave (PW)
sequences are highly prone to aberration effects, therefore suboptimal in image quality. In this paper we propose using
diverging waves (DW) for SoS imaging and study this comparatively to PW.
Results. We demonstrate wavefront aberration and its effects on the key step of displacement tracking in the SoS reconstruc-
tion pipeline, comparatively between PW and DW on a synthetic example. We then present the parameterization sensitivity
of both approaches on a set of simulated phantoms. Analyzing SoS imaging performance comparatively indicates that using
DW instead of PW, the reconstruction accuracy improves by over 20% in root-mean-square-error (RMSE) and by 42% in
contrast-to-noise ratio (CNR). We then demonstrate SoS reconstructions with actual US acquisitions of a breast phantom.
With our proposed DW, CNR for a high contrast tumor-representative inclusion is improved by 42%, while for a low contrast
cyst-representative inclusion a 2.8-fold improvement is achieved.
Conclusion. SoS imaging, so far only studied using a plane wave transmission scheme, can be made more reliable and
accurate using DW. The high imaging contrast of DW-based SoS imaging will thus facilitate the clinical translation of the
method and utilization in computer-assisted interventions such as ultrasound-guided biopsies, where B-Mode contrast is often
to low to detect potential lesions.
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Introduction

Ultrasound (US) imaging is indispensable in computer-
assisted interventions from surgical navigation to operative
guidance, thanks to its being a low cost, non-ionizing,
portable, and real-time imaging modality. Typically, US
is known as a B-Mode imaging method that maps echo
amplitudes indicating local tissue reflectivity. Nevertheless,
B-mode images do not necessarily provide sufficient contrast
for certain anatomical structures and pathological conditions.
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Elastography, for example, creates images of local tissue
elasticity in terms of shear modulus which may indicate
pathological state [35]. Speed-of-sound (SoS) and acous-
tic attenuation are other tissue parameters that are known to
have valuable differentiation capability [2]. To characterize
and map these acoustic properties, transmission-based com-
puted tomography (CT) uses specialized US imaging setups
for arrival time and power-loss computation with water-bath
suspension of the breast anatomy[21,22]. Such transmission-
mode US imaging systems do not rely on echoes, i.e. US
reflections at tissue interfaces but rather record a transmit-
ted signal directly with another transducer at an opposite
location, e.g. in a ring structure. It was shown that with
such setups quantitative assessment of SoS bears tremendous
potential for breast cancer detection [19–21]. In compari-
son to shear-wave elastography, SoS was found to lead to a
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better ex vivo tissue differentiation [8] with high specificity
for benign and malignant tumors [10,11,18]. However, in
transmission-mode US imaging, a double-sided access and
hence a water-bath suspension of the anatomical structure
is required, e.g., with two opposing [20], ring shaped [5] or
full 3D [7] transducer geometries. These require costly and
non-portable systems and an additional technician to operate,
with a limited application on only submersible body parts,
e.g. the breast and the extremities.

Novel US contrast modalities as above and their tissue
differentiation capability are highly relevant also for image-
guided planning and navigation. For instance, for US-guided
needle biopsies as for the breast, prostate, and liver lesions,
the visibility of potentially suspected regions in the US
images could allow to target those specific locations; in a
real-time fashion potentially enabling sensitivity for lesions
otherwise invisible in B-mode. Nevertheless, dedicated and
bulky transmission imaging setups mentioned above pre-
clude interventional applications of these novel contrast
modalities, due to limitations to submersible anatomy. Even
for the breast, carrying out interventions, such as biopsies,
in a water bath and within the limited space of a bulky setup
would be infeasible in the current clinical realm. Reliable
imaging of such modalities with conventional clinical hand-
held US transducers is an essential step in enabling their
interventional applications.

For hand-held imaging, the use of a passive reflector as an
acoustic mirror and timing referencewas proposed in [28,32]
for SoS reconstruction from time-of-flight measurements to
the reflector placed at a known distance from the transducer.
This was later extended to imaging acoustic attenuation [25]
and its spectral mapping [26] by referencing measurements
to water-bath calibration of the reflector appearance. Obvi-
ating the need for a reflector, small misalignments between
images acquired at different plane-wave (PW) angles were
used in [14] to reconstruct SoS distribution using a Fourier
domain reconstruction approach. In [31], SoS reconstruc-
tion in the spatial domain was shown to yield improved
accuracy and less artifacts. In [34] it was proposed for
PW transmits to adapt receive apertures dynamically when
beamforming different image locations to minimize spatial
point-spread function (PSF) variation, in order to improve
displacement estimation used for SoS3 reconstruction.Deep-
learning-based variational neural network approaches for
inverse-problem of SoS have been demonstrated to yield fast
and robust reconstructions in [3,39,40].

In clinical settings, several works have studied SoS imag-
ing using transmission-mode and water-submerged systems,
e.g. for breast tissue classification [17], solid mass dif-
ferentiation [13], and imaging human-knee [41]. Using
conventional transducers in pulse-echo mode, SoS has been
studied clinically for quantifying muscle loss [30] and breast
density [29], aswell as for differential diagnosis of breast can-

cer [27]. SoS maps can also help to correct for beamforming
delays and hence to improve any other US imaging modal-
ity. Typical beamforming assuming a constant SoS computes
incorrect delays, not only reducing B-mode image resolution
but potentially also affecting any following image processing
such as texture analysis, tumor classification, segmentation,
image translation, and displacement estimation for elas-
tography. With the knowledge of SoS distribution, such
aberrations can be corrected as demonstrated in [1,15,24].

Despite promising studies, robust pulse-echo SoS recon-
structions using conventional transducers are still challeng-
ing. Compared to differential diagnosis, where the real-time
aspect is less of an essence and presegmented regions may
potentially be used as priors [12], e.g. for quantification of
region averages, interventional imaging and image-guided
applications with real-time probe manipulation depend on
robust image reconstructions without priors. State-of-the-
art SoS techniques using PW transmit sequences are shown
herein to yield subobtimal imaging due toPSFdistortions and
consequent displacement measurement errors. To address
this, we herein propose a transmit sequence with diverg-
ing waves (DW) to minimize aberration artifacts and thus
yield improved reconstructions. Although PW sequences
are known to allow for high frame-rate and high quality
images [23,36], DW (also termed synthetic transmit aper-
ture imaging) benefit from lower aberration effects and have
been presented over the recent decades for several other ultra-
sound imaging modalities, including B-Mode, Doppler, and
Vector Flow imaging [16,36]. We herein study the feasibility
of utilizing DW for SoS imaging, comparatively to PW, also
considering the effect of PSF centering via adapted receive
apertures.

Motivation

To demonstrate the effects of a wavefront choice on aber-
ration related artifacts and to motivate the use of diverging
waves in this context, we first present a simulated exam-
ple below (cf. Fig. 1) comparing PW and DW. Using the
MATLAB toolbox k-Wave [37], we simulate different trans-
mit schemes and record the spatio-temporal acoustic signal
at each and every point in the entire imaging field-of-view
(FOV). For both transmit settings, we run two simulations:
one with an SoS inclusion and one for a homogeneous case
with noSoS inclusions, in order to comparatively quantify the
effect of aberrations introducedby the inclusion.Consider the
wavefronts arriving at a certain depth (e.g., marked with the
dashed line in Fig.1a). As expected, the wavefronts passing
through the inclusionwould arrive earlier at such depth, com-
pared to a no-inclusion scenario, cf. Fig. 1b/b’. Besides such
earlier arrival, one can observe the strong aberration effects
below the edges of the inclusion for the PW case (shownwith
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the arrows in Fig. 1b), mainly caused by diffraction. Such
aberrations could aggravate when the echos are considered,
and would largely hinder any post-processing such as delay
estimation for SoS reconstruction. To demonstrate this, we
perform here a delay estimation only for the transmit side
using normalized cross-correlation (NCC) between spatio-
temporal data at all image points for with-inclusion and no-
inclusion cases. Fig. 1c/c’ show the estimated delays based on
cross-correlation lags and Fig. 1d/d’ show correlation errors
(i.e. 1−CorrelationCoefficient) in delay estimation, result-
ing from PW and DW, respectively. As seen in Fig. 1d, delay
estimation accuracy is quite low with PW transmits, com-
pared to DW. This can be more generally stated via statistics
from multiple PW and DW settings, shown in Fig.1e/e’ as
probability density functions, where the PW case is seen to
have errors further away from zero. To better illustrate this,
the cumulative distribution functions are plotted in Fig.1f,
which indicates the number of highly aberrated readings that
forestall accurate displacement estimation. As can be seen,
given any NCC tolerance/threshold, DW would yield much
superior displacement estimation than PW, for aberrations
typical to expect in in-vivo tissue. For instance, for an NCC
tolerance of minimum 0.99, 20% of PW readings would be
below this threshold, while all DW readings would be within
bounds –which is a largemargin considering the single small
inclusion given a large homogeneous FOV.

In the context of SoS imaging, such wavefront distortions
lead to incoherent signal summations in receive beamform-
ing, thus potentially corrupting displacement estimations,
which in turn degrade SoS reconstruction. By reducingwave-
front aberrations, DW can yield improved SoS imaging, as
shown later in our experiments.

Methods

We herein use a limited-angle computed tomography (LA-
CT) reconstruction method in the spatial domain, similarly
to [31] with the adaptations described below. The fundamen-
tal imaging principle and an overview of the data processing
is sketched out in Fig. 2. First, raw data is acquired based
on a PW or DW sequence, both of which involve multiple
transmits (Tx) and after each Tx a receive (Rx) recording
of RF data on all element channels. For a DW Tx, a sin-
gle element emits a narrow band-limited pulse. For a PW
Tx, all elements emit such a pulse, with a fixed time-delay
between neighbouring elements to angulate the wave-front,
where necessary. Rx recordings from a set of multiple such
transmissions (Tx) is the input herein for the reconstruction
of an SoS frame. Then, separately for each Tx, these Rx sig-
nals are beamformed into spatial RF frames, between which
apparent local displacements are estimated to be next used
to reconstruct a SoS map.

Beamforming. To beamform with the received raw channel
data from the PW or DW transmit sequences (cf. Fig. 2),
we herein employ a conventional delay-and-sum algorithm.
Delays are computed with an assumed constant SoS of
1500m/s for the simulations and 1470m/s for the phan-
tom data acquisition. For both transmit schemes and all RF
frames, beamforming is performed on a fixed Cartesian grid
aligned with the transducer surface, for a fixed sampling
space for the subsequent displacement estimation between
these frames.

Wepresent resultswith twodifferent beamforming choices:
with full Rx aperture and with an adapted Rx aperture. In
full Rx aperture case signals from all channels are fed into
beamforming, while still subjected to dynamic aperture per
imaging depth (F-number = 1), which results in Rx aper-
ture staying centered above each beamformed image point.
As Tx arrival directions to a point keep changing with each
Tx, this yields a PSF varying between different transmits,
impeding the subsequent displacement estimation. This is
remedied with an adapted Rx aperture (Fig. 3a), centered for
each beamformed image point such that the PSF between Tx
events to be displacement estimated is aligned as described
in [34]. Depending on the RX aperture, PSFs can be aligned
at different angles for the same Tx event. Each Tx event
here is beamformed with Npsf = 3 PSF angle alignments:
ψpsf = 0◦ and ±15◦, similar to the settings in [24]. For all
transmits, we utilize a fixed Cartesian beamforming grid of
Nx × Nz .

For the apparent displacement estimation between beam-
formed RF frames (cf. Fig. 2), we use a normalized cross-
correlation algorithm in the axial direction, similarly to [31].
Depending on the alignment of PSF in beamforming, the esti-
mated displacements are then corrected in the corresponding
Tx-Rx direction, i.e. by multiplying them by cos(ψpsf). For a
constant computational complexity and to keep the data input
into the reconstruction constant, we herein compute the rel-
ative delay data for a fixed number of M = 9 combinations,
yielding an apparent displacement vector of Δτ ∈ R

MNx Nz .
Note that for the adapted Rx aperture case, each Tx sequence
is beamformed with Npsf = 3 PSF alignments, such that in
this case Δτ ∈ R

NpsfMNx Nz . For this case, the imaging field-
of-view where PSF alignment can be effectively applied is
smaller than the full field-of-view, due to limited aperture of
the transducer. For instance, in Fig. 3a where ψpsf = 0◦ is
illustrated, the regions on the further right cannot be imaged,
because the correspondingRx apertures fall outside the phys-
ical aperture of the transducer.

For the PW transmissions, the relative delays from an
angle separation of Δφ (see Fig. 3b) are used in the SoS
reconstruction. Nevertheless, the actual displacement esti-
mations are performed using cross-correlation between PW
angles with a smaller increment Δθ , in order to prevent
speckle decorrelation and artefactual readings due to phase
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Fig. 1 Wavefront aberration comparison in simulations using acoustic
recordings in the entire imaging field. (a) Heterogeneous SoS distri-
bution with a circular Gaussian-smoothed inclusion of 1575m/s on a
1500m/s substrate. The wavefronts arriving at the dashed line in (a) are
shown (b) for 0◦ PW transmit and (b’) for a DW. The time-of-arrival
(ToF) on the y-axis in (b,b’) is referenced to the ToF of wavefront
peak for a homogeneous simulation without any SoS inclusions. Green
arrows indicate columns of aberration effects due to diffraction. Having
placed virtual receivers across entire FoV and cross correlating arriv-
ing signals with signals from the homogeneous setting, local (c/c’) lags

and (d/d’) correlation errors (= 1−correlation coefficient) are shown.
Note that, for the single DW case, given the directivity of finite-width
transducer elements, the acoustic energy is delivered within a triangular
opening (shown as masked in c’ & d’), outside of which beamforming
and hence time-lag computations are infeasible with sufficient SNR,
and are thus also omitted from SoS reconstructions. (e/e’) Probabil-
ity distribution of the correlation error based on three {-10,0,10}◦ PW
and 32 Tx-element DW datasets. (f) Cumulative distribution function
from (e/e’), illustrating the superiority of DW
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wrapping. To obtain the relative delay data for larger dis-
parities Δφ, the delay readings from the Δθ increments are
then accumulated. In the literature on pulse-echo SoS imag-
ing, delay accumulations were performed for increments of
Δθ = 0.5◦ as in [14,32] orΔθ = 2◦ as in [34]. We study and
compare both these settings in our experiments later below.
As the choice ofΔφ highly affects final SoS reconstructions,
we vary this parameter to find an optimal setting, as later
presented in our results section.

For the DW case, the relative delays are obtained by a
frame selection as illustrated in Fig. 3c. Here, the delays are
directly estimated using cross-correlation-based displace-
ment tracking between consecutive single element trans-
missions separated by Δchannel. As can be expected, this
setting highly affects the quality of the relative delays mea-
surements: On the one hand, for a small element separation,
e.g. using consecutive channels, apparent displacements can
be below the tracking noise level, as also illustrated later
in our experiments. On the other hand, for large element
separations, coherent speckle pattern changes drastically,
precluding displacement estimation. Given this tradeoff, an
optimal element separation Δchannel is expected, which is
studied later below in the experiments.
Speed-of-Sound Reconstruction. Derivation of SoS maps is
based on relative delay data (cf. Fig. 2) and an inverse prob-
lem formulated to reconstruct the slowness σ̂ ∈ R

N ′
x N

′
z on a

N ′
x × N ′

z spatial grid, which is just the inverse of the SoS:

σ̂ = argmin
σ

‖L(σ − σ0) − Δτ‖1 + λ‖Dσ‖1 (1)

The differential path matrix L ∈ R
MNx Nz×N ′

x N
′
z here links

the relative slowness distribution σ − σ0 to the relative delay
measurements; for instance, in Fig. 3d the delay measure-
ment at pixel (x, z) is sensitive to SoS variation along the
illustrated paths between the beamformed images j and i .
The σ0 describes the initial slowness, which was used to
compute the delays of the beamformed RF data.

The regularization matrix D together with the weight λ

controls the amount of spatial smoothness and is essential
due to ill-conditioning of L. D implements LA-CT specific
image filtering aimed to suppress streaking artifacts along
wave propagation directions via anisotropic weighting of
horizontal, vertical and diagonal gradients. For the corre-
sponding directions either a Sobel (horizontal and vertical)
or a Roberts kernel (diagonal) is used. Similarly to [31], we
herein utilize a κ = 0.9 anisotropic weighting. The optimiza-
tion problem is solved using a limited-memory Broyden–
Fletcher–Goldfarb–Shanno (L-BFGS) algorithm [4,6,9,33].

For computational efficiency, we restrict the number of
relative delay data readings Δτ in eq. (1) to 104, which are
randomly selected from all RMNx Nz (full Rx aperture) or
R

NpsfMNx Nz (adapted Rx aperture) recordings, respectively.

Materials and experiments

Numerical simulations. To evaluate how accurate SoS het-
erogeneities can be imaged using the above explained SoS
imagingmethodbasedonPWsorDWs,we simulated apulse-
echo scenario, where a linear transducer is simulated and the
echos at each element are recorded. In total 28 SoS hetero-
geneity cases are simulated (see first rows in Fig.5a/b), which
are divided into two subsets.

The first subset (cases 1-6 and 28) consists of seven
defined shapes on a homogeneous background substrate of
1500m/s. Elliptical and circular inclusions have a SoS con-
trast of either −2% (i.e. 1470m/s) or +2% (i.e. 1530m/s).
The last case has two circular inclusions. The second subset
(7–27) consists of randomly shaped inclusions (SoS val-
ues: [1450, 1550]m/s). Substrate SoS values are varied in
two ways: (1) Average SoS of the substrate is no longer
fixed to 1500m/s, but take values between [1485, 1515]m/s.
(2) Each substrate is varied locally between ±3m/s. Such
substrate variations are important to evaluate how reconstruc-
tions would perform with natural tissue variation. To allow
for displacement estimation (cf. Fig. 2), a fully-developed
speckle pattern is required, realized herein by increasing a
random 10% set of the medium pixels by a slight density
perturbation.

A linear array transducer is modeled with Nc = 128
channels and a 300μm pitch. We used transmit pulses
of fc = 5MHz center frequency with 3 half cycles. All
simulations (including in Fig. 1) were run with a spatial
discretization of 75μm pixels and a temporal resolution of
6.25 ns (i.e., 160MHz sampling frequency) to allow for an
accurate sampling of the wave propagation. Herein, for each
case a full-matrix capture with multi-static transmission was
simulated first and then recomposed into corresponding PWs
or DWs using synthetic aperture Tx/Rx beamforming. To
reduce high frequency artifacts, we additionally applied a
60% band-pass filter on the recomposed RF data.

For experiments, 81 PW angles (ranging between −20◦
and 20◦ with a step size of 0.5◦ and Tukey apodization) were
simulated via synthetic-aperture. For DW, we used single
element multi-static transmissions (see Fig. 3a/b). All raw
data was beamformed based on a constant SoS assumption
of 1500m/s.
Tissue-mimicking phantom. For data acquisition of the breast
phantom (CIRS Multi-Modality Breast Biopsy and Sono-
graphic Trainer, Model 073, CIRS Inc., Norfolk, VA, USA),
unbeamformed RF data using a UF-760AG ultrasound sys-
tem (Fukuda Denshi, Tokyo, Japan) were recorded with a
FUT-LA385-12P linear array transducer (Nc = 128 chan-
nels, 300μm pitch and 4 half cycles pulses of fc = 5MHz
center frequency. To increase the signal-to-noise ratio, data
was transmitted using Walsh-Hadamard coded pulses [38]
with subsequent recomposition into angled PWs or DWs,
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Fig. 4 RMSE and CNR vs
regularization weight, ΔφPW
for PW, and Δchannel for DW.
a Evaluation using full Rx
aperture [14,31], and b adapted
Rx aperture [24,34]. Blue bars
indicate optimal parameter
values for each of the 6
approaches
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Table 1 Optimal parameter
settings considering RMSE and
CNR rankings, and the
corresponding results of each
method with best one marked in
bold

Settings Full Rx Aperture Adapted Rx Aperture

PW (0.5◦) PW (2.0◦) DW PW (0.5◦) PW (2.0◦) DW

Δ [◦/ch] 4◦ 6◦ 17ch 14◦ 8◦ 17ch

λ [a.u.] 12 10 9 11 5 5

Results

RMSE [m/s] 12.0 9.4 7.7 13.12 10.0 8.0

CNR [a.u.] 3.4 ± 4.1 2.7 ± 3.8 7.5 ± 10.6 1.8 ± 2.3 10.3 ± 9.9 14.7 ± 11.1

respectively. After recomposition, a 60%band-pass filterwas
applied. Beamforming was performed based on a constant
SoS assumption of 1470m/s, which is the approximate nom-
inal SoS value of the phantom substrate.
Evaluation metrics. For a quantitative analysis of the SoS
reconstruction ĉ = 1/σ̂ in simulation, we used Root-mean-

squared-error (RMSE =
√

‖ĉ− c�‖22/N ) and Contrast-to-

noise ratio (CNR = 2(μinc − μbkg)
2/(σ 2

inc + σ 2
bkg)), given

mean μ and variance σ 2 of (·)inc and (·)bkg, respectively
denoting the region of the inclusion and the background.
In the simulation datasets, the CNR was only computed for
cases 1-18, where the inclusion had an SoS contrast is at least
15m/s, i.e. 1% compared to the substrate. The background

values were computed based on the whole substrate region
for the simulated datasets.

Results and discussion

Simulation study. First, a sensitivity analysis with respect to
major parametrization choices was performed for the corre-
sponding transmission sequences (PW and DW). We used a
simulated phantom dataset of 28 ground-truth SoS distribu-
tions, representative of different characteristics in inclusion
shape, size and SoS contrast as well as background SoS vari-
ations. These datasets are then evaluated in terms ofRMSE as
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Fig. 5 Reconstructions of 28 numerical phantoms with the optimal
parametrization identified as in Fig. 4 and listed in Table 1 for PW and
DW. Image dimensions are 38mm×50mm. For PW, a small 10%mar-

gin is masked out on both sides, since the angled PW apodization cause
major artifacts on the edges. Note that CNR is only evaluated for cases
1-18 having ground truth contrast of 1% or more
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Fig. 6 Improvements in RMSE
and CNR for (a) DW Full
Aperture and (b) DW Adaptive
Aperture, compared to each PW
method in a paired fashion.
Stars indicate significant
improvements with p < 0.05

DW Full - x DW Adaptive - x

DW better

DW better

DW better

DW better

(a) (b)

Fig. 7 DW and PW based SoS
reconstructions for two different
cross sections of the CIRS
breast phantom (Multi-static raw
RF data and DW reconstruction
results, together with inclusion
masks and an evaluation routine
are provided as supplementary
material) (a–f, a’–f’) with the
lesion delineations derived from
B-Mode images (g, g’).
Green/red contours represent the
regions inside/outside the
lesions used for CNR analysis.
(h) Sketch of the imaging setup
with the linear array probe on
the breast phantom.
Scalebars: 5mm
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well as in terms of CNR, indicating how well the inclusions
can be separated from the background, which is of major
importance in the context tumor detection/characterization.
The optimal parameters (Δφ, Δchannel and regularization
weight λ) are then selected as follows: For each parame-
ter combination, average RMSE and CNR across all sample
images was computed, as also plotted in Fig. 4. These values
were then ranked from best to worst (i.e., ascending order for

RMSE, and descending for CNR), and the optimal parameter
set (cf.Table 1)was chosen as the oneminimizing the average
rank of the two metrics. The results are also summarized in
Table 1, where it can be seen that with DW the best results are
achieved with an overall RMSE = 7.7 and 8.0, respectively,
for full and adapted Rx aperture cases. For the PW case, the
best achievable results are at least 1.7m/s on average poorer
with RMSE = 9.4 and 10, respectively. The contrast is also
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substantially improved with DW to CNR = 7.5 and 14.7,
respectively, with over 42% improvement compared to best
case PW results of CNR = 3.4 and 10.3.

Using the determined optimal parameter settings, the
reconstructions of the 28 test images are shown in Fig. 5.
The DW-based SoS reconstructions are seen to be superior
to PW-based in almost all cases. Especially with the case
28 in Fig. 5 with both higher and lower inclusions, DW
is seen to perform significantly superior, regardless of the
choice of aperture. The adapted RX aperture is especially
beneficial with DW in layered structures such as shown in
cases 1 and 2. This may be thanks to the smaller RX aperture
leading to a higher coherence in delayed signal summation
when beamforming, thus improving displacement tracking
and hence SoS reconstruction. Some reconstruction errors
are seen when the inclusion is very deep (e.g., simulations
15 and 26), when there cannot be sufficiently many lag mea-
surements within the field-of-view below an inclusion, to
help drive its reconstruction. Similarly, when an inclusion
is located to the sides (e.g., simulation 27), many Tx aper-
tures may not cover it, again reducing lag measurements
for its reconstruction. Accordingly, where possible, an inclu-
sion should be imaged in the middle of the imaging field for
optimal reconstructions [27,31]. For the PW cases, the best
reconstructions are achieved using an angle accumulation of
Δθ = 2◦ and an adapted receive aperture, similarly to [34].
It is worthwhile to note that the adaptive receive aperture set-
ting with a similar RMSE (of 10.0 vs. 9.4m/s) compared to
the full receive aperture setting, leads to substantial improve-
ment in CNR (of 10.3 vs. 2.7). A similar trend is observed in
the DW case with adapted vs. full receive aperture settings
(RMSE: 8.0 vs. 7.7m/s; CNR: 14.7 vs. 7.5). Notwithstanding
the aperture differences, the overall SoS imaging is signifi-
cantly improved using DW vs. PW.

Improvements in average metrics is corroborated using a
pairedhypothesis test as shown inFig. 6,where theDWmeth-
ods (using either a full or adaptive aperture) are compared
for each sample against all other PW methods. Using a full
receive aperture setting in DW results in significant RMSE
improvement compared to anyother PWmethod, irrespective
of the PW receive aperture setting. Furthermore, significant
CNR improvement w.r.t. any PW method is indicated using
DW with adaptive aperture.

Note that for PW we focus on the center part of the image
and mask out 10% on both sides of the imaging region
(Fig. 5), since the apodization of the angledPWcauses signif-
icant artifacts in these image regions, as was also discussed in
[27]. Accordingly, RMSE and CNR were computed in these
showncentral regions. For a fair comparison, this same region
is also used for computing the DWmetrics, even though this
is not a limitation in DW imaging and such masking is not
required as depicted in Fig. 5.

Beamforming was conducted assuming a constant
1500m/s, although the actual background SoS differed
sometimes over 15m/s. Despite such deviations between
actual and beamforming SoS, the reconstructions are seen to
still perform relatively well, as can be seen, e.g. in case 8with
an inclusion as well as in cases 20 and 25 with nearly homo-
geneous SoS distributions. Indeed, these examples indicate
that it is possible to use our estimated SoS values in the beam-
forming process, as shown in [24], and potentially extend this
to further refine SoS reconstructions iteratively. This is rel-
evant to real-case scenarios where the exact SoS values are
not known a priori.
Phantom experiment. CIRS breast phantom has stiff inclu-
sions representing malignant solid masses with higher
speed-of-sound (cf.Fig. 7g), and hypoechoic inclusions rep-
resenting cysts (cf. Fig. 7g’), which have smaller SoS contrast
with its surrounding. We reconstructed SoS maps using the
optimal settings found in the previous section (cf. Table 1),
since we modeled this probe and acquisition scheme in our
simulations. to the wide range of experimental settings stud-
ied herein (i.e. varying contrast, inclusion size, inclusion
shape, background SoS for both, simulated and phantom
data), the derived optimal settings are hoped to generalize
to a variety of applications and tissue types. For different
imaging device and probe characteristics, these may how-
ever need to be reparametrized. SoS reconstructions using
the different studied methods are shown in Fig. 7a-f and a’-
f’. Similar to a few cases in the simulation study, different
methods can result in overall different absolute SoS offset,
which is believed to be caused by strong aberration effects
and corresponding inaccurate shifts delay estimations. The
artifactual SoS offsets were represented in the simulation
study by the RMSE, which was seen to be superior in the
DW cases. Hence it can be assumed that the DW methods
in the phantom study also result in more accurate absolute
SoS estimations. Furthermore the DW approach is seen to
substantially improve the detection of both the solid mass
and the cyst, whereas with PW neither the inclusion shows
contrast nor the background SoS appears consistent. This is
also reflected by the CNR improvement as shown in the cor-
responding figure corners. For the solid mass, which has a
high SoS contrast, theDWapproach leads to aCNR improve-
ment of more than 42%. For the more challenging case of
the cyst-representative inclusionwith lower SoS contrast, the
improvement is even more substantial with a 2.8-fold better
CNR.

Regarding the optimal choice of Rx aperture for the breast
phantom datasets, it was observed that for PW adapted Rx
apertures often lead to significantly improved results (except
for the 2◦ PW of cyst inclusion where the CNR is generally
very low due to low contrast nature of this inclusion). For
DW, however, adapted Rx apertures only yields a marginal
improvement in CNR for the cyst case, while being inferior
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for the high contrast inclusion. The reason for this might
be that for the full Rx aperture case, a higher regulariza-
tion weight (λfull = 9 vs. λadap = 5) was found to be
optimal in our parametrization study. This leads to higher
spatial smoothness and a reduced noise in the background,
thus potentially boosting the CNR of high contrast masses.
A high regularization would negatively affect the detectabil-
ity of low contrast inclusions, as these are more prone to be
smoothed out during reconstruction, which corroborates the
observation in Fig. 7c’.

We herein compared DW and PW sequences that would
theoretically yield a similar framerate, i.e. with the setting
M = 9 a total of 18 transmit events needed with either
method for one SoS frame (neglecting any compounding pre-
processing or SNR-boosting steps that may be used for either
method). With DW, although each Tx yields less measure-
ments for reconstruction, due to limited aperture, this in turn
speeds up computations for beamforming, time-delay mea-
surements, and subsequent optimization. A major drawback
of DW with a single element on a physical system would
be the limited Tx energy and hence a low SNR. For the
experimental example, we address this herein with Walsh-
Hadamard coded pulses [38], which excite the tissue with
sufficient power while they can be mapped linearly to any
single element combination (DW Tx event) retrospectively.
Since such a coded imaging approach may reduce frame-
rates for in-vivo applications, an alternative way of inducing
DWs with high SNR and without loss of frame-rate would
be to utilize virtual source transmit, where a DW is formed
using multiple transducer elements.

Conclusion

We have presented herein the use of diverging waves (DW)
in pulse-echo SoS image reconstruction, studying it compar-
atively to existing plane waves (PW) approaches. Analyzing
the wavefront aberrations with PW and DW insonifications,
DW was seen to cause less aberration artifacts that lead
to inaccuracies in displacement estimation. This improved
delay estimation applies irrespective of chosen linear-path
forward model and ray discretization assumptions for SoS
reconstruction. Motivated by this, we have studied a set of
numerical phantoms, observing that the quantitative accu-
racy (RMSE) of SoS reconstructions is over 20% improved
by using DW compared to PW. Even more pronounced are
the improvements in inclusion contrasts, where CNR led to
an improvement of over 42% with DW. These results are
corroborated by an actual ultrasound acquisition of a breast
phantom, where CNR improvements of more than 42% and
280% are achieved with DW for, respectively, high and low
contrast inclusions.

Diverging waves in this work are generated without loss
of generality using a single element transmission yield-
ing circular wavefronts. Nevertheless, the presented method
after minor adjustments of L matrix paths and beamforming
delays is also applicable for multiple-element transmission
using a virtual source approach and also to non-circular
wavefronts, which would allow to increase the echo SNR.
With our findings SoS imaging based on conventional ultra-
sound systems can be substantially improved, paving the
way for translating SoS imaging into the clinic. Quantitative
SoS imaging and its improvements as presented herein are
not only valuable in diagnostic and interventional imaging,
but would also help improve many other ultrasound-based
modalities by correcting aberrations, such as improvedbeam-
forming for higher-quality B-mode images as presented
in [24].
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