
ORIGINAL RESEARCH
published: 19 March 2019

doi: 10.3389/fonc.2019.00162

Frontiers in Oncology | www.frontiersin.org 1 March 2019 | Volume 9 | Article 162

Edited by:

Giovanni Li Volti,

Università degli Studi di Catania, Italy

Reviewed by:

Andrea Mozzarelli,

University of Parma, Italy

Carlo Castruccio Castracani,

Università degli Studi di Catania, Italy

*Correspondence:

Veronica Fiorito

veronica.fiorito@unito.it

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Molecular and Cellular Oncology,

a section of the journal

Frontiers in Oncology

Received: 18 October 2018

Accepted: 25 February 2019

Published: 19 March 2019

Citation:

Destefanis F, Fiorito V, Altruda F and

Tolosano E (2019) Investigating the

Connection Between Endogenous

Heme Accumulation and COX2

Activity in Cancer Cells.

Front. Oncol. 9:162.

doi: 10.3389/fonc.2019.00162

Investigating the Connection
Between Endogenous Heme
Accumulation and COX2 Activity in
Cancer Cells
Francesca Destefanis †, Veronica Fiorito*†, Fiorella Altruda and Emanuela Tolosano

Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino,

Torino, Italy

Heme, an iron-containing porphyrin, is fundamental for a variety of functions in cell

homeostasis. Nevertheless, recent data indicate that dysregulation of heme metabolism

might promote tumorigenesis. The intracellular heme pool is finely regulated through

the control of heme synthesis, degradation, incorporation into hemoproteins and

trafficking across membranes. All these processes might be potentially targeted to alter

endogenous heme content in order to counteract cancer growth. Nevertheless, these

putative therapeutic interventions have to take into account the possibility of undesired

side effects, such as the over-activation of heme-dependent enzymes involved in cancer.

Among them, cyclooxygenase-2 is a prostaglandin-producing hemoprotein, induced

during inflammation and in different types of tumor, particularly in colorectal cancer. The

aim of this study was to evaluate whether modulation of endogenous heme may affect

cyclooxygenase-2 expression and activity, taking advantage of two different approaches

able to alter heme levels: the silencing of the heme exporter Feline Leukemia Virus

subgroup C receptor 1 and the induction of heme synthesis by 5-aminolevulinic acid

administration. Our data demonstrate that the down-regulation of the heme exporter

in colorectal cancer cells does not affect cyclooxygenase-2 expression and activity.

Conversely, 5-aminolevulinic acid administration results in decreased cyclooxygenase-2

expression. However, the overall cyclooxygenase-2 enzymatic activity is maintained.

The present work sheds light on the complex modulation of cyclooxygenase-2 by

endogenous heme and support the idea that targeting heme metabolism could be a

valuable therapeutic option against cancer.
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INTRODUCTION

Heme is an iron-containing porphyrin that exerts a variety of functions in cell homeostasis.
Despite its positive properties, excessive heme accumulation is often associated to cytotoxic effects.
Therefore, a tight regulation of the intracellular heme pool is necessary to favor heme-dependent
processes and, at the same time, to limit heme cytotoxicity. The alteration of this fine balance leads
to cell death (1–5).
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Targeting heme metabolism is emerging as a new therapeutic
option to counteract tumor growth. In particular, the inactivation
of the heme-degrading enzyme heme oxygenase-1 (HMOX1)
is lethal in the context of hereditary leiomyomatosis and
renal-cell cancer (HLRCC), a form of tumor characterized
by germline mutations in the gene encoding for the enzyme
fumarate hydratase (6). Moreover, in pediatric acute myeloid
leukemia, high MYCN-expressing leukemic cells are dependent
on porphyrin/heme export for their growth (7). In addition,
suppression of the plasma membrane heme exporter Feline
Leukemia Virus subgroup C receptor 1 (FLVCR1), which has
a crucial role in the maintenance of heme homeostasis in
several cell types (8–14), promotes autophagy and inhibition of
tumor growth in synovial sarcoma cells (15). Finally, FLVCR1
expression is related to survival, disease status and prognosis
in patients affected by hepatocellular carcinoma (16). All these
data suggest that the accumulation of endogenous heme may be
detrimental for tumor growth.

Heme homeostasis is maintained by a balance among heme
synthesis, incorporation into hemoproteins, degradation and
trafficking across cell membranes (1). In theory, all these
processes might be potential targets to alter endogenous heme
content in order to counteract tumor growth. Nevertheless,
appropriate intracellular heme levels are crucial to modulate
proper hemoproteins functions. Thus, putative therapeutic
interventions targeting heme metabolism have to consider the
possibility that the modulation of endogenous heme might
result in unintended side effects, including the undesired
over-activation of heme-dependent enzymes with a recognized
role in cancer.

In a previous work (17) we have clarified a complex heme-
dependent modulation of the hemoproteins cytochromes P450,
showing that their enzymatic activity is controlled by newly
synthesized heme rather than by the intracellular heme amount.
In the present work we focus our analysis on cyclooxygenase-
2 (COX2), a prostaglandins producing hemoprotein. This
enzyme has a particularly significant role for cancer cells, being
specifically overexpressed in several different types of cancer (18–
23). The production of prostaglandins, particularly prostaglandin
E2, by COX2 has been demonstrated to affect several aspects
of tumor growth and progression, including tumor cell
proliferation, migration, invasion, tumor angiogenesis, escape
to tumor immunosurveillance (24), so COX2 appears to have
a prominent role in cancer compared to other hemoproteins.
The importance of COX2 for cancer is underlined by the strong
interest in the research of anti-tumor compound targeting this
enzyme (25–28).

Previous studies showed that heme acts as a cofactor for
COX2, promoting its correct function (29, 30). Moreover,
exogenous heme has been demonstrated to contribute to the
control of COX2 activity (31–33).

The aim of the present study was to determine whether
modulation of endogenous heme may affect COX2 expression
and activity.

Since COX2 is overexpressed in approximately 80% of
colorectal cancers (CRCs) (20), we chose CRC as a model
and we took advantage of two different approaches, both

able to modulate the intracellular heme content. The first
strategy was the suppression of the heme exporter FLVCR1a
to block cellular heme export and promote its accumulation in
the cytosol. The second approach was cell treatment with 5-
aminolevulinic acid (ALA), the heme precursor (34), in order to
boost heme biosynthesis.

MATERIALS AND METHODS

Cell Culture
SNU407 (KCLB, ID 407) and HCA-24 cells (ECACC, ID
6061903) were propagated in RPMI medium (Thermo Fisher
Scientific) and DMEM medium (Thermo Fisher Scientific),
respectively, supplemented with 10% heat-inactivated low-
endotoxin fetal bovine serum (FBS) and 2mM L-glutamine
(Thermo Fisher Scientific). All cell media were ordinarily
supplemented with antibiotics (100 U/ml penicillin and
100µg/ml streptomycin; Thermo Fisher Scientific). Cells were
maintained in a 37◦C and 5% CO2 air incubator and routinely
screened for absence of Mycoplasma contamination.

RNA Extraction and Quantitative
Real-Time PCR Analysis
RNA extraction and quantitative real-time PCR analysis were
performed as described previously (35).

Briefly, total RNA was extracted using Purelink micro to midi
RNA extraction kit (Invitrogen, San Giuliano Milanese, Italy).
Between 500 and 1,000 ng of total RNA were transcribed into
complementary DNA (cDNA) by M-MLV reverse transcriptase
and random primers (Invitrogen, San Giuliano Milanese,
Italy). Quantitative real-time PCR (qRT-PCR) was performed
using the Universal Probe Library system (Roche). Primers
and probes were designed using the ProbeFinder software
(http://www.roche-applied-science.com). For FLVCR1a, specific
primers and the probe were designed using Primer Express
Software Version 3.0 (Applied Biosystem). qRT-PCR were
performed on a 7900 Real Time PCR System (Applied
Biosystems, Monza, Italy) and the analyses were done using RQ
Manager software. Transcript abundance, normalized to beta-
actin mRNA expression, is expressed as a fold increase over a
calibrator sample.

5-Aminolevulinic Acid Treatment
To enhance heme biosynthesis, cells were treated with 5mM
5-aminolevulinic acid (ALA, A3785; Sigma-Aldrich) for 5 and
24 h, as reported in Fiorito et al. (8), Petrillo et al. (9),
Chiabrando et al. (11), Castori et al. (13), Vinchi et al. (17), and
Chiabrando et al. (36).

Western Blot
Western blot analysis was performed on total cell lysates
according to standard procedures using antibodies against
COX2 (Abcam, Cambridge, UK, ab15191, diluted 1:500), ALAS1
(Abcam, Cambridge, UK, ab84962, diluted 1:1,000), HMOX1
(Enzo Life Sciences, Farmingdale, NY, ADI-SPA-896, diluted
1:300), actin (Santa Cruz Biotechnology Inc., Santa Cruz,
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California, USA, I-19, diluted 1:1,000) and vinculin (homemade
mouse monoclonal antibody, diluted 1:8,000).

FLVCR1a Silencing
For gene silencing, a shRNA (TRC Lentiviral pLKO.1
Human FLVCR1 shRNA set RHS4533-NM_014053, clone
TRCN0000059599; Thermo Fisher Scientific, Inc.) targeting
the first exon of the human FLVCR1 gene was used to
specifically down-regulate FLVCR1a. For control cells, a pLKO.1
scramble shRNA was used. Following lentiviral transduction,
cells were maintained in selective medium containing 0.02
µg/ml puromycin.

Measurement of Heme Concentration
Intracellular heme concentration was measured using a
fluorescence assay (8, 17, 37–40). Briefly, cells untreated
or treated with 5mM ALA for 5 and 24 h were collected
and 2M oxalic acid was added. Samples were then heated
at 95◦C for 30min leading to iron removal from heme.
Fluorescence (wavelength: excitation 400—emission 662 nm) of
the resultant protoporphyrin was assessed on a Glomax Multi
Detection System (Promega Corporation). The endogenous
protoporphyrin content (measured in parallel unheated samples
in oxalic acid) was subtracted. Data were normalized to total
protein concentration in each sample. Results are expressed as
pmol of heme/mg total protein.

COX2 Activity Assay
COX2 activity was assessed using a fluorometric kit provided
by Abcam, Cambridge, UK (ab204699). Fluorescence emitted
by the probe during the reaction (wavelength: excitation
535 nm - emission 587 nm) was assessed on a Glomax
Multi Detection System (Promega Corporation). Results were
expressed as pmol/min.mg.

Statistical Analyses
Results are expressed as mean ± SEM. Statistical analyses
were performed using one-way or two-way analysis of variance
(ANOVA), followed by Bonferroni correction, for multiple
group comparisons. An unpaired Student’s t-test was used when
only two groups were compared. A p < 0.05 was regarded
as significant.

RESULTS

FLVCR1a Suppression in SNU407 Cells
Does Not Alter COX2 Expression and
Activity
Previous data indicated that suppression of the plasma
membrane heme exporter FLVCR1a is often associated to
intracellular heme accumulation (8, 9). Thus, to investigate
the possible correlation between heme metabolism and COX2
expression and activity, we silenced FLVCR1a gene using a
specific shRNA in SNU407 and HCA-24 cell lines, characterized
by high FLVCR1a and COX2 expression (data not shown).

Once confirmed FLVCR1a down-regulation in SNU407 cells
(Figure 1A), we checked for the intracellular heme amount.

Unexpectedly, heme did not accumulate in FLVCR1a-silenced
cells, as compared to control cells (Figure 1B), indicating possible
cell compensatory mechanisms to deal with FLVCR1a loss.

To further examine this point, we analyzed the rate of
heme accumulation in the time by treating SNU407 cells
with the heme precursor ALA. A lower amount of heme was
accumulated 5 and 24 h after ALA administration in FLVCR1a-
silenced cells as compared to controls (Figures 1C,D), indicating
a slower rate of porphyrin synthesis or a faster system of
heme export/degradation. Supporting the latter idea, FLVCR1a-
silenced cells clearly showed the up-regulation of the mRNA
for ABCG2 (ATP-Binding Cassette, subfamily G, member 2)
(Figure 1E), a plasma membrane transporter which can function
as a porphyrins exporter (41, 42). Conversely, FLVCR1a silencing
did not affect both 5-aminolevulinic acid synthase-1 (ALAS1)
mRNA and protein levels in SNU407 cells (Figures 1F,G),
although alterations in ALAS1 activity cannot be excluded.

Anyhow, the inability to alter heme content by FLVCR1a
depletion in SNU407 cells led to negligible modulation of COX2
mRNA and protein levels (Figures 1H,I). Moreover, COX2
enzyme activity was unaffected (Figure 1J).

Similar results were obtained in HCA-24 cells
(Supplemental Figure 1).

ALA Treatment Decreased COX2 Protein
Levels, With Negligible Effects on the
Overall Enzyme Activity
ALA treatment is a proved strategy to boost heme biosynthesis,
leading to increased intracellular heme amount and modulation
of heme metabolism (8, 9, 17). As expected, we observed an
increase in intracellular heme content in SNU407 cells upon ALA
administration (Figure 2A). As a consequence, upregulation of
HMOX1 and down-regulation of ALAS1 occurred in treated
cells, both at transcriptional and post-transcriptional levels
(Figures 2B–E). Collectively, these data indicate that ALA is a
more potent stimulus than FLVCR1a suppression to promote
heme accumulation.

ALA promotion of cellular heme biosynthesis has been
demonstrated to efficaciously boost the activity of hemoproteins
such as cytochromes P450 (17), likely providing newly
synthesized heme to favor the turnover of the prosthetic
group in the enzyme. Moreover, ALA administration leads to
increased HMOX1 expression. Heme degradation by HMOX1
provides carbon monoxide (CO), a recognized inhibitor of
COX2 gene (PTGS2) transcription (43). Therefore, upon ALA
treatment, a complex COX2 modulation could occur. To
dissect this point, we determined COX2 expression levels in
ALA-treated SNU407 cells: real-time PCR and Western blot
analyses showed decreased COX2 mRNA and protein levels in
treated cells as compared to the untreated ones (Figures 2F,G).
Nevertheless, when COX2 function was assessed, we observed a
comparable total COX2 activity in untreated and ALA-treated
cells (Figure 2H). Similar results were obtained in HCA-24 cells
(Supplemental Figure 2).

Thus, ALA leads to decreased COX2 protein production, but
the overall COX2 activity is maintained.
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FIGURE 1 | FLVCR1a suppression in SNU407 cells does not alter COX2 expression and activity. (A) qRT-PCR analysis of FLVCR1a expression in SNU407 cells, in

which the expression of FLVCR1a was downregulated using a specific shRNA. Transcript abundance, normalized to beta-actin mRNA expression, is expressed as a

fold increase over a calibrator sample (RQ = Relative Quantity). Data represent mean ± SEM, n = 6; ***p < 0.001. (B) Heme content in SNU407 cells, in which the

expression of FLVCR1a was downregulated using a specific shRNA. Values are expressed as pmol/mg protein. Data represent mean ± SEM, n = 6. (C,D) Heme

content in ALA-treated SNU407 cells, in which the expression of FLVCR1a was downregulated using a specific shRNA. Cells were treated with 5mM ALA for 5 h (C)

and 24 h (D). Values are expressed as pmol/mg protein. Data represent mean ± SEM, n = 3; *p < 0.05, **p < 0.01, ***p < 0.001. (E) qRT-PCR analysis of ABCG2

expression in SNU407 cells, in which the expression of FLVCR1a was downregulated using a specific shRNA. Transcript abundance, normalized to beta-actin mRNA

expression, is expressed as a fold increase over a calibrator sample (RQ = Relative Quantity). Data represent mean ± SEM, n = 3; ***p < 0.001. (F) qRT-PCR analysis

of ALAS1 expression in SNU407 cells, in which the expression of FLVCR1a was downregulated using a specific shRNA. Transcript abundance, normalized to

beta-actin mRNA expression, is expressed as a fold increase over a calibrator sample (RQ = Relative Quantity). Data represent mean ± SEM, n = 6. (G)

Representative Western blot of ALAS1 expression in FLVCR1a-silenced SNU407 cells. Band intensities were measured by densitometry and normalized to vinculin

expression (A. U. = Arbitrary Unit). Densitometry data represent mean ± SEM, n = 2. (H) qRT-PCR analysis of PTGS2 expression in FLVCR1a-silenced SNU407 cells.

Transcript abundance, normalized to beta-actin mRNA expression, is expressed as a fold increase over a calibrator sample (RQ = Relative Quantity). Data represent

mean ± SEM, n = 6. (I) Representative Western blot of COX2 expression in FLVCR1a-silenced SNU407 cells. Band intensities were measured by densitometry and

normalized to actin expression (A. U.=Arbitrary Unit). Densitometry data represent mean ± SEM, n = 2. (J) COX2 activity in SNU407 cells, in which the expression of

FLVCR1a was downregulated using a specific shRNA. Values are expressed as pmol/min.mg protein. Data represent mean ± SEM, n=2.
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FIGURE 2 | ALA treatment decreased COX2 protein levels, with negligible effects on the overall enzyme activity. (A) Heme content in SNU407 cells untreated or

treated with 5mM ALA for 24 h. Values are expressed as pmol/mg protein. Data represent mean ± SEM, n = 3; ***p < 0.001. (B) qRT-PCR analysis of HMOX1

expression in SNU407 cells untreated or treated with 5mM ALA for 24 h. Transcript abundance, normalized to beta-actin mRNA expression, is expressed as a fold

increase over a calibrator sample (RQ = Relative Quantity). Data represent mean ± SEM, n = 3; ***p < 0.001. (C) Representative Western blot of HMOX1 expression

in SNU407 cells untreated or treated with 5mM ALA for 24 h. Band intensities were measured by densitometry and normalized to vinculin expression (A. U.=Arbitrary

Unit). Densitometry data represent mean ± SEM, n = 2; **p < 0.01. (D) qRT-PCR analysis of ALAS1 expression in SNU407 cells untreated or treated with 5mM ALA

for 24 h. Transcript abundance, normalized to beta-actin mRNA expression, is expressed as a fold increase over a calibrator sample (RQ=Relative Quantity). Data

represent mean ± SEM, n = 3; **p < 0.01. (E) Representative Western blot of ALAS1 expression in SNU407 cells untreated or treated with 5mM ALA for 24 h. Band

intensities were measured by densitometry and normalized to vinculin expression (A. U.=arbitrary unit). Densitometry data represent mean ± SEM, n = 2; *p < 0.05.

(F) qRT-PCR analysis of PTGS2 expression in SNU407 cells untreated or treated with 5mM ALA for 24 h. Transcript abundance, normalized to beta-actin mRNA

expression, is expressed as a fold increase over a calibrator sample (RQ=Relative Quantity). Data represent mean ± SEM, n = 3; ***p < 0.001. (G) Representative

Western blot of COX2 expression in SNU407 cells untreated or treated with 5mM ALA for 24 h. Band intensities were measured by densitometry and normalized to

vinculin expression (A. U.=arbitrary unit). Densitometry data represent mean ± SEM, n = 2; *p < 0.05. (H) COX2 activity in SNU407 cells untreated or treated with

5mM ALA for 24 h. Values are expressed as pmol/min.mg protein. Data represent mean ± SEM, n = 4.
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Collectively, these results indicate that, upon ALA treatment,
despite reduced COX2 protein levels, cells can likely boost the
function of the remaining COX2 molecules to maintain constant
the overall COX2 activity.

DISCUSSION

The aim of this project was to evaluate whether modulations of
endogenous heme could alter COX2 expression and activity in
CRC cell lines.

According to the data collected, slight alterations in the
amount of intracellular heme, obtained by blocking FLVCR1a-
mediated heme efflux, do not affect COX2 expression and
activity, indicating that cells can tolerate little modulation
of intracellular heme without compromising the function of
hemoproteins like COX2. This system appears different from
those regulating cytochromes, where the block of FLVCR1a-
mediated heme export is sufficient to alter their activity (17).

The promotion of heme synthesis by ALA administration,
conversely, is able to modulate COX2 expression, leading to
decreased protein levels. Several mechanisms control COX2
levels (44) and could potentially account for this down-
modulation. However, in the experimental context reported
herein, the reduction of COX2 protein synthesis could likely
be ascribed to HMOX1. Indeed, ALA-mediated stimulation of
heme synthesis leads to HMOX1 up-regulation, and HMOX1
has been reported to act as a potent negative regulator of
COX2 protein expression by CO-mediated inhibition of PTGS2
gene transcription (43). Interestingly, the down-modulation of
COX2 protein upon ALA treatment does not reduce total COX2
activity. This means that ALA-induced heme synthesis provides
the amount of new heme necessary to boost the activity of the
residual COX2 protein, in order to maintain the total enzymatic
activity. The fact that the synthesis of new heme can sustain
the activity of an hemoprotein, likely by favoring the turnover
of its prosthetic group, has already been reported for other
heme-dependent enzymes like cytochromes P450 (17, 45, 46).
In other words, increasing heme synthesis by ALA on one
hand produces heme that stimulates COX2 activity, but on the
other hand induces HMOX1 that decreases COX2 expression.
The net effect is that the overall cellular COX2 activity is
maintained constant.

We do not know the biological significance for the fact
that heme can act as both an inducer and an inhibitor of
COX2. It could be that this is a fine mechanism to control
COX2 cellular activity. Moreover, we can speculate that cells
developed a physiological system able to cope modulations
of heme metabolism without interfering with the total COX2
activity in order to avoid inappropriate increase of COX2 activity
in response to possible frequent fluctuations of intracellular
heme synthesis.

Anyhow, the data reported collectively indicate that the
sole modulation of heme synthesis/export is not sufficient to
efficiently affect the overall COX2 cellular activity.

The present work shed light on the complex modulation of
COX2 by endogenous heme at physiological levels. This might be
relevant in the context of cancer therapy. Indeed, the alteration of

heme metabolism represents an emerging strategy to counteract
tumor growth, but heme targeting is still debated due to the
risk of favoring the activity and expression of hemoproteins with
a recognized role in cancer. The data reported herein indicate
that, at least for COX2, tumor cells can tolerate changes in
endogenous heme levels without altering the overall enzymatic
activity, thus reinforcing the idea of targeting heme metabolism
for therapeutic purposes.
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Supplemental Figure 1 | FLVCR1a suppression in HCA-24 cells does not alter

COX2 expression and activity. (A) qRT-PCR analysis of FLVCR1a expression in

HCA-24 cells in which the expression of FLVCR1a was downregulated using a

specific shRNA. Transcript abundance, normalized to beta-actin mRNA

expression, is expressed as a fold increase over a calibrator sample

(RQ = Relative Quantity). Data represent mean ± SEM, n = 6; ∗∗∗p < 0.001.

(B) Heme content in HCA-24 cells in which the expression of FLVCR1a was

downregulated using a specific shRNA. Values are expressed as pmol/mg protein.

Data represent mean ± SEM, n = 6. (C) Heme content in FLVCR1a-silenced

HCA-24 cells untreated or treated with 5mM ALA for 24 h . Values are expressed

as pmol/mg protein. Data represent mean ± SEM, n = 3; ∗∗p < 0.01.

(D) qRT-PCR analysis of ALAS1 expression in HCA-24 cells, in which the

expression of FLVCR1a was downregulated using a specific shRNA. Transcript

abundance, normalized to beta-actin mRNA expression, is expressed as a fold

increase over a calibrator sample (RQ = Relative Quantity). Data represent mean

± SEM, n = 6. (E) qRT-PCR analysis of PTGS2 expression in HCA-24 cells, in

which the expression of FLVCR1a was downregulated using a specific shRNA.

Transcript abundance, normalized to beta-actin mRNA expression, is expressed

as a fold increase over a calibrator sample (RQ = Relative Quantity). Data

represent mean ± SEM, n = 6. (F) Representative Western blot of COX2

expression in FLVCR1a-silenced HCA-24 cells. Band intensities were measured

by densitometry and normalized to actin expression (A. U = Arbitrary Unit).

Densitometry data represent mean ± SEM, n = 2.

Supplemental Figure 2 | ALA treatment decreased COX2 protein levels, with

negligible effects on the overall enzyme activity. (A) Heme content in HCA-24 cells

untreated or treated with 5mM ALA for 24 h. Values are expressed as pmol/mg

protein. Data represent mean ± SEM, n = 3; ∗p < 0.05. (B) qRT-PCR analysis of

HMOX1 expression in HCA-24 cells untreated or treated with 5mM ALA for 24 h.

Transcript abundance, normalized to beta-actin mRNA expression, is expressed

as a fold increase over a calibrator sample (RQ = Relative Quantity). Data

represent mean ± SEM, n = 3; ∗∗∗p < 0.001. (C) qRT-PCR analysis of ALAS1

expression in HCA-24 cells untreated or treated with 5mM ALA for 24 h. Transcript

abundance, normalized to beta-actin mRNA expression, is expressed as a fold

increase over a calibrator sample (RQ = Relative Quantity). Data represent mean

± SEM, n = 3; ∗∗∗p < 0.001. (D) qRT-PCR analysis of PTGS2 expression in

HCA-24 cells untreated or treated with 5mM ALA for 24 h. Transcript abundance,
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normalized to beta-actin mRNA expression, is expressed as a fold increase over a

calibrator sample (RQ = Relative Quantity). Data represent mean ± SEM, n = 3.

(E) Representative Western blot of COX2 expression in HCA-24 cells untreated or

treated with 5mM ALA for 24 h. Band intensities were measured by densitometry

and normalized to vinculin expression (A. U. = Arbitrary Unit). Densitometry data

represent mean ± SEM, n = 2; ∗∗p < 0.01. (F) COX2 activity in HCA-24 cells

untreated or treated with 5mM ALA for 24 h. Values are expressed as

pmol/min.mg protein. Data represent mean ± SEM, n = 2.
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