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Dynamic interdependencies within and between physiological systems and subsystems
are key for homeostatic mechanisms to establish an optimal state of the organism.
These interactions mediate regulatory responses elicited by various perturbations, such
as the high-pressure baroreflex and cerebral autoregulation, alleviating the impact
of orthostatic stress on cerebral hemodynamics and oxygenation. The aim of this
study was to evaluate the responsiveness of the cardiorespiratory-cerebrovascular
networks by capturing linear and nonlinear interdependencies to postural changes.
Ten young healthy adults participated in our study. Non-invasive measurements of
arterial blood pressure (from that cardiac cycle durations were derived), breath-to-
breath interval, cerebral blood flow velocity (BFV, recorded by transcranial Doppler
sonography), and cerebral hemodynamics (HbT, total hemoglobin content monitored
by near-infrared spectroscopy) were performed for 30-min in resting state, followed
by a 1-min stand-up and a 1-min sit-down period. During preprocessing, noise
was filtered and the contribution of arterial blood pressure was regressed from BFV
and HbT signals. Cardiorespiratory-cerebrovascular networks were reconstructed by
computing pair-wise Pearson-correlation or mutual information between the resampled
signals to capture their linear and/or nonlinear interdependencies, respectively. The
interdependencies between cardiac, respiratory, and cerebrovascular dynamics showed
a marked weakening after standing up persisting throughout the sit-down period, which
could mainly be attributed to strikingly attenuated nonlinear coupling. To summarize,
we found that postural changes induced topological changes in the cardiorespiratory-
cerebrovascular network. The dissolution of nonlinear networks suggests that the
complexity of key homeostatic mechanisms maintaining cerebral hemodynamics and
oxygenation is indeed sensitive to physiological perturbations such as orthostatic stress.

Keywords: network physiology, orthostatic stress, cardiorespiratory, cerebrovascular, near-infrared
spectroscopy, transcranial Doppler, nonlinear, surrogate testing
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INTRODUCTION

The original concept of homeostasis (Bernard, 1858) refers to
the concerted actions of physiological processes in assuring the
constancy of the “milieu intérieur,” the internal environment
of the organism. Dynamic interdependencies within and
between physiological systems and subsystems are essential for
the organism to maintain its steady-state via a plethora of
homeostatic mechanisms (Cannon, 1929). Due to continuous
perturbations, the system operates in non-equilibrium with its
controlled parameters drifting away from their set-point, which
characterizes an optimal or desired state of the system. In contrast
to this single steady-state concept (Cannon, 1929), a physiological
system in fact exhibits dynamic fluctuations even under natural
conditions that can be readily traced across a homeostatic
space, which is a multidimensional metric space spanned by
a set of regulated parameters (Keramati and Gutkin, 2014).
In this state-space representation, the resting-state dynamics of
the system—emerging from active (physiological) and passive
(physical) processes—evolves along a trajectory embedded in
a homeodynamic space (Rattan, 2014). Perturbations elicit
regulatory responses that attempt to restore the optimum of the
internal environment. Such control of physiological parameters is
usually achieved by multiple negative feedback loops that feature
a distribution of time scales resulting in a delayed response
typically with an amplitude proportional to the deviation from
the set-point (Ivanov et al., 1998; Ashkenazy et al., 2002;
Lo et al., 2002).

An abrupt change in body position triggering a rapid
fluctuation in central arterial pressure can be viewed as a typical
perturbation, which activates circulatory adaptation mechanisms
that are essential to stabilize cerebral perfusion. Indeed, in a
wide range of arterial blood pressure, global cerebral blood
flow is tightly regulated by the cerebrovascular system; a
phenomenon referred to as pressure autoregulation (Lassen
et al., 1978). To a large extent, tolerance to the orthostatic
stress also invokes autonomic control adjustments by baroreflex
mechanisms that accelerate heart rate (Chapleau, 2012). This will
stabilize blood pressure and prevent the transient hypoperfusion
in the brain that otherwise would result in orthostatic
syncope. In addition to its influences on the vasomotor
tone at specific frequencies (0.1 Hz, Traube-Hering-Mayer-
wave; Julien, 2006) the autonomic nervous system provides
coordination between cardiac and respiratory dynamics—such
as respiratory sinus arrhythmia and cardiorespiratory phase
synchronization (Bartsch and Ivanov, 2014) –, which is essential
for optimal performance of these transport systems. In summary,
the interactions between and within cardiorespiratory and
cerebrovascular systems are established by distinct mechanisms
operating at different time scales, thus bringing about coupling
of various type and strength. The recently introduced concept
of Network Physiology offers a novel framework for an
enhanced characterization, quantification, and understanding of
the dynamical interactions between organ systems underlying
homeostatic adaptation (Bashan et al., 2012; Bartsch et al.,
2015; Lin et al., 2020). In this concept, a network is created
by organ systems, represented by nodes, each having complex

output dynamics; whose functional interactions are captured
in measures of interdependencies and are represented by
edges between nodes.

According to this novel perspective, a thorough
characterization of the investigated physiological systems
can be achieved by defining this network as a representation of
the actual state in the homeodynamic space. Furthermore, the
network response to a specific challenge, such as orthostatis in
our case or mental workload (Zanetti et al., 2019), could reveal
integrated and quantitative features of dynamic adaptation of the
organism to specific perturbation.

In this study, we examined the cardiorespiratory-
cerebrovascular network by assigning simple relationship
measures as links for quantifying linear and nonlinear
interactions. We use this framework to test the hypothesis
that postural changes induce alterations in the topology of
cardiorespiratory-cerebrovascular network. We report on a
frequency-specific linear and nonlinear network response to a
sudden change in body position and we address the question
whether topological changes in these networks could indicate
altered physiological regulation.

MATERIALS AND METHODS

Participants
This study was approved by the Regional and Institutional
Committee of Science and Research Ethics of Semmelweis
University (ethical approval number: 53/2009) and was
conducted in compliance with the Helsinki Declaration. A total
of 10 healthy young adults were recruited for participation in
this study; none of them reported neurological, psychiatric or
cardiovascular diseases or living with the condition of orthostatic
hypotension. Five-five female (age: 26.2 ± 4.6 years, height:
1.67 ± 0.07 m weight: 58.8 ± 9.7 kg BMI: 20.9 ± 2.6) and male
subjects (age: 26.6 ± 3.8 years, height: 1.79 ± 0.07 m weight:
76.0 ± 9.7 kg BMI: 23.9 ± 2.5) participated in the study. Two
female subjects were taking oral contraceptive regularly. One
male subject was excluded due to a lack of acoustic window
necessary for transcranial Doppler (TCD) measurements (see
below). Written informed consent was obtained from all subjects
prior to participation.

Measurement Protocol
Mean arterial blood pressure (MAP) was monitored continuously
and non-invasively by an array of transducers according to the
tonometric principle (Colin BP-508, Colin Medical Technology
Corporation, Komaki City, Japan). The subject’s left wrist was
positioned in an elastic brace that was secured firmly but
comfortably with straps. The tonometer was placed over the
radial bone of the participant in a manner that at least three
adjacent sensors detected pulsations from the radial artery by
an oscillometric measurement at navel height. Breathing was
recorded by an uncalibrated capnograph (Colin BP-508, Colin
Medical Technology Corporation, Komaki City, Japan) using
a soft plastic mask, which was mounted on the subject’s face.
Blood flow velocity (BFV) in the left and right middle cerebral

Frontiers in Physiology | www.frontiersin.org 2 March 2021 | Volume 12 | Article 622569

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-622569 April 20, 2021 Time: 11:2 # 3

Mukli et al. Impact of Orthostatic Stress on Physiological Networks

arteries (MCAs) was monitored by TCD sonography. The
transducers (2-MHz pulsed-wave DWL Multidop-T, Sipplingen,
Germany) were fitted on an elastic headband that was adjusted
to obtain signals from 35 to 60 mm depth for a range of
linear flow velocities between 50 and 74 cm/s (Aaslid et al.,
1982). The above-described analog signals were relayed to a data
acquisition device (DT9816, Data Translations, Marlborough,
Massachusetts, United States) for sampling with a frequency of
100 Hz (Winview LE, Team Solutions Inc., Grande Vista Ave
Laguna Niguel, California, United States).

Cerebrocortical hemodynamic fluctuations were monitored
continuously by near-infrared spectroscopy (NIRS) (Bunce
et al., 2006). We employed a 16-channel continuous-wave
NIRS research instrument (by courtesy of Professor Britton
Chance; NIM Inc., University of Pennsylvania, Philadelphia,
United States) equipped with a set of four light emitting diodes
operating at three different wavelengths (730, 805, and 850 nm)
(Chance et al., 2007) and a set of 10 photodiodes with 2.5 cm
separation from their corresponding light source (resulting in
a 1.25 cm penetration depth, see Figure 1A; Firbank et al.,
1998). Before measurement, the optode was mounted on the
forehead with appropriate shielding from ambient light and its
position was secured with Velcro. Hence, light intensities were
measured from 16 regions of the prefrontal cortex (PFC) and
were converted into digital signals with a sampling rate of 3 Hz.

The measurements took place in a darkened room with
participants seated in a comfortable armchair. The protocol
was adopted from the work of Narayanan et al. (2001) and it
consisted of 30-min resting awake period with eyes open while
seated with feet touching the floor (resting). When instructed, the
subjects quickly rose to an upright position for 1 min (stand-up).
Subsequently, the participants were instructed to sit quickly with
the measurement continuing for another minute in this position
(sit-down).

Data Preprocessing
Data preprocessing and analysis were carried out in MATLAB
(The Mathworks, Natick, MA, United States) using custom
scripts written by authors and taken from the BP_Annotate
toolbox. Cardiac cycle duration time series (CCD, using an
estimate of RR-interval) was derived from the blood pressure
recording using the algorithm described in Pan and Tompkins
(1985) and Sun et al. (2006). From the respiratory record, we
created the breath-to-breath interval time series (BB) by using
the peakfinder function of MATLAB. Finally, TCD, CCD, and
BB time series (signals for short) were resampled at 3 Hz
and synchronized with the NIRS signals using time stamps
corresponding to light intensity values and markers set during
the measurement protocol.

Cerebrovascular time series were preprocessed to attenuate
the contribution of blood pressure changes that would establish
an obvious link when investigating their relationships.
Accordingly, we estimated the BFV signal component as a
linear derivate of blood pressure oscillations by adopting a
spectral analytical approach (Zhang et al., 1998). To calculate
the power spectral densities, we used the Welch method with a
window width of 128 data points and 50% overlap, and estimated

the transfer function between changes in arterial blood pressure
and cerebral blood flow velocity from their spectra. Filtered BFV
was then determined according to

BFVfiltered = BFV − ABP⊗
[
F−1(SABP−BFV/SABP)

]
(1)

where ⊗ is the convolution operator, F−1 denotes the inverse
Fourier-transformation, SABP−BFV is the power of cross-spectral
density of the ABP and BFV signals and SABP is the power of auto-
spectral density of the ABP signal.

NIRS channels with out of range gain values indicated
poor contact quality and thus were excluded from further
analyses. These cases of low signal-to-noise records were also
confirmed by visual inspection that eventually resulted in 13–
16 channels kept for the subsequent analysis. A discrete wavelet
filter was applied to remove motion artifacts from the measured
light intensity signals for each source-detector pair and each
wavelength (Molavi and Dumont, 2012). A fifth-order zero-
phase Butterworth filter (Kirilina et al., 2013) was utilized to
bandpass filtering in the frequency ranges for representing low-
and high-frequency components of the NIRS signal (Tian et al.,
2009): 0.02–0.4 Hz (LF), 0.4–1.5 Hz (HF). While HF component
mainly reflects contribution from respiratory and cardiac cycle,
LF component originates from endothelium-related metabolic
activity, neurovascular coupling, vasomotion and autonomic
control (Li et al., 2013). Optical density (OD) as a peripheral
component was then identified based on the procedure outlined
in Mesquita et al. (2010). Taking the ABP signal as a regressor,
we estimated its contribution to the NIRS signal and subtracted
it from the measured changes (1) in optical density, yielding a
filtered signal:

1ODfiltered,n = 1ODn − ABP

⊗

[(
ABPT

· ABP + λ2I
)−1

ABPT
·1ODn

]
(2)

where 1ODn is the observed change in optical density of the
n-th channel influenced by ABP considered as a regressor; I
denotes the identity matrix, superscript T denotes transpose
operation and λ is the regularization parameter that was set
to 0.1 times the maximum of the diagonal elements of ABPT

·

ABP. Subsequently, concentration changes of total hemoglobin
in the brain tissue were calculated by the revised form of
the modified differential Beer-Lambert law (Cope et al., 1988;
Kocsis et al., 2006; Cooper et al., 2012), yielding a total tissue
hemoglobin concentration time series denoted as HbT. Finally,
we further enhanced the component of NIRS signals associated
with neurovascular coupling by performing correlation-based
signal improvement (CBSI) (Cui et al., 2010) that is an additional
procedure aimed at eliminating artifacts unrelated to resident
processes of regional hemodynamics, such as motion artifacts.

Reconstructing
Cardiorespiratory-Cerebrovascular
Networks
We selected 30 non-overlapping artifact-free segments from
resting, one from the stand-up and one from the sit-down
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FIGURE 1 | Schematic representation of NIRS and TCD measurements. NIRS-optode layout over the prefrontal cortex (A). Four light-emitting diode sources (S) and
ten photodetectors (D) are arranged in a square array forming 16 channels altogether. Of these 16 channels, ultimately 5 regions of interests are defined (by
averaging the obtained relationship parameters within that region) to reflect the features of blood supply in the prefrontal cortex (B, yellow blocks). The main relevant
arterial supply routes are shown in red. MCA Right, right middle cerebral artery; MCA Left, left middle cerebral artery; ACA, anterior cerebral artery; MIX Right, region
supplied by MCA Right and ACA; MIX Left, region supplied by MCA Left and ACA; TCD Right and Left, sites of transcranial Doppler sonography measurement (B,
green blocks).

period, with duration of 50 s each. The starting points were
chosen 5 s after the stand-up/sit-down maneuver in the task
periods. Dependencies between signals were assessed between
the standardized time series and a population of surrogate time
series pairs (n= 40) that were generated to preserve all properties
of the original pair but the tested one. The presence of linear
or nonlinear dynamics was evaluated separately by statistically
comparing the relationship measure obtained from the original
pair to its distribution derived from the surrogate population.
This approach enabled statistical assessment of changes in the
reconstructed physiological networks after postural changes also
at the individual level.

A network reflecting the strength of linear relationships
between the concerned physiological signals was reconstructed
in each frequency band using cross-correlation analysis (low:
0.02–0.4 Hz, high: 0.4–1.5 Hz). The Pearson-coefficients (r) were
determined using the entire selected time period (of 50-s length)
according to:

r =
∑w

i =1
(
Xi − X̄

) (
Yi − Ȳ

)√∑w
i =1

(
Xi − X̄

)2
√∑w

i =1
(
Yi − Ȳ

)2
, (3)

where X and Y represent the physiological processes of interest
and r follows a Student’s t-distribution. Each pair of time series
were compared with pairs from uncorrelated bivariate normal
distribution with the aid of t-test, yielding a p-value for each r;
only signal pairs with significant (p < 0.05) correlation was used
in the calculation of network.

Another network consisting of the same physiological signals
was reconstructed in each frequency band using cross mutual
information analysis (Shannon, 1948; Steuer et al., 2002), which
can capture both linear and nonlinear dependencies. Having
two time series (X and Y) of length N, we first replaced
their numerical values by their rank order—thus converting X

and Y to A and B, respectively –, and plotted the obtained
ranks in perpendicular axes. Each axis was partitioned into z
smaller components called elements, with Ai and Bj representing
the i-th and j-th element of the X and Y, respectively. Each
element contained N1 data points except the z-th element, which
contained N2 datapoints. The intersection of the Ai and Bj
element creates the (Ai, Bi) grid. The partitioning was carried
to yield 5 data points in each grid, except the grids of the last
elements of each axis that contained 5 or fewer data points. Then
Cij was obtained as the sum of every value of the data points in
(Ai, Bi). Finally, the mutual information (MI) between the two
time series was obtained by:

MI (X, Y) =

z∑
i

z∑
j

Cij

N
log2

[
CijN

N(i, j)

]
, (4)

where N
(
i, j
)
= N1N2 if i= z or j= z, N

(
i, j
)
= N2

2 if i= j= z
and N

(
i, j
)
= N2

1 in any other case. The obtained MI value was
then assigned to each recorded pair of physiological processes
using the same selected segments as in the case of Pearson-
networks. Note that the above-described algorithm was adopted
from and discussed in detail in Jiang et al. (2010).

Nonlinearity was tested by using a surrogate population
of signal pairs generated by phase randomization (Theiler
et al., 1992). Fourier-transformation of the original pair of
signals yielded phase spectra that were shuffled by the same
random permutation sequence for all time series, prior to
being transformed back into the time domain. This procedure
resulted in the destruction of the nonlinear interdependencies
between the signals, while the linear dependencies remained
preserved (Prichard and Theiler, 1994). The original MI
values were compared to the distribution of surrogate MI
populations, and the presence of nonlinearity was confirmed if
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MIoriginal > µ
(
MIsurrogate

)
+ 2σ

(
MIsurrogate

)
, where µ denotes

the mean and σ denotes the standard deviation.
Based on these relationships, cardiorespiratory-

cerebrovascular networks were reconstructed, yielding a
Pearson- and an MI-network for both the low- and high-
frequency ranges separated at 0.4 Hz. The resampled CCD and
BB signals were used as nodes associated with the dynamics
in the cardiorespiratory system. Blood flow velocity in the
middle cerebral artery (MCA) and the preprocessed NIRS signals
were regarded as nodes of the cerebrovascular network. To
reduce redundancies within NIRS records we reconstructed
networks for 16-channel data first and then combined channels
according to the scheme displayed in Figure 1B. This process
enables the restructuring of the entire network—from a
limited number of nodes—excluding channels with poor
signal quality. Thus, the obtained measures of statistical
dependencies were then averaged across NIRS-channels
corresponding to different vascular territories as follows.
The obtained measures of statistical dependencies were then
averaged across NIRS-channels corresponding to different
vascular territories in the following manner (Figure 1B).
Channels in the most lateral position (2–2 on each side)
were considered as measuring changes in brain cortex mainly
supplied by the middle cerebral arteries (MCAs), the four
channels around the midline were considered belonging to
supply territories of anterior cerebral arteries (ACAs), while the
regions probed by the remaining 4–4 channels were considered
receiving perfusion both from MCA and ACA (MIX) on the
left and right side, respectively. Ultimately, this arrangement
resulted in seven nodes representing macro- (TCD) and
microcirculation (NIRS) dynamics in the brain (Figure 2).
The interactions within this network were evaluated separately
between cardiorespiratory and cerebrovascular networks (CRN)
and within the cerebrovascular networks (CVN).

Statistical Tests
Descriptive statistics are reported as µ ± σ. The continuous
variables were analyzed for normality using Shapiro-Wilk test,
homogeneity of variances was checked by Levene’s test. If the null
hypothesis of normality was rejected, we performed Friedman
test to evaluate the effect of change in body position. If the
assumption of sphericity was found to be violated (according to
Mauchley-test), we used Greenhouse-Geisser correction in order
to adjust the signals for lack of sphericity. Repeated measures
ANOVA was performed for evaluating the dependence of the
relationship parameters on the different states brought about
by the experimental maneuvers within the same subject (i.e.,
resting, stand-up, sit-down). The within-subject factor had 32
levels (30 resting, 1 stand-up, 1 sit-down). Significant differences
were identified with Dunnett post-hoc test by comparing the
obtained p-values to a preset level of significance: αs = 0.05, if
p < αs also held for the repeated measures ANOVA (using stand-
up or sit-down as control conditions). The false discovery rate
was controlled by the Benjamini-Hochberg procedure at level αs
in case of multiple comparisons (Benjamini and Hochberg, 1995).
Statistical analyses were carried out in Statistica (TIBCO Software
Inc., Palo Alto, Californa, United States) version 13.4.

RESULTS

Changes in Physiological Parameters
Upon Standing Up and Sitting Down
The average values of arterial blood pressures, cardiac cycle
duration and breath-to-breath interval for each period are
summarized in Table 1. In the resting state, these values were
calculated as averages of the 30 selected segments. Systolic blood
pressure (SBP) showed a marked, transient reduction (p= 0.0007,

FIGURE 2 | Structural and functional aspects of the cardiorespiratory and cerebrovascular networks.
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TABLE 1 | Hemodynamic and respiratory parameters of the participating subjects,
# indicates significant difference compared with the resting group.

n = 9 Resting Stand-up Sit-down

SBP (mm Hg) 124.7 ± 7.7 97.7 ± 10.5# 116.3 ± 16.0

DBP (mm Hg) 73.0 ± 10.7 75.7 ± 11.4 81.6 ± 12.4

MAP (mm Hg) 88.9 ± 8.0 84.3 ± 11.3 94.0 ± 14.3

CCD (ms) 824 ± 55 696 ± 94 736 ± 68

BB (s) 3.8 ± 0.8 3.8 ± 0.4 3.8 ± 0.4

confirmed by post-hoc tests, too) exerting a major influence on
changes of mean arterial blood pressure that followed a similar
pattern with non-significant effect of changing body position.
Conversely, diastolic blood pressure was slightly higher after
standing up, which further increased after sitting down. Cardiac
cycle duration changed in the same direction as SBP and MAP via
the high-pressure baroreflex mechanism. Accordingly, the heart
rate (the inverse of CCD) was elevated in the standing position
and was reduced upon sitting down. Breath-to-breath intervals
were not affected by postural changes significantly.

After standing up, cerebral blood flow velocities showed a
decrease in both MCAs, which restored gradually in the sit-down
period. Simultaneously, average HbT concentration (both with
and without CBSI) lowered in the majority of cortical regions
in the time window of observation, but these changes were
not significant due to large variability (Table 2). Representative
preprocessed physiological time series acquired in steady state,
stand-up and sit-down periods are shown in Figure 3.

Effect of Postural Changes on
Cardiorespiratory-Cerebrovascular
Networks
In the LF range, the majority of Pearson coefficients were
significant (i.e., it was possible to distinguish them from those
obtained from signal pairs following an uncorrelated bivariate
normal distribution) in the resting state (∼77%), which decreased
after the postural change (stand-up: 73%, sit-down: 59%). In
contrast, a much smaller fraction of r values were found
significant in the HF range (resting: 36%, stand-up: 31%, sit-
down: 31%). The majority of significant coefficients indicated
positive correlation (r > 0). Corresponding networks determined
at different measurement conditions did not differ, as shown on
the upper panels of Figures 4, 5. Although the strengths of several

TABLE 2 | Cerebrovascular variables derived from NIRS- and
TCD-measurements.

Resting Stand-up Sit-down

TCD Left (cm/s) 64.2 ± 1.4 61.0 ± 11.4 65.0 ± 4.3

TCD Right (cm/s) 64.1 ± 1.3 60.9 ± 7.9 64.5 ± 4.5

MCA_Left 1[HbT] (µM) 1.17 ± 2.69 −0.04 ± 4.78 −0.77 ± 5.65

MIX_Left 1[HbT] (µM) 0.056 ± 0.072 −0.298 ± 0.390 0.123 ± 1.243

ACA 1[HbT] (µM) 0.243 ± 0.586 −0.315 ± 1.335 −0.332 ± 1.809

MIX_Right 1[HbT] (µM) 0.089 ± 0.160 0.161 ± 0.889 −0.033 ± 0.811

MCA_Right 1[HbT] (µM) 0.119 ± 0.193 −0.030 ± 0.388 −0.265 ± 0.603

relationship showed a notable decrease in the low-frequency
range (CCD vs. MCA Left, TCD Left vs. MCA Left, TCD Left
vs. MIX Right, TCD Right vs. MIX R, MIX L vs. MIX R), after
changes in body position (p < 0.05) these were not significant
taking multiple comparisons into account (false discovery rate
correction at level 0.05).

We also investigated the qualitative nature of correlation
based on the change of r’s sign; for example, if a previously
correlated process becomes uncorrelated/anticorrelated or vice
versa. Coupled dynamics between CCD and BB in the LF range
became uncorrelated after standing up which was not restored
until the end of the measurement in both frequency ranges. In
the upright posture, a loss of correlation was found between the
interaction of respiration with cerebrovascular processes except
for TCD Right and MCA Left only in the LF range, where the
positive correlations were preserved. The linear interactions were
perturbed more by standing up in the HF range followed by a
partial restoration in terms of nature of correlation. As to the LF
range, we found a rather delayed effect of postural changes: three
and nine functional connections in cerebrovascular network were
altered—in terms of r’s sign—after standing up and sitting down,
respectively. It is noteworthy that hemoglobin signal only from
the MCA left showed an anticorrelated dynamics mainly in the
LF range that was preserved after postural changes.

Phase randomization tests indicated that nonlinear coupling
within the investigated processes was only present in the
resting state. Nonlinear dependence was found only for a few
connections in the LF networks (CCD vs. TCD Right and
between ACM Left and MIX Right) after sitting down. However,
according to surrogate testing, it was completely absent in the
HF networks following postural changes. Due to weak coupling,
as indicated by low MI values even in the resting condition, the
effect of standing up and sitting down was non-significant for
the following relationships: BB vs. TCD (both), BB vs. MCA
Right, CCD vs. TCD (both), CCD vs. MIX Left, CCD vs. ACA,
TCD Left vs. (TCD Right, MCA Left, MIX Left, MCA Right),
TCD Right vs. (MCA Left, MCA Right), MCA Left vs. (MIX
Left, ACA, MIX Right), MIX Left vs. ACA, ACA vs. MCA Right,
MIX Right vs. MCA Right (the statistical power averaged across
connections was 0.642, effect size: 1.010). However, in the HF
networks the absence of nonlinearity was seen associated with
a significant effect of postural changes when compared with
resting condition for all pairs of examined physiological processes
(average statistical power was 0.943, effect size: 2.458).

DISCUSSION

In this study, we investigated the effect of orthostatic stress on
the cardiorespiratory-cerebrovascular network. We confirmed
that sudden postural changes did not have a significant
impact on the cardiorespiratory-cerebrovascular network
topology as defined by linear interactions, neither in the
low- nor in the high-frequency range; nevertheless, a clear
tendency was seen for several connections. In contrast,
we demonstrated vanishing nonlinear interactions in the
investigated coupled dynamics upon standing up and sitting
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FIGURE 3 | Breath-to-breath interval (BB), cardiac cycle durations, preprocessed blood flow velocity signals acquired from the middle cerebral artery (TCD Left and
TCD Right) and preprocessed NIRS signals from different vascular territories are displayed for a representative subject in the resting state, and right after standing up
and sitting down. All signals were resampled at 3 Hz and bandpass filtered in the 0.4–1.5 Hz range, blood pressure fluctuations were regressed from all cerebral
hemodynamic (i.e., macro- and microcirculatory) signals as described in “Materials and Methods” section. Background colors of the signal panels are the same used
in Figure 2.

down clearly distinct from what was observed in the resting
state. In spite of preserved homeostatic regulations aimed at
maintaining arterial blood pressure and cerebral blood flow, the
postural challenge resulted in a complete dissolution of these
physiological networks comprising of nonlinear interactions
among their components.

Correlated and anticorrelated linear dependencies were more
abundant in LF networks, while the majority of connections
showed uncorrelated dynamics in the HF range, especially after
postural changes. Although none of the connections in the resting
Pearson-networks averaged between subjects were statistically

different, when compared across different states (Figures 4, 5,
upper left panel), these qualitative changes still do provide
insight into the response of the CRN and CVN to orthostatic
stress. Hence, we propose that the obtained linear relationship
parameters in the three states feature the coupled dynamics of
the examined processes that were influenced directly by standing
up/sitting down and indirectly by physiological regulations.
Importantly, these patterns of changes show a remarkable
difference when comparing the statistical interdependencies of
breath-to-breath intervals and the rest of the links in the
Pearson-networks associated with heart rate and those of cerebral
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FIGURE 4 | Cardiorespiratory-cerebrovascular networks reconstructed for the low-frequency range (0.02–0.4 Hz) after surrogate thresholding. Connection strength
was assessed using Pearson correlation analysis (upper panels: negative correlations, middle panels: positive correlations) and mutual information analysis (MI, lower
panels) and is coded in grayscale. CCD, Cardiac cycle duration; BB, Breath-to-breath interval; TCD, transcranial Doppler (denoting the BFV signal recorded from
MCA); ACA, anterior cerebral artery; MCA, middle cerebral artery; MIX, NIRS channels sampling regions supplied by ACA and MCA.

macro- and microcirculation. Accordingly, during orthostatic
challenge respiratory dynamics became swiftly independent of
the cardiac and cerebrovascular dynamics. In contrast, heart
rate maintained its relationship with the rest of the examined
physiological processes except in the HF range, where the beat-
to-beat regulation of blood pressure is a prevailing mechanism.
Thus, postural changes affected the cerebrovascular network
differently, suggesting the role of frequency-specific response in
the pressure autoregulation of cerebral blood flow (Giller and
Mueller, 2003). In line with that, further investigation of LF range
revealed that postural changes had marginally more impact on
the 0.15–0.4 Hz then oscillations of 0.06–0.15 or 0.02–0.06 Hz
(spectral ranges commonly used in analysis of NIRS records).
However, since the lower frequencies are less represented in 50
s records, the observed differences between the physiological
states rather refer to the HF and LF range applied in this study.
Given that blood pressure fluctuations were eliminated from
cerebrovascular signals consisting our physiological networks,
the observed changes reflect an indirect effect of ABP changes and
ABP-independent effects of orthostatic stress on BFV and HbT
dynamics assessed by TCD and NIRS, respectively. The origin
of the two-tiered responses of the Pearson-network can also be
attributed in part to this preprocessing step (see differences of
surrogate testing results) as well as to the impact of frequencies

inherent to various mechanisms mediating systemic effects of
postural changes, which are more prevalent in the LF range
(Orini et al., 2012).

The cerebrovascular dynamics observed during orthostatic
challenge emerges from a combination of promptly developing
passive and active changes manifesting with a delay, particularly
evoked by arterial baroreflex mechanism. Accordingly, we
observed a noticeable reduction of SBP accompanied by
reflex tachycardia (Table 1), which among our healthy young
participants in the initial phase of the stand-up period should
be regarded as part of the underlying physiological adaptation to
the orthostatic challenge (Stewart, 2013). The extent of this drop
is comparable to the value of ∼30 mmHg reported in a similar
study (Olufsen et al., 2005) and should be distinguished from
that of orthostatic hypotension as defined by consensus statement
(Freeman et al., 2011; Moloney et al., 2020). Since standing up
resulted in a larger decrease of blood flow velocity in the MCA
than that of ABP, the cerebrovascular resistance (estimated as
ABP/BFV with cross-section area of MCA assumed remaining
unaltered during the maneuver; Aaslid et al., 1989) must have
led to perturbed cerebral hemodynamics invoking pressure
autoregulation of global cerebral blood flow. The observed
changes in our study (Table 2) correspond well with previous
findings of Sorond et al. (2009), who also examined cardio- and

Frontiers in Physiology | www.frontiersin.org 8 March 2021 | Volume 12 | Article 622569

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-622569 April 20, 2021 Time: 11:2 # 9

Mukli et al. Impact of Orthostatic Stress on Physiological Networks

FIGURE 5 | Cardiorespiratory-cerebrovascular networks reconstructed for the high-frequency range (0.4–1.5 Hz) after surrogate thresholding. Strength of
connection was assessed using Pearson correlation analysis (upper panels: negative correlations, middle panels: positive correlations) and mutual information
analysis (MI, lower panels) and is coded in grayscale. CCD, Cardiac cycle duration; BB, Breath-to-breath interval; TCD, transcranial Doppler (denoting the BFV signal
recorded from MCA); ACA, anterior cerebral artery; MCA, middle cerebral artery; MIX, NIRS channels sampling regions supplied by ACA and MCA.

cerebrovascular adaptation to orthostatic stress among elderly
normo- and hypertensive subjects.

Analysis of transfer function between blood pressure and
blood flow velocity changes (Panerai et al., 1999) showed
that standing up yielded gain values dropping clearly below
1 (consistent with the case of negative feed-back regulation),
especially for slow oscillations of these signals. This indicates
the presence of pressure autoregulation that is more effective
in the low-frequency range, similarly to what Sammons et al.
(2007) have found with the same method. Moreover, the
moderate coherence between MAP and BFV in both frequency
ranges implies the presence of nonlinearity or the influence
of a hidden linear regressor, which could explain their even
weaker relationship below 0.4 Hz due to vasomotion. As to
NIRS measurements, tissue HbT concentrations decreased after
standing up in parallel with a reduction of blood pressure,
which is an apparent short-term passive effect of postural
change. In case of measurements carried out in the resting
and sit-down positions, we found that HbT changes (which
without CBSI follow changes in cerebral blood volume) were
rather anti- or uncorrelated with blood pressure changes.
Since cerebral autoregulation dilates brain vessels in case of
decreased blood pressure, cerebral blood volume—at unchanged
tissue hematocrit—increases marked by an elevated tissue HbT

levels. Thus the latter should be regarded as a signature of
cerebrovascular reactivity—that is assessed in a 5 min time
window (Lee et al., 2009)—although in the evolving phase of
this compensation.

Given that MI is a model-free measure (Steuer et al., 2002),
we also reconstructed mutual information networks to evaluate
the contribution of nonlinear dynamics. MI analysis depicts a
consistent effect of orthostatic stress in both frequency ranges
either on the group or the individual level. Lower panels
of Figures 4, 5 show that standing up disintegrates the MI
networks, which practically remains unchanged until the end
of the measurement. In fact, phase randomization emphasized
the qualitative differences between different physiological states
yielding a remarkable contrast while it was not evident for the
significance of Pearson correlations. Thus, to a large extent, it
is the surrogate testing approach applied to these networks that
accounts for this pattern. Recall that MI captures both linear and
nonlinear dependencies (Smith, 2015) and that we performed
a variant of phase randomization that tests nonlinearity, only
(Prichard and Theiler, 1994). In other words, in spite of a
preserved linear dependency also captured by MI, the absence
of nonlinear coupled dynamics rendered the weight of this
functional link in the corresponding physiological network
to 0. Taken together, our analytical framework demonstrated
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vanishing nonlinear interactions in response to orthostatic
challenge, which prompts questions for future research about the
nature of the physiological mechanisms at play.

The duration of the cardiac and respiratory cycle dynamics
are interrelated via several intricate relationships (Voss et al.,
2009). One of the most apparent patterns in the coupled
dynamics of these oscillatory systems is known as respiratory
sinus arrhythmia, which refers to a decrease in CCD during
inspiration and increase in CCD during expiration due to altered
parasympathetic tone. This periodic influence was present in the
observed dynamics throughout the measurement independent
of postural changes, most likely due to multiple uncontrolled
factors apart from those associated with the vagal activity
(e.g., change in tidal volume). Moreover, Bartsch and Ivanov
(2014) demonstrated a phase synchronization between heart rate
and respiratory rate, which is a nonlinear form of interaction
contributing to the fine structure of the examined physiological
networks. Thus, the absence of coupled nonlinear dynamics
confirmed by our surrogate testing (phase randomization) also
excludes phase synchronization between CCD and BB after
standing up and sitting down, which results in impaired
coordination between these physiological systems playing a role
in homeostatic mechanisms. Nonlinear interactions between
cardiovascular signals have been shown to be suppressed by
the baroreflex mechanism after head-up tilt resulting in their
simplification and increased predictability (Faes and Nollo,
2006). Numerous studies evidenced the presence of nonlinearities
in the cerebral hemodynamics (Panerai et al., 1999; Mitsis
et al., 2004). Mitsis et al. (2002) identified frequency-dependence
of dynamic cerebral autoregulation and its attenuation during
orthostatic stress (Mitsis et al., 2006). Our findings fundamentally
agree with these observations since the measured physiological
processes became more independent after postural changes
indicating their weakening regulations.

Evaluating both linear and nonlinear interactions is
indispensable for a detailed reconstruction of physiological
networks (Faes et al., 2015). We characterized cardiorespiratory-
cerebrovascular networks by combining qualitative assessment
of linear and non-linear dependencies with simple (Pearson-
correlation) or model-free measures (mutual information) of
coupling, which does not directly allow for the assessment of
causality. There is an abundance of such bivariate methods that
have been utilized in recent studies of physiological networks
(Bashan et al., 2012; Bartsch et al., 2015; Zanetti et al., 2019),
for a review see Schulz et al. (2013). The relatively short
time series (150 data points) were insufficient for adopting
alternative bivariate measures such as symbolic transfer entropy
(Dickten and Lehnertz, 2014; Lucchini et al., 2020), Granger
causality (Faes et al., 2008) or measures of scale-free coupled
dynamics (Stylianou et al., 2021) with suitable surrogate testing
capable of identifying causal relationships (Schreiber and
Schmitz, 1996). Adequate data representation is also necessary
for using fractal models based on capturing spatio-temporal
cross-dependencies between coupled physiological processes in
order to identify physiological networks by utilizing fractional
differencing operators (Xue et al., 2016; Bogdan, 2019). Hence,
we preferred using stochastic measures known to be insensitive

to short data and thus offering a more flexible description
of physiological networks compared to deterministic models
under our experimental conditions. Our framework captured
fundamental changes in the topology of the CRN-CVN brought
about by orthostatic stress and in future studies it is of high
interest to investigate its directional couplings. Ultimately, it can
be readily applied to any kind of physiological networks either for
exploration or identifying effects of perturbation where a more
elaborate model cannot be utilized due to unmet assumptions
about representation or statistical properties of data.

As to limitations of our study, it is important to note
that because the maneuvers were inherently associated with
perturbations generating large, transient motion artifacts in
the physiological records, we had to exclude the very early
phase of the postural challenge from the analysis. While the
subsequently recorded data (right after postural changes) became
artifact-free, we could secure a sufficiently long segment for the
network reconstruction, thus our analysis necessarily skipped
the time window associated with the immediate dynamic
autoregulatory response combating the very early effects of
the perturbations. Furthermore, the short time spent in the
perturbated states is of another concern. With a longer stand-
up period, one might have been able to observe whether the
MI cardiorespiratory-cerebrovascular network recovered to its
resting-state topology at all. Although the final number of
participants was relatively low it was still comparable to that in
other human network physiological studies (Faes et al., 2015) in
addition to being balanced by the within-subject design of our
experimental protocol. Finally, given that electrophysiological
data (such as electroencephalography) was not collected during
our measurements, this circumstance did not allow us to
disentangle subsystems within the investigated physiological
network with respect to brain activity changes.

Globally adequate delivery of nutrients and oxygen matching
the needs of brain tissue is a vital homeostatic mechanism
established by a fine-tuned interaction between respiration
and systemic regulations of circulation. Hence, despite the
above limitations, incorporating components of central, macro-
and microcirculation into a physiological network is a novel
adaptation of the network physiology concept, which could
contribute to a deeper understanding of healthy regulatory
mechanism maintaining homeostasis. These dynamics show
intricate dependencies that were found challenged by orthostatic
stress, which raises questions about linear and nonlinear network
topologies associated with physiological perturbations in other
organ systems, too.

CONCLUSION

In the present study, we found that postural changes
induced radical topological reorganization in the
nonlinear cardiorespiratory-cerebrovascular network.
The interdependencies between cardiac, respiratory and
cerebrovascular dynamics showed a two-tiered response: non-
significant changes in the Pearson and a marked weakening
in the mutual information network topologies reconstructed
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from linear and nonlinear coupled dynamics, respectively.
The disruption of nonlinear networks suggests that the
complexity of key homeostatic mechanisms maintaining cerebral
hemodynamics and oxygenation is indeed susceptible to
physiological perturbations such as orthostatic stress.
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