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A B S T R A C T   

The neurodevelopmental period spanning early-to-middle childhood represents a time of significant growth and 
reorganisation throughout the cortex. Such changes are critical for the emergence and maturation of a range of 
social and cognitive processes. Here, we utilised both eyes open and eyes closed resting-state electroencepha-
lography (EEG) to examine maturational changes in both oscillatory (i.e., periodic) and non-oscillatory (aperi-
odic, ‘1/f-like’) activity in a large cohort of participants ranging from 4-to-12 years of age (N = 139, average 
age=9.41 years, SD=1.95). The EEG signal was parameterised into aperiodic and periodic components, and 
linear regression models were used to evaluate if chronological age could predict aperiodic exponent and offset, 
as well as well as peak frequency and power within the alpha and beta ranges. Exponent and offset were found to 
both decrease with age, while aperiodic-adjusted alpha peak frequency increased with age; however, there was 
no association between age and peak frequency for the beta band. Age was also unrelated to aperiodic-adjusted 
spectral power within either the alpha or beta bands, despite both frequency ranges being correlated with the 
aperiodic signal. Overall, these results highlight the capacity for both periodic and aperiodic features of the EEG 
to elucidate age-related functional changes within the developing brain.   

1. Introduction 

Electroencephalography (EEG) has proven highly valuable in quan-
tifying neural dynamics and providing critical insights into the physio-
logical processes that underlie key aspects of human cognition and 
neurodevelopment. Neural oscillations represent a prominent and 
extensively investigated feature of the EEG record, reflecting 
synchronised fluctuations in excitability across cortical microcircuits, 
both within and between broader neuronal networks (Buzsaki and 
Draguhn, 2004; Cohen, 2017). Decades of research has linked oscillatory 
activity within the cortex to a broad range of cognitive, perceptual, and 
developmental processes (Benchenane et al., 2011; Kahana, 2006), 
while changes in the frequency or amplitude of oscillations can be a sign 
of pathological neural activity in a number of psychiatric, neurological, 
and neurodevelopmental disorders (Başar, 2013; Newson and Thiagar-
ajan, 2018; Voytek and Knight, 2015; Wang et al., 2013). 

Resting-sate EEG recordings can be used to capture spontaneous, or 
‘intrinsic’ activity that occurs in the absence of any overt external 
stimuli, or task-related neurocognitive processing (Buzsáki et al., 2012; 

Michel and Murray, 2012). A common trend observed in studies 
examining maturational changes in resting-state brain rhythms in chil-
dren and adolescents is a reduction in power with increasing age within 
lower frequency ranges (i.e., delta and theta bands; Clarke et al., 2001; 
Gasser et al., 1988; Gómez et al., 2013; John et al., 1980) which is also 
often also accompanied by a concomitant increase in power within 
faster rhythms, particularly the alpha and beta bands (Benninger et al., 
1984; Gasser et al., 1988; Gómez et al., 2013; Marshall et al., 2002; Saby 
and Marshall, 2012). In addition to changes in spectral power, the peak 
frequency of the dominant posterior alpha rhythm also increases with 
age until around late childhood, or early adulthood (Cellier et al., 2021; 
Chiang et al., 2011; Eeg-Olofsson et al., 1971; Marshall et al., 2002; 
Miskovic et al., 2015; Stroganova et al., 1999). These shifts in oscillatory 
dynamics likely reflect multiple structural and functional neuro-
developmental processes, including differentiation and specialisation of 
cortical regions/networks, synaptic and axonal pruning, and alterations 
in excitatory and inhibitory (E/I) circuits (De Bellis et al., 2001; Feinberg 
and Campbell, 2010; Lujan et al., 2005; Uhlhaas et al., 2010). 

The EEG signal, however, reflects not only oscillatory (i.e., periodic) 
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activity, but also additional background aperiodic, or ‘scale-free’ 
broadband activity, which is present at all frequencies and adheres to a 
1/f power distribution, whereby spectral power decreases with 
increasing frequency (Barry and De Blasio, 2021; Donoghue et al., 
2020b; He, 2014; Muthukumaraswamy and Liley, 2018; Pritchard, 
1992). Despite constituting a large proportion of the spontaneous neural 
activity recorded from the cortex (Bullock et al., 2003; He et al., 2010), 
the aperiodic component has until recently received only limited 
attention in the EEG literature, often being treated as ‘noise’ and 
regarded as having limited physiological relevance (Donoghue et al., 
2020b; He, 2014). Recent work, however, has begun to provide 
compelling evidence in support of the importance of the aperiodic 
signal. Studies have shown aperiodic activity to be modulated by 
task-performance (He et al., 2010), level of arousal (Lendner et al., 
2020), and drug-induced states (Colombo et al., 2019; Muthukumar-
aswamy and Liley, 2018; Waschke et al., 2021). In addition, several 
studies have shown features of the aperiodic signal to be altered in 
neurological and psychiatric disease (Molina et al., 2020; Ostlund et al., 
2021a; Robertson et al., 2019; Wilkinson and Nelson, 2021). 

The aperiodic signal is comprised of two parameters: a spectral slope 
(henceforth referred to as the aperiodic exponent), and an offset 
(Donoghue et al., 2020b). The exponent represents the pattern of power 
across frequencies, reflecting the steepness of the decay of the power 
spectrum (Donoghue et al., 2020b), while the offset reflects the broad-
band shift in power across frequencies (Fig. 1B). Emerging research now 
indicates that these parameters show changes across the lifespan. In 
adults, a reduction in the exponent (i.e., ‘flatter’ power spectral density 
[PSD]) with increasing age has been observed across several indepen-
dent studies (Dave et al., 2018; Merkin et al., 2021; Tran et al., 2020; 
Voytek et al., 2015). There is also some limited evidence to suggest that 
these age-dependent changes also occur during childhood. For example, 
a recent longitudinal EEG study in infants (age ranging between 38 and 
203 days) revealed that exponent values decline with age across this 
early developmental window (Schaworonkow and Voytek, 2021). 

Additionally, an analysis of magnetoencephalographic (MEG) re-
cordings from a cohort of 24 neurotypical children (mean age = 8.0 
years) and 24 adults (mean age = 40.6 years) showed adults to exhibit 
flatter exponents, and smaller offset values than children (He et al., 
2019). A further study containing EEG recordings from both children 
and young adults (age range 5–21 years), the majority (~ 88%) of whom 
carried a psychiatric diagnosis, also reported a flattening of the aperi-
odic exponent, and reduction in offset with increasing age (Tröndle 
et al., 2020). Similarly, Cellier et al. (2021) recently reported a similar 
trend in a sample containing both children and adults (age range 3–24 
years). 

In sum, neural activity patterns demonstrate various changes across 
the lifespan. Growing evidence indicates that these alterations do not 
only reflect shifts in oscillatory dynamics, but also changes within the 
underlying broadband aperiodic signal. The developmental period 
spanning early-to-middle childhood is a time of significant and wide-
spread functional and neuroanatomical changes which correspond to 
vastly increased social and cognitive demands (Bunge and Wright, 2007; 
Casey et al., 2005). Understanding modifications in both oscillatory and 
aperiodic neural dynamics within this critical neurodevelopmental 
period is therefore likely to provide important insight into the physio-
logical processes which take place during this time. The primary aim of 
the present study was to provide a comprehensive analysis of both pe-
riodic and aperiodic components of the spontaneous EEG record in a 
large cohort of neurotypical children. Our intention was to extend recent 
research that has used spectral parameterisation approaches to explore 
age-related changes in the EEG signal in adults, and also to further add to 
findings of age-related shifts in both periodic and aperiodic activity in 
children by analysing both eyes open and eyes closed resting-state EEG 
in a cohort of 139 participants ranging from 4 to 12 years of age. To 
achieve this, we employed a recently developed spectral parameter-
isation approach (Fitting Oscillations and One Over f [FOOOF] 
(Donoghue et al., 2020b)) which enables decomposition of the neural 
signal into its respective periodic and aperiodic components. This 

Fig. 1. A) Example FOOOF model fit from a single subject showing the aperiodic exponent and offset (marked in red) across the analysed frequency range (1–40 Hz). 
The centre frequency, power, and bandwidth are highlighted (arrows) for the oscillatory peak present within the alpha range. B) Graphical illustration demonstrating 
shifts in the aperiodic exponent and offset. C) Aperiodic exponent and offset values for the eyes open (EO) and eyes closed (EC) recordings. Values are the average 
across all EEG electrodes. D) R-squared and error values for the model fit for the eyes open and eyes closed recordings (average across all electrodes). E) Topographic 
plots showing the spatial distribution of mean exponent and offset values across participants. Exponent values were highest near the midline, spanning frontal, 
central and posterior channels; while offset values were highest over posterior channels. F) Correlation between exponent and offset values (average over all 
electrodes). There was a strong association between both metrics for the eyes open and eyes closed data. 
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permits narrowband oscillatory dynamics (e.g., power and centre fre-
quency) to be extracted from, and studied independently of, the 
broadband aperiodic signal. Equally importantly, it further allows 
explicit measurement of the aperiodic signal, which is likely to be driven 
by a unique set of neural generators (Donoghue et al., 2021; Ostlund 
et al., 2021b). Using linear regression models, we examined whether 
chronological age would predict exponent and offset within the aperi-
odic signal, as well as the power and centre frequency of the dominant 
alpha and beta oscillations. 

2. Methods 

2.1. Participants 

The sample comprised 139 English speaking children (72 male; 
average age = 9.41 years, SD = 1.95; age range: 4–12 years) described as 
being typically developing by their primary caregiver and not diagnosed 
with any neurological, psychiatric, or genetic disorder. Ethical approval 
was provided by the Deakin University Human Research Ethics Com-
mittee (2017–065), while approval to approach public schools was 
granted by the Victorian Department of Education and Training 
(2017_003429). 

2.2. Procedure 

Data were collected during a single experimental session conducted 
either at the university laboratory, or in a quiet room at the participants’ 
school. Prior to commencement of the study, written consent was ob-
tained from the parent or legal guardian of each child. Details of the 
experimental protocol were also explained to each child who then 
agreed to participate. Data reported in this study were collected as part 
of a larger neurocognitive and electrophysiological investigation into 
the development of the social brain in early and middle childhood 
(Bigelow et al., 2021). 

2.3. EEG data acquisition 

EEG data were recorded in a dimly lit room using a 64-channel 
HydroCel Geodesic Sensor Net (Electrical Geodesics, Inc, USA) con-
taining Ag/AgCl electrodes surrounded by electrolyte-wetted sponges. 
Data were acquired using NetStation software (version 5.0) via a Net 
Amps 400 amplifier using a sampling rate of 1 KHz, with data online 
referenced to the Cz electrode. Prior to the commencement of recording, 
electrode impedances were checked to ensure they were < 50 KOhms. 
The resting-state data were recorded for two minutes while participants 
sat with their eyes open and stared at a fixation cross on a computer 
screen, and two minutes while participants had their eyes closed. 

2.4. EEG data analysis 

2.4.1. Pre-processing 
All pre-processing procedures were performed in Matlab (R2020a; 

The Mathworks, Massachusetts, USA) incorporating the EEGLAB 
toolbox (Delorme and Makeig, 2004) along with custom scripts. The raw 
EEG files were cleaned using the Reduction of Electrophysiological Ar-
tifacts (RELAX) pre-processing pipeline (Bailey et al., 2021). This vali-
dated and fully automated pipeline uses empirical approaches to 
identify and reduce artifacts within the data, including the use of both 
multiple Wiener filters and wavelet enhanced independent component 
analysis (ICA). Briefly, data were bandpass filtered between 0.5 and 
80 Hz (fourth-order Butterworth filter), with a notch filter between 47 
and 53 Hz to remove any line noise, following which any bad channels 
were removed using a multi-step process including the ‘findNoi-
syChannels’ function from the PREP pipeline (Bigdely-Shamlo et al., 
2015). Data were then subject to multiple Wiener filtering, followed by 
wavelet-enhanced ICA, with components for cleaning identified using 

IClabel (Pion-Tonachini et al., 2019). Data were re-referenced to the 
average of all electrodes ready for further analysis. As a final step, all 
pre-processed data files were also visually inspected prior to inclusion in 
the analyses. An overview of the key steps involved in the RELAX 
pre-processing pipeline can be found in the Supplemental Materials 
(Fig. S1). 

2.4.2. Parameterisation of the spectral data 
PSD was first calculated separately for each participant and electrode 

across the continuous EEG using Welch’s method implemented in Mat-
lab (2 s Hamming window, 50% overlap). The FOOOF Python toolbox 
(version 1.0.0; https://fooof-tools.github.io/fooof/) was then used to 
parameterize the spectral data through separation of the periodic and 
aperiodic components of the signal. Using this approach, PSDs are 
treated as a linear combination of both aperiodic activity and oscillatory 
peaks with amplitudes that extend above the aperiodic signal (for a 
detailed overview of this approch see: Donoghue et al., 2020b; Ostlund 
et al., 2021b). Using a model driven approach, the FOOOF algorithm is 
able to extract both periodic and aperiodic components within the 
overall power spectra (Donoghue et al., 2020b). For the present study, 
we extracted the aperiodic exponent and offset across a broad frequency 
range between 1 and 40 Hz, similar to prior studies (Cellier et al., 2021; 
Molina et al., 2020; Ostlund et al., 2021a), and as recommended in the 
FOOOF documentation in order to allow for reliable estimation of the 
aperiodic component of the data. Fitting was performed using the ‘fixed’ 
aperiodic mode due to the absence of a clear ‘knee’ in the power spec-
trum when the output was visually inspected in log-log space (i.e., the 
signal was approximately linear across the specified frequency range). 
Spectral parameterisation settings for the algorithm were: peak width 
limits = [1,12], maximum number of peaks = 8, peak threshold = 2, 
minimum peak height = 0.0. The final FOOOF outputs are the aperiodic 
exponent and offset values, as well as the centre frequency, power, and 
bandwidth for the oscillatory component of the signal (see Fig. 1A). 

2.4.3. Aperiodic exponent and offset 
The exponent and offset values were extracted from the aperiodic 

signal for each participant and for each EEG electrode. Prior to statistical 
analysis, the data were averaged across all scalp electrodes for each 
participant to generate a ‘global’ exponent and offset value representing 
the mean signal across the scalp. This approach was chosen as we had no 
a priori hypotheses regarding the scalp distribution of the aperiodic 
components (Jacob et al., 2021) and also helped to avoid multiple 
comparisons across electrodes. In instances where significant results 
were achieved at the global level, we then ran additional analyses across 
three broad cortical regions using the average signal across electrode 
clusters covering bilateral anterior (Fp1, Fp2, AFz, AF3, AF4, Fz, F1, F2, 
F3, F4, F5, F6, F7, F8), central (FCz, FC1, FC2, FC3, FC4, C1, C2, C3, C4, 
C5, C6, CP1, CP2), and posterior (Pz, P1, P2, P3, P4, P5, P6, P7, P8, POz, 
PO3, PO4, Oz, O1, O2) channels* (see Fig. 2C for a depiction of the EEG 
cap with the three electrode clusters highlighted). 

2.4.4. Spectral power and centre frequency 
Following spectral parameterisation, the power and centre frequency 

peak parameters were extracted from the periodic signal for both the 
alpha (7–13 Hz) and beta (13–30 Hz) frequency ranges. These two fre-
quency ranges were selected based on visual inspection of the power 
spectra, which indicated clear peaks (i.e., ‘bumps’ in the power spectra) 
over-and-above the 1/f-like decay for most participants (e.g., Fig. 1A). 
Conversely, far fewer participants demonstrated clearly discernible 
peaks within the canonical delta (1–3 Hz), theta (3–7 Hz), and gamma 
(>30 Hz) ranges, consistent with other findings (Ostlund et al., 2021b). 

1 Note: International 10–10 electrode positions are stated for ease of inter-
pretation. Channels listed are those which best approximate the sensor posi-
tions used by the Geodesic Sensor Net. 
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For statistical analysis, spectral power and centre frequency values were 
extracted from the midline electrode exhibiting the highest power value 
(alpha = POz, beta = FCz). Single electrodes, as opposed to electrode 
clusters, were used in this instance, as the precise number of peaks 
detected for each electrode differed across subjects, thus prohibiting 
averaging across a larger ROI. Following removal of the aperiodic 
components of the signal, an alpha peak was detected in 131 (94.2%) 
and 138 (99.3%) of participants in the eyes open and eyes closed re-
cordings, respectively; while in the beta range, a peak was successfully 
detected in 136 (97.8%) and 132 (95.0%) participants for the eyes open 
and eyes closed conditions, respectively. 

2.5. Statistical analysis 

Statistical analyses were conducted in R (version 4.0.3; R Core Team, 
2020). Ordinary least squares regression models were used to predict 
each of the aperiodic (exponent, offset) and periodic (centre frequency, 
spectral power) EEG components from chronological age. Regressions 
were run separately for the eyes open and eyes closed EEG recordings, 
and for each outcome variable. Residuals diagnostics were performed 
for all models to assess assumptions (‘olsrr’ package). This included vi-
sual inspection of residual Q-Q plots, residual versus fitted values plots, 
and histograms, as well as Kolmogorov-Smirnov normality tests. In cases 
of severe violations, the outcome variable was transformed using 
Yeo-Johnson power transformations (Yeo and Johnson, 2000). This was 
the case for the eyes open and eyes closed aperiodic offset data, as well 
as beta power (eyes open and eyes closed recordings), and beta centre 
frequency (eyes closed recordings only) As the aperiodic data used the 
average signal across all electrodes, we also ran further Spearman 
rank-order correlations to assess for associations between age and 
exponent and offset values separately across anterior, central, and pos-
terior electrode clusters in instances where regression models were 

significant. Finally, we ran exploratory correlations to assess for any 
associations between the aperiodic exponent and offset values, and 
aperiodic-adjusted spectral power. For all analyses, Bonferroni correc-
tions were used to control for multiple comparisons. For regression 
models using the aperiodic data, we corrected for four comparisons (2 
aperiodic parameters [exponent, offset] x 2 recording conditions [eyes 
open, eyes closed]; adjusted alpha =0.0125). For the periodic data, we 
corrected for eight comparisons (2 periodic parameters [centre fre-
quency, spectral power] x2 frequencies [alpha, beta] x 2 recording 
conditions [eyes open, eyes closed]; adjusted alpha =0.006). Correla-
tions comparing age and aperiodic activity across specific scalp locations 
were corrected to account for electrode cluster (3 [anterior, central, 
posterior] x 2 recording conditions [eyes open, eyes closed]; adjusted 
alpha =0.008). Correlations between exponent and offset were cor-
rected for two correlations (eyes open, eyes closed; adjusted alpha 
=0.025); while correlations between aperiodic activity and spectral 
power were corrected for eight comparisons (2 periodic parameters 
[centre frequency, spectral power] x 2 periodic parameters [peak fre-
quency, power], and x 2 recording conditions [eyes open, eyes closed]; 
adjusted alpha =0.006). 

3. Results 

3.1. Algorithm performance and characteristics of the aperiodic exponent 
and offset 

The performance of the FOOOF algorithm was assessed via the 
‘goodness of fit’ measures, R2 and Error, which represent the explained 
variance, and total error of the model fit, respectively (Donoghue et al., 
2020b; Ostlund et al., 2021b). Good model fits for the FOOOF algorithm 
were observed for both the eyes open (R2 =.99, Error =0.05) and eyes 
closed (R2 =.98, Error =0.07) data (average over all 

Fig. 2. Association between age and aperiodic activity. (A) Scatterplot of the aperiodic exponent (upper panel) and offset (lower panel) in relation to age for the eyes 
open and eyes closed EEG recordings. R-squared (R2) and significance values from the regression analyses are shown (asterisk indicates significance after Bonferroni 
correction). (B) Correlations between aperiodic activity and age for each of the anterior, central, and posterior electrode clusters. Correlations reached significance 
across all three locations. (C) EEG electrode cap highlighting the electrodes forming each of the electrode clusters used for the correlations (anterior = yellow, central 
= blue, posterior = magenta). 
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participants/electrodes; Fig. 1D). When comparing the eyes open and 
eyes closed data, R2 values were found to be higher for the eyes open, 
compared to the eyes closed, condition, t(138) = 6.58, p < .001, while 
Error values were lower for the eyes open, compared to the eyes closed, 
condition, t(138) = − 14.11, p < .001. Topographic plots of the aperi-
odic exponent and offset (average across all subjects) revealed similar 
patterns for both the eyes open and eyes closed recordings. Specifically, 
exponent values showed a relatively widespread distribution, with 
maximal signal close to the vertex, while offset values were largest 
across posterior regions of the cortex (Fig. 1E). Comparisons between 
the eyes open and eyes closed recordings also indicated that exponent 
values were significantly larger (i.e., steeper aperiodic slope) in the eyes 
closed, compared to the eyes open recordings, t(138) = − 12.68, 
p < .001, with offset values also significantly larger for the eyes closed, 
compared to the eyes open recordings, t(138) = − 14.262, p < .001 
(Fig. 1C). Finally, exponent and offset values were found to be strongly 
positively correlated in both the eyes open (rho =0.80, p < .001) and 
eyes closed (rho =0.79, p < .001) conditions (Fig. 1F). 

3.2. Association between age and aperiodic activity 

Regression models revealed that age predicted the aperiodic expo-
nent for the eyes open EEG recordings, F(1,37) = 8.12, p = .005, R2 

= 0.06; however, the eyes closed recordings failed to reach significance 
after multiple comparison correction, F(1,37) = 5.56, p = .020, R2 

= 0.04 (Fig. 2A). Age also significantly predicted offset for both the eyes 
open, F(1,37) = 25.35, p < .001, R2 = .16, and eyes closed, F(1,37) 
= 18.07, p < .001, R2 = 0.12, EEG recordings (Fig. 2A). For conditions 
that reached significance in the regression models, we further examined 
the relationship between age and aperiodic activity, through correla-
tions using exponent and offset values taken from the average across 
anterior, central, and posterior scalp locations (see Fig. 2C for a 

depiction of the electrode clusters used). Correlations were significant 
across each of these three locations (all p < .008), with the strongest 
association between age and exponent identified posteriorly (rho =
− 0.35), and the strongest association between age and offset over the 
anterior region for both the eyes open (rho = − 0.46) and eyes closed (rho 
= − 0.39) conditions. Finally, we also investigated if there was any 
interaction effect between age and each of the three scalp locations (i.e., 
anterior, central, posterior) on either exponent or offset. We found no 
significant interaction for eyes open exponent (p = .594), or for eyes 
open offset (p = .743), or eyes closed offset (p = .830). Correlation co-
efficients for all associations are provided in Fig. 2B. Additional scat-
terplots can be found in the Supplementary Materials (Fig. S2). 

3.3. Age-related differences in aperiodic-adjusted centre frequency 

Age was found to predict alpha centre frequency across both the eyes 
open, F(1,129) = 20.73, p < .001, R2 = .14, and eyes closed, F(1,136) 
= 22.31, p < .001, R2 = .14, recordings. Specifically, these findings 
indicate that alpha centre frequency increased systematically with age. 
In contrast, age did not predict beta centre frequency for either eyes 
open, F(1,134) = .13, p = .72, R2 = .00, or eyes closed, F(1,130) = .51, 
p = .47, R2 = .00, conditions. Scatterplots highlighting the association 
between age and centre frequency within the alpha and beta bands are 
presented in Fig. 3A. 

3.4. Association between age and aperiodic-adjusted spectral power 

We assessed whether age could predict the power of the detected 
oscillatory peaks in the alpha and beta ranges after removal of the 
aperiodic signal. No association between age and power was found for 
the alpha (eyes open: F(1,129) = .08, p = .78, R2 = .00; eyes closed: F 
(1,136) = 3.02, p = .08, R2 = .02), or beta (eyes open: F(1,134) = 1.67, 

Fig. 3. A) Scatter plots of centre frequency for the alpha and beta range in relation to age. Significance values from the regression analyses are shown (asterisk 
indicates significance after Bonferroni correction). Age was found to significantly predict alpha, but not beta, centre frequency. B) Spectral power plotted in relation 
to centre frequency for the alpha and beta frequency ranges. Topographic plots show the average power distribution for each of the eyes open and eyes closed 
recordings for the alpha and beta frequency ranges. Star indicates the electrode used for obtaining the power and centre frequency values used in the analyses (alpha 
= POz electrode, beta = FCz electrode). 
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p = .20, R2 = .01; eyes closed: F(1,130) = 4.33, p = .04, R2 = .03) fre-
quencies (for scatterplots, see Fig. S3). Fig. 3B depicts spectral power in 
relation to centre frequency for the alpha and beta frequencies. Given 
recent work identifying a potential association the aperiodic signal and 
aperiodic-adjusted spectral power and peak frequency (He et al., 2019; 
Merkin et al., 2021), exploratory analyses were also run comparing 
exponent and offset (average across all electrodes) with power and 
centre frequency within the alpha and beta ranges (using the midline 
electrode exhibiting the greatest amplitude [alpha = POz, beta = FCz]). 
We found significant weak-to-moderate positive correlations between 
exponent and offset and aperiodic-adjusted spectral power in both the 
alpha and beta bands for both the eyes open and eyes closed data 
(Bonferroni corrected; all p < .006; Fig. 4). When comparing aperiodic 
activity with centre frequency, the only significant result was a modest 
negative association between beta power in the eyes open recordings 
and exponent (rho = − .24, p = .005) and offset (rho = − .26, p = .002) 
(Supplementary Fig. S4). 

4. Discussion 

The aim of the present study was to characterise neuro-
developmental changes across both the periodic and aperiodic compo-
nents of the spontaneous EEG signal in early-to-middle childhood. To 
achieve this, we applied a spectral parameterization approach to 
disentangle key features (i.e., centre frequency and power) of narrow-
band oscillations in the alpha and beta band from the broader aperiodic 
signal. Using regression models, we then examined if participants’ age 
could predict the aperiodic exponent and offset, as well as power and 

centre frequency within the alpha and beta frequencies. Several key 
findings emerged from this investigation. First, we found chronological 
age to be a predictor of both aperiodic exponent and offset, with older 
children having smaller exponent values (i.e., flatter 1/f spectral slope) 
and reduced offset values, compared to younger children. Second, we 
found that age was also able to predict centre frequency of the alpha (but 
not beta) band, with older children displaying faster peak frequencies. 
Finally, age was unable to predict spectral power in either the alpha or 
beta bands; however, power within these bands significantly correlated 
with both aperiodic exponent and offset. 

4.1. Age predicts aperiodic properties of the EEG signal 

The present results are indicative of an association between chil-
dren’s chronological age and the aperiodic properties of the EEG signal. 
Specifically, exponent values, extracted from the eyes open recordings, 
were shown to decline as a function of age; however, this association 
failed to reach significance in the eyes closed data after multiple com-
parison correction. Offset also declined with age, with this result sig-
nificant for both the eyes open and eyes closed recordings. These 
findings largely corroborate previous work also indicating age-related 
changes in the aperiodic EEG signal. An initial study by Voytek et al. 
(2015) that examined EEG recorded during a visual working memory 
task found that the slope of the 1/f signal was less negative (i.e., ‘flatter’ 
aperiodic exponent) in older (60–70 years), compared to younger 
(20–30 years) participants. Similar results were also reported by Tran 
et al. (2020) comparing participants across the same age groups as 
Voytek et al. (2015), but instead using pretrial baseline EEG recorded 

Fig. 4. Scatterplots depicting the association between aperiodic activity and aperiodic-adjusted oscillatory power. Both exponent and offset positively correlated 
with spectral power in both the alpha and beta bands across the eyes open and eyes closed conditions. Asterisks indicate a significant correlation after Bonfer-
roni correction. 
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during a cognitive task. Consistent with Voytek et al. (2015) these au-
thors also found that exponent was flatter in the older, compared to 
younger, group. These key findings of smaller exponent and reduced 
offset in older individuals were further recently supported by Merkin 
et al. (2021) using eyes closed resting-state EEG in younger (18–35 
years) and older (50–86 years) adults. Our present findings add to this 
emerging body of evidence in adult populations by demonstrating 
reduced exponent and offset with age in a large cohort spanning 
early-to-middle childhood (4-to-12 years). These findings were present 
both when using the signal averaged across the entire scalp, and when 
using electrode clusters covering anterior, central, and posterior regions 
separately (Fig. 2B and C), thus suggesting that systematic variations 
with age are a relatively widespread phenomenon. 

Importantly, our findings also replicate recent observations of flat-
tening of the aperiodic exponent with age in infancy (Schaworonkow 
and Voytek, 2021), as well as in cohorts with ages ranging from child-
hood into adulthood (Cellier et al., 2021; Donoghue et al., 2020a; He 
et al., 2019; Tröndle et al., 2020). The present results, in conjunction 
with previous findings, are therefore supportive of quantitative neuro-
developmental changes in the aperiodic component of the EEG signal 
and add to a rapidly growing body of literature in this area. The finding 
of an association between age and exponent for the eyes open, but not 
eyes closed condition, is also noteworthy. The reason for this observa-
tion is not clearly apparent, however; while speculative, it is possible 
that this might, at least in part, reflect differences in levels of attention or 
arousal between these conditions. It is conceivable, for instance, that 
children might have displayed a greater level of engagement with the 
external environment in the eyes open EEG recording, compared to the 
eyes closed condition, producing greater levels of arousal; which would 
be consistent with past research (Barry et al., 2009; Fonseca et al., 2013) 
and might have had an influence on the association between age and 
exponent (e.g., if there were any developmentally driven changes in 
environmental engagement). Future work could formally assess this 
possibility through the inclusion of additional electrophysiological (e.g., 
electrodermal activity, or pupillometry), as well as behavioural mea-
sures of participant vigilance. 

Although precise neurobiological substrate of aperiodic activity re-
mains uncertain, evidence suggests that a flatter exponent reflects 
increased asynchronous background neuronal firing (i.e., neural ‘noise’) 
which is theorised to be driven by an increased E/I ratio (Voytek and 
Knight, 2015; Voytek et al., 2015). This has recently been supported via 
both in silico models (Gao et al., 2017), as well as neural recordings 
demonstrating modulation of the spectral exponent through adminis-
tration of pharmacological agents known to either increase inhibition (e. 
g., propofol), or increase excitation (ketamine) (Gao et al., 2017; 
Lendner et al., 2020; Waschke et al., 2021). Hence, it is possible that the 
age-dependent exponent reductions observed here reflect, to some 
extent, maturational changes in E/I balance occurring throughout this 
neurodevelopmental period, possibly representing a shift towards 
increased excitatory tone within neural circuits as children mature. 
However, further work is needed to elucidate the precise cellular and 
molecular mechanisms that underlie these neurodevelopmental shifts in 
aperiodic activity. Future studies could combine analysis of the 
EEG-derived aperiodic signal with neuroimaging techniques capable of 
quantifying excitatory and inhibitory neurotransmitter concentrations 
(i.e., γ-aminobutyric acid [GABA] and glutamate) within the brain, such 
as magnetic resonance spectroscopy (MRS) (Harris et al., 2017; Thakkar 
et al., 2017). For instance, there is some limited evidence that GABA 
levels increase during neurodevelopment (Porges et al., 2021), however, 
exactly how this finding ties in with markers of neural excitability re-
mains to be established. Multi-modal approaches combining neuro-
stimulation with electrophysiology, such as combined transcranial 
magnetic stimulation and EEG (TMS-EEG), could also be utilised to 
probe associations between cortical excitability (via TMS-evoked po-
tentials) and aperiodic activity across specific cortical targets (Hill et al., 
2016; Tremblay et al., 2019). 

The observation of age-related reductions in offset also warrants 
further investigation. Intracranial local field potential recordings from 
patients undergoing neurosurgery provide compelling evidence that 
broadband power shifts are positively correlated to neuronal population 
spiking (Manning et al., 2009), with similar findings also observed in 
macaques (Ray and Maunsell, 2011). Hence, our present observation of 
a reduction in aperiodic offset with increasing age could be tentatively 
interpreted to reflect a maturational decline in the spiking rate of 
cortical neurons. In keeping with the observed changes in aperiodic 
exponent, this effect appears to be a relatively global phenomenon, 
given that results were taken from the average of the aperiodic signal 
across all scalp electrodes. More broadly, these findings also appear 
consistent with previous observations of reduced broadband power 
throughout childhood and into adulthood (Gomez et al., 2017; Segalo-
witz et al., 2010). It is possible that reductions in cortical grey matter 
volume that occur during childhood, likely the result of maturational 
‘synaptic pruning’-like processes (Paolicelli et al., 2011; Paus et al., 
2008; Pfefferbaum et al., 1994), are responsible for these findings. 
However, we note that cautious interpretation is warranted, as changes 
in skull conductivity with age might also contribute to these observa-
tions when using EEG recordings (Gomez et al., 2017; Hoekema et al., 
2003). In any event, the results of He et al. (2019), which also reported 
an age-related decline in offset, lend support to such changes being 
genuine neural phenomena, given that these authors used MEG re-
cordings, which are largely unaffected by the electrical resistivity of the 
skull (Wolters et al., 2006). 

4.2. Age predicts alpha centre frequency, but not power 

Participants’ age was able to predict the aperiodic-adjusted alpha 
frequency, with older children showing increased alpha peak frequency. 
This finding aligns with previously documented observations of alpha 
frequency with age both across childhood (Dickinson et al., 2018; 
Eeg-Olofsson et al., 1971; Marshall et al., 2002; Miskovic et al., 2015; 
Somsen et al., 1997), and into adolescence and early adulthood (Chiang 
et al., 2011; Cragg et al., 2011). The posterior alpha rhythm first man-
ifests on the EEG record at around 3 months of age, with a peak fre-
quency between 3 and 5 Hz, which increases to 6–7 Hz by one year of 
age (Saby and Marshall, 2012), and continues to increase throughout 
childhood until reaching a peak between 8 and 12 Hz in early adult-
hood, after which it steadily declines with age (Chiang et al., 2011; 
Hashemi et al., 2016). It has been theorised that the increase in alpha 
frequency seen throughout childhood might represent an increase in the 
speed at which interconnected neural populations are able to commu-
nicate, as a result of greater myelination and axon diameter (Segalowitz 
et al., 2010; Thorpe et al., 2016). A relationship between increasing 
alpha frequency and the development of large-scale oscillatory networks 
would also be in alignment with studies that have shown associations 
between peak alpha frequency and cognitive function in children (Carter 
Leno et al., 2021; Dickinson et al., 2018). Our present findings also 
corroborate recent reports of age-related changes in aperiodic-adjusted 
alpha centre frequency. Specifically, Cellier et al. (2021) showed that 
peak frequency within the 4–12 Hz range increased with age in a cohort 
which included both children and adults (3–24 years of age); while He 
et al. (2019) reported a positive association between age and alpha 
centre frequency in a small sample (N = 24) of children using MEG re-
cordings. The same trend was also reported by Carter Leno et al. (2021) 
in a longitudinal sample of young children from 1 to 3 years of age. Our 
findings extend these observations by demonstrating age-related shifts 
in alpha centre frequency using both eyes open and eyes closed data 
from a large (N = 139) cohort of children spanning early-to-middle 
childhood. Our results were also specific to the alpha band, with no 
evidence of an association between age and beta centre frequency. The 
maturational changes observed in alpha frequency, however, did not 
extend to spectral power in either the alpha or beta frequencies. 
Although a number of studies have shown associations between power 
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in various canonical frequencies and age, considerable heterogeneity 
exists, with results likely to be strongly contingent on the specific age 
range investigated (for review see: Segalowitz et al., 2010). Importantly, 
the majority of past research examining narrow-band oscillatory power 
has failed to account for the potential influence of the aperiodic signal, 
which risks conflating these two separate phenomena (Donoghue et al., 
2020a, 2021). Recent work examining peak alpha frequency in adult-
hood also found no age-related changes after accounting for the aperi-
odic signal (Merkin et al., 2021). 

4.3. Limitations and future directions 

The present study has some limitations. First, as we used resting-state 
EEG, the present results are limited to spontaneous neural activity. 
Whilst this is valuable for understanding intrinsic (i.e., stimulus free) 
dynamics, future work could further extend these findings using task- 
related paradigms. This might be particularly useful to help identify 
relationships between periodic and aperiodic neural dynamics and 
specific neurocognitive processes. For example, recent work has iden-
tified aperiodic activity as a predictor of working memory performance 
(Donoghue et al., 2020b) and cognitive processing speed (Ouyang et al., 
2020). Second, we parameterised our data between 1 and 40 Hz. We 
chose this range to reduce the presence of non-neural artefacts (e.g., 
electromyographic activity, or microsaccades) which often occur at 
higher frequencies (Goncharova et al., 2003; Muthukumaraswamy, 
2013; Yuval-Greenberg et al., 2008). While this still represents a broad 
frequency range, and is consistent with other EEG studies utilising 
spectral parameterisation (Carter Leno et al., 2021; Cellier et al., 2021; 
Merkin et al., 2021; Robertson et al., 2019), future work could extend 
these analyses to even wider frequency ranges to capture higher fre-
quency activity (e.g., > 40 Hz). This might be particularly useful for 
more directly comparing MEG and EEG derived data with results from 
local field potential and electrocorticography recordings (e.g., Gao et al., 
2017; Halgren et al., 2021). Finally, emerging evidence indicating that 
the aperiodic exponent might act as a non-invasive measure of E/I bal-
ance (Gao et al., 2017; Waschke et al., 2021) opens exciting possibilities 
for research into the neurobiology of developmental and neuropsychi-
atric disorders linked to dysfunction within excitatory and inhibitory 
circuits, such as autism and schizophrenia (Foss-Feig et al., 2017). 

4.4. Conclusion 

The present results highlight several key maturational effects on the 
spontaneous EEG in recorded in a large sample of participants spanning 
early-to-middle childhood (4-to-12 years). Across this age-range, both 
aperiodic exponent and offset were shown to decrease with age. Further, 
aperiodic-adjusted peak alpha frequency increased with age, while no 
effect of age was observed for the beta band. Finally, age was not shown 
to predict either aperiodic-adjusted alpha, or beta power. These results 
provide support for nuanced approaches aiming to examine neural dy-
namics within neurodevelopmental cohorts, which disentangle narrow- 
band oscillatory features from broadband aperiodic activity and com-
plement a growing body of research utilising spectral parameterisation 
approaches to examine age-related changes in the EEG signal in both 
adults and children. 
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