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Abstract: In this work, we report the synthesis of graphene oxide (GO) nanohybrids with starch,
fructose, and micro-cellulose molecules by sonication in an aqueous medium at 90 ◦C and a short
reaction time (30 min). The final product was washed with solvents to extract the nanohybrids
and separate them from the organic molecules not grafted onto the GO surface. Nanohybrids were
chemically characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron
spectroscopy (XPS), and Raman spectroscopy and analyzed by thermogravimetric analysis (TGA),
scanning electron microscopy (SEM), and X-ray diffraction (XRD). These results indicate that the
ultrasound energy promoted a chemical reaction between GO and the organic molecules in a short
time (30 min). The chemical characterization of these nanohybrids confirms their covalent bond,
obtaining a grafting percentage above 40% the weight in these nanohybrids. This hybridization
creates nanometric and millimetric nanohybrid particles. In addition, the grafted organic molecules
can be crystallized on GO films. Interference in the ultrasound waves of starch hybrids is due to the
increase in viscosity, leading to a partial hybridization of GO with starch.

Keywords: nanohybrids; graphene oxide; organic molecules; sonication; ultrasound

1. Introduction

The use and application of graphene has a significant impact in several science and
technology fields since they take advantage of its excellent mechanical, electrical, and
optical properties [1–3]. In many of these applications, graphite is initially oxidized to
produce graphite (GrO) and graphene oxide (GO) [4]. These graphemic materials are
chemically grafted or covalently functionalized with other organic and inorganic molecules
(nanohybrids) [5] to be used as raw material in the manufacturing of solar cells [6], battery
electrodes [7], biosensors [8], and prostheses [9], among others [10,11], where graphite and
GO considerably improve the performance of the products. Nanohybrids grafted with or-
ganic molecules, as starch and fructose, are used due to their biodegradation [12,13] and bio-
compatibility as material for antibiotic recovery in milk [14], manufacturing of antimicrobial
films for foods [15,16], formulation of bio-nano-compounds [17–22], supercapacitors [23–26],
fuel cells [27], water purification membranes [28–30], biosensors [31,32], adhesives [33],
and bone implants [34]. To synthetize these GO/starch [35–46] and GO/fructose [27]
nanohybrids, chemical processes include exfoliated graphite by sonication in an aqueous
medium or polar solvent for several hours. Starch or fructose are added and mixed at 30–
180 ◦C for 9–72 h (reaction time) [25,35,43]. Other methods use solvents as acetonitrile [27],
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dimethylformamide [40], and anhydrous dimethylsulfoxide [44] along with other additives
to control pH (sodium hydroxide, ammonia) [38,46], reduce reaction time by 4–6 h (hy-
drazine, epichlorohydrin) [37,38], and activate hydroxyl groups (OH) of GO (1-ethyl-3-(3
dimethylaminopropyl) carbodiimide chlorohydrate, 4-dimethylaminopyridine) [44].

Considering the above, due to the importance and possible applications of nanohy-
brids with organic molecules, it is necessary to develop new and environmentally-friendly
processes and technologies. This could be achieved by reducing the use of solvents, high
temperatures, and reaction times, without affecting nanohybrid properties (degree of exfo-
liation and hybridization) or GO chemical degradation. That is why the present research
work developed a process for the covalent functionalization (hybridization) of GO with
starch (S), fructose (F), and microcrystalline cellulose (M) molecules. Sonochemistry is
applied while the reaction time and the use of polar solvents are significantly reduced, with-
out compromising or negatively affecting the final characteristics of the nanohybrids. The
ultrasound energy is key to promote the chemical reaction between the functional groups
of GO and S, F, and M molecules, which considerably reduces reaction times (30 min). Then,
we obtained nanohybrids with grafting from 41.08% to 63.99% weight of S, F, and M. This
high concentration of organic molecules prevents GO sheets from stacking, as it happens
with graphite. Additionally, certain amount of S, F, and M molecules are crystallized on the
GO surface. Given these results, reaction times in this work are reduced and the creation of
films using these nanohybrids is promoted.

2. Materials and Methods
2.1. Materials

D-Fructose (F) and microcrystalline cellulose (M) (particles measuring ~50 µm) were
obtained from Sigma-Aldrich Co (St. Louis, MO, USA). Cassava starch (S) was purchased
from Royal Ingredients Group B.V. (Alkmaar, Holland). All reagents were of an analytical
grade unless specified. Following Hummers method with the variation proposed by
Hernández-Hernández et al. [47], graphite was prepared in the laboratory using graphite
powder from Graftech (particle size < 75 µm) as raw material.

2.2. Preparation of Organic Molecules

Three synthetic routes were established to synthesize the GO grafts with starch (S),
fructose (F), and micro-cellulose (M). An aqueous graphite solution (0.05 g/25 mL water)
was kept in constant agitation for 12 h. The solution was then placed in an ultrasound bath
for 10 min to increase the interlaminar distance of the graphite sheets. Separately, 0.25 g F
was dissolved in 25 mL of water and kept under constant agitation. A pre-gelatinized
solution was obtained from a starch slurry. In addition, 5 g of S was dispersed in 100 mL
of water and placed in a water bath at 90 ◦C for 10 min. A NaOH solution (26.9 mL, 11%)
was used to dissolve 0.5 g of M and frozen for 12 h. Subsequently, it was thawed at room
temperature and 20.6 mL of distilled water was added.

2.3. Graft Synthesis of GO Whit Starch, Fructose, and Micro-Cellulose

Scheme 1 shows graft formation. F, S, or M were added to the graphite solution while
stirring. Each mixture was ultrasonicated in an ultrasonic processor (CPX750, Cole-Parmer,
Bunker Ct, Vernon Hills, IL, USA) at 750 W, 20 kHz, and 80% amplitude for 30 min. During
sonication, the sample was kept in a water bath at 90 ◦C. The mixture formed a brown
suspension (original color of the graphite) and became completely black after 15 min, as
shown in the supplementary information (Figure S1). The color changes due to gas release,
which suggests the chemical reaction of graphite with the release of CO2 and water. The
homogeneity and coloration of the suspension indicate the reduction of GO. Each sample
was then washed several times with hot distilled water and centrifuged at 4500 rpm and
25 ◦C for 30 min until the supernatant showed a transparent color. The sample was dried
out in an oven with air flow at 80 ◦C for 12 h. Then, samples were pulverized and stored
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at room temperature until further analysis. The purified grafts are referred to as rGO F
(fructose), rGO S (starch), and rGO M (micro-cellulose).
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Scheme 1. Ultrasound-assisted graft synthesis process.

2.4. Characterization

The interactions between functional groups of rGO F, rGO S, and rGO M were assessed
using different techniques. For the characterization by Fourier-transform infrared spec-
troscopy (FTIR), a spectrometer (IS5, Thermo Scientific, Waltham, MA, USA) was used. The
total reflectance was attenuated (PIKE Technologies, Fitchburg, WI, USA) from 4000 cm−1

to 400 cm−1 with 120 scans. A Raman spectroscopy analysis was performed (Micro-Raman
XploRA, Horiba, Kyoto, Japan) at a frequency range of 1000–400 cm−1 using a 532-nm laser
source. An X-Ray photoelectron spectroscopy (XPS) analysis was performed in an X-ray
photoelectron spectrometer (PHI 5000 VersaProbe II XPS) with a monochromatic Al anode
(1486.6 eV) as the X-ray source. The survey spectra were obtained with a pass energy of
117.5 eV while the analysis region was 1400–0 eV. The XPS signal was obtained with a pass
energy of 11.5 eV. A dual beam charge neutralization system (PHI-patented) was used to
compensate for charging during XPS data acquisition. All measurements were made in an
ultra-high vacuum (UHV) chamber at an approximate pressure of 3 × 10−8 mbar. X-Ray
diffraction (DRX) was performed in an X-ray diffractometer (D8 Advance ECO, Bruker,
Billerica, MA, USA) with Kα radiation from Cu (1.5418 Å) at 2θ = 5 to 40◦ connected to a
power supply of 40 kV and 25 mA. A thermogravimetric analysis (TGA) was performed
with a thermogravimetric analyzer (TA-Q500, TA Instruments, New Castle, DE, USA) from
25 to 600 ◦C under continuous nitrogen flow (50 mL/min) and a heating rate of 10 ◦C/min.
The graft morphology was observed under a scanning electron microscope (SEM) (IT-300,
JEOL, Akishima, Japan) at 15 A and 20 kV.

3. Results

The nanohybrids, purified and washed by centrifugation, were characterized and
analyzed. We used FTIR, XPS, Raman, and TGA to assess rGO S, rGO F, and rGO M.

Figure 1 shows FTIR spectra of graphite and nanohybrids, where graphite shows char-
acteristic signals of OH functional groups at 3520 cm−1, C=O at 1735 cm−1, aromatic C=C
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at 1629 cm−1, and C–O at 1460−1 [48,49]. However, nanohybrids showed two significant
changes after sonication: the presence of new signals and increased intensity in signals
already identified in graphite. The new signals in rGO M are attributed to functional
groups characteristic in micro-cellulose [50]: CH/CH2 at 2918 and 2854 cm−1 and C–O at
891–1017 cm−1, and increased intensities at 1452 and 1735 cm−1, corresponding to C–H and
C=O groups of micro-cellulose. In rGO F, the new peaks are common in fructose [51]: 2926,
2878 cm−1 for CH/CH2, 1247 cm−1 for OH/CCO, and 1054–625 cm−1 for CO, CCO, CCH,
CH2, and CH. In addition to an increase at 3416 and 1630 cm−1 attributed to the OH group
and 1460 cm−1 for the OCH group in fructose. In GO S, new signals characteristic in starch
are shown [52]: CH2OH at 1240 cm−1, C–O/C–C at 1153 cm−1, CH at 1016 cm−1, C–O–C
at 920 cm−1, and C–C at 761 cm−1, and an increase at 3416 and 1630 cm−1 due to starch.
These FTIR studies indicate that, after sonication, GO showed changes in its chemical
composition while additional signals were identified in all the hybrids, corresponding to
the organic molecules with which they were sonicated. Therefore, micro-cellulose, fructose,
and starch molecules are deposited or grafted on GO. To prove this chemical alteration,
XPS studies were carried out, as shown in Figure 2 and Table 1.
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Figure 1. Fourier-transform infrared spectroscopy (FTIR) of graphite (GrO) and GO nanohybrids
with starch (GO S), fructose (GO F), and micro-cellulose (GO M).

Table 1. Functional groups and percentages obtained by X-ray photoelectron spectra (XPS) of graphite
(GrO) and nanohybrids rGO S, rGO F, and rGO M.

Functional Group

Position (eV)/Concentration (%)

GrO rGO S rGO F rGO M

eV % eV % eV % eV %

C–C and C=C 284.7 46.8 284.5 14.3 284.8 16.0 284.7 4.5
C–O 286.3 10.2 - - - -

C–O–C 286.9 33.5 286.3 24.7 286.5 26.4 286.1 20.7
C=O 288.2 7.4 287.9 38.7 287.9 38.6 287.4 44.5

O=C–OH 289.4 2.1 288.8 16.9 289.3 10.4 288.6 22.4
O=C–O - 290.1 5.3 290.7 8.5 289.8 7.8

Relation % (C–C/C=O) 6.3 0.4 0.4 0.1
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Figure 2. High-resolution X-ray photoelectron spectra (XPS) spectra of (A) graphite (GrO), (B) rGO S, (C) rGO F, and
(D) rGO M.

Figure 2A shows the high-resolution XPS spectra for 1 s in each of the samples and
their respective deconvoluted signals. Table 2 presents the characteristic energies of the
functional groups present as well as the percentage corresponding to each sample. In
graphite, the highest percentage of functional groups corresponds to C–C/C=C at 46.8%
and C–O–C at 33.5%, corresponding to the intensity of the two peaks in the spectrum in
Figure 2A. Still, the nanohybrid spectra show shape and intensity changes in the signals
of their functional groups when compared against graphite spectrum. In rGO S, the peak
with the highest intensity is that of C=O, followed by C–O—C, which agrees with the 38.7%
and 24.7% values, respectively.

The highest intensity in rGO F is shown by C=O and C–O–C at 38.7% and 24.7%,
respectively, and C=O and O=C–OH at 44.5% and 22.4%, respectively, in rGO M. These
changes are due to the presence of organic molecules, starch, fructose, and micro-cellulose
in the nanohybrids, diluting or reducing the concentration of C–C/C=C in graphite. Con-
trastingly, the significant increase in C=O (from 7.4 to 44.5%) and O=C–OH (from 2.1 to
22.4%) in the nanohybrids is the result of organic molecules oxidized by sonication and
hybridization [53,54]. In consequence, the relation C–C/C=O is reduced from 6.3 to 0.1%
in graphite and rGO M.
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Table 2. Weight loss determined by TGA of rGO S, rGO F, and rGO M nanohybrids.

Weight Loss
rGO S

Temperature (◦C) Assignation Weight% Maximum Peak (◦C)

1 40 a 150 Water 9.72 —-

2 150–242 RGrO (OH, C–O–C) 9.23 218.1

3 242–450 SD 47.54 301.8

Hybridization% 47.54

% rGO 33.51

Weight Loss
rGO F

Temperature (◦C) Assignation Weight% Maximum Peak (◦C)

1 40–145 Water 11.34 129.1

2 145–283
Fructose degradation

38.2 204.2

3 283–422 2.88 339.1

Hybridization% 41.08

% rGO 47.58

Weight Loss
rGO M

Temperature (◦C) Assignation Weight% Maximum Peak (◦C)

1 120–267 TDH 13.36 230.1, 255.5

2 267–600 DC + DL 50.63 324.4, 446.8

Hybridization% 63.99

% rGO 36.01

DC: Decomposition Cellulose. DL: Degradation Lignin. RGrO: Residual Graphite. TDH: Thermal Depolymerization Hemicellulose. SD:
Starch Degradation.

Additionally, the XPS of the nanohybrids indicates the formation of a new peak
between 289.1 and 290.7 eV. It represents a clear evidence of the covalent bond between
GO and starch, fructose, and micro-cellulose molecules by esterification [55] between the
COOH groups of GO and the OH of the organic molecules promoted by ultrasound energy.
However, this energy can create defects or vacancies in the hexagonal nanohybrid network.
To prove that, Raman spectroscopy was performed as shown in Figure 3.
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The Raman studies indicate that graphite shows characteristic bands: D at 1350 cm−1

representing sp3 hybridization of carbon, related to defects in the hexagonal network
of graphite, and G at 1584 cm−1 created by the tangential vibration of sp2 hybridized
carbon atoms and related to graphite purity. The intensity ratio of both bands (ID/IG) is
0.9945 cm−1. Bands D and G of rGO M and rGO F nanohybrids show no displacement
and their ID/IG ratios are 0.9736 and 1.0368 cm−1, respectively. They also show a small
absolute difference in relation to graphite (0.0209 and 0.0423, respectively). These results
suggest that, during aqueous sonication, a chemical reaction occurs between GO and
micro-cellulose and fructose without altering the hexagonal network of GO. In contrast,
two changes are observed in rGO S. There is a displacement toward higher values in G,
when compared against graphite (from 1584 to 1572 cm−1), and a reduction in both D
intensity and the ID/IG ratio, which is lower than that of graphite by 0.209. These results
indicate that GO reaction and reduction with starch molecules take place simultaneously
during sonication [39,44].

To identify the amount of starch, micro-cellulose, and fructose grafted onto the nanohy-
brids, TGA was carried out (Figure 4). The TGA corresponding to graphite, starch, fructose,
and micro-cellulose are shown in Figure S2 of the Supplementary Information. Thermal
degradation is observed in rGO S (Figure 4A), where graphite functional groups (OH,
C–O–C) are still found in the peak at 218.9 ◦C [56] and starch degradation at 301.8 ◦C [57].
Figure 4B presents the two main peaks of rGO F at 204.5 and 339.1 ◦C, which are both
reported as thermal degradation of the fructose grafted onto carbon nanostructures [58–62].
In both rGO S and rGO F weight loss at temperatures below 150 ◦C increased considerably
(water evaporation) due to the presence of polar groups of organic molecules increasing
water absorption in the nanohybrids. No graphite-related weight loss is observed in rGO M
(Figure 4C). Still, there are two shoulders at 230 and 255 ◦C associated with hemicellulose
depolymerization. The main peak at 324.4 ◦C and a smaller one between 369.4 and 560.6 ◦C
correspond to cellulose and lignin decomposition and degradation, respectively [63].
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Table 2 shows thermal degradation data of the nanohybrids, graphite weight, and
organic molecules grafted onto the nanohybrids. The latter were grafted with 41.08–63.99%
weight of organic molecules. See Table S1 of Supplementary Information to identify
differences.

We observe that rGO S still shows GO functional groups due to the complexity of
the starch reaction system. Since its molecular weight is high, this molecule increases the
viscosity of the reaction medium, partially absorbing the ultrasound energy. This hampers
the exposure of functional groups in both components and, thus, prevents the reaction of
all the GO functional groups with starch and promotes GO reduction.

The morphology of the nanohybrids was analyzed using XRD and SEM. In diffrac-
tograms of Figure 5, graphite shows a peak at 2θ = 11.4◦ representing the distance (0.78 nm)
created by the stacking of GO sheets associated with the (001) plane. Still, the nanohybrids
do not show this characteristic peak of graphite after sonication. Each nanohybrid shows
characteristic peaks of the grafted organic molecules. While rGO S shows three signals
at 2θ = 15.1, 24.5, and 30.29◦, corresponding to starch [64,65], rGO F exhibits signals at
2θ = 16.3, 17.1, and 20.2◦, associated with fructose [66], and rGO M shows two peaks
at =20.2 and 22◦, belonging to cellulose II [67]. These results indicate that the number
of organic molecules chemically grafted onto GO sheets (41.08–63.99% in weight) is so
significant that they are crystallized on the surface.
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SEM studies (Figure 6) of the nanohybrids indicate that, at 5000× (Figure 6A,D,G), a
continuous, rugged surface made up of several layers is formed. However, no stacking of
GO sheets is observed as in graphite where stacking is observed at lower magnifications
(Figure 7). In rGO S, borders of the film created by the sheets (Figure 6B) are observed
at 20,000 and 50,000× (Figure 6B,C), bonded by the covering starch (Figure 6C). The
micrograph of rGO F at 20,000× (Figure 6E) shows a two-tone particle, representing GO
(dark) and fructose (light). The grey tonalities are due to different electrical conductivities
of the materials in rGO F. The material or area with the lowest electrical conductivity is
charged with more electrons and, thus, its image is brighter. At 50,000× (Figure 6F), the
nanohybrid surface shows borders representing GO sheets exposed on the surface. These
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observations were the result of low concentrations of grafted organic molecules onto rGO
F (41.08% weight).

1 
 

 

Figure 6. Scanning electron microscopy (SEM) micrographs of rGO S (A–C), rGO F (D–F), and rGO
M (G–I) nanohybrids at 5000, 20,000, and 50,000×.
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The rGO M micrograph at 20,000× (Figure 6H) shows no significant changes when
compared against that at 5000×magnification (Figure 6G). Laminated surfaces are observed
(Figure 6E) at 50,000×, but there are no differences in tonality indicating micro-cellulose and
GO composition. SEM indicates that the number of organic molecules chemically grafted
onto GO prevents them from auto assembling, as in graphite, since starch, fructose, and
micro-cellulose hinder GO sheet stacking. Additionally, the volume of grafted molecules
on these sheets (over 40% in weight) makes them bond to create nanometric and millimetric
particles, observed as continuous and rugged surfaces in SEM.

The results demonstrate that sonochemistry promotes the chemical reaction between
functional groups of graphite and starch as well as micro-cellulose and fructose molecules at
reaction times of 30 min. However, the hybridization process is not the same for all organic
molecules. As a background, it is known that ultrasound waves are applied in the chemical
and thermal reduction of graphite. They have thermal and physical-mechanical effects,
creating focal points with a high temperature (up to 5000 ◦K) and physical-mechanical
changes, such as shear forces, micro-jets, and shock waves [68]. Therefore, ultrasound
maximizes chemical reduction with chemical agents, such as hydrazine and graphite
exfoliation, resulting in reduced and exfoliated graphene oxide. However, these thermal
and physico-mechanical changes are affected by various parameters of the reaction medium,
temperature, viscosity, and reagent concentration [69].

The TGA studies of nanohybrids rGO M and rGO F, (Figure 4B,C) show the charac-
teristic thermal degradation behavior reported for micro-cellulose and fructose. However,
the thermal degradation associated with the functional groups of graphite at 214 ◦C is not
observed. Considering the above, nanohybrids do not show functional groups remaining
from graphite. Similarly, the Raman spectroscopy studies of GO M and rGO F (Figure 3)
show a ratio of ID/IG intensities of 0.9736 and 1.0368 cm−1, respectively. The absolute
difference with respect to graphite (0.9945 cm−1) is 0.0209 and 0.0423 cm−1, respectively.
These values are not significant enough to suppose that fragmentation or regeneration of
the hexagonal lattice of graphite carbon atoms occurs during the sonication process [70].
Therefore, these results indicate that the chemical reaction of the functional groups of
graphite with micro-cellulose and fructose molecules prevails during the sonication pro-
cess of rGO M and rGO F. In addition, no significant modification occurs in the molecular
structure of the hexagonal lattice of carbon atoms of graphite.

In contrast, the TGA results of the starch nanohybrid (rGO S), (Figure 4A), indicate that
some functional groups from graphite (residual groups) are still present after the sonication
process, since it presents a signal thermal degradation at 218 ◦C. At the same time, it shows
a characteristic thermal degradation signal of starch. These results indicate that not all the
functional groups of graphite reacted with the molecules of the starch during the sonication
process. Similarly, the Raman results of rGO S (Figure 3) show that its G band moves
toward lower frequency values while the intensity of the D band decreases. Both behaviors
occur when the functional groups of graphite are reduced, and the hexagonal network is
re-established.

This behavior is due to the composition of the reaction mixture and the physico-
chemical characteristics of the starch. Since it is a bio-macromolecule, starch has a high
molecular weight and presents polymorphism given that it has an amorphous and a crys-
talline fraction. During the synthesis process of the rGO S nanohybrid, the starch was
initially solubilized in water and gelatinized before it was added to the graphite dispersion.
In this gelatinization process, the starch granules absorb the water, swell, and lose their
crystalline arrangement, increasing the viscosity of the medium unlike aqueous solutions
of micro-cellulose and fructose. This increase in the viscosity generates two important
effects in the sonication process: (I) The viscosity reduces the mobility of the particles
during the sonication process [69], and (II) the disruption of the crystalline order of starch
enhances the ability to absorb ultrasound waves and their energy. Due to the combination
of both effects, not all the functional groups of graphite react with the starch, as shown in
the TGA results (Figure 4A). They are not exposed efficiently, while the difficulty of the
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mobility of the reaction medium can cause some GO sheets to be directly exposed to the
ultrasound waves and energy. This exposure removes some functional groups from the
graphite, leaving the most stable part of the hexagonal network of carbon atoms. This
partial reduction generates the displacement of the G band and the reduction in the D band.

4. Conclusions

The formation of chemically interlaced nanohybrids was proven through ultrasound
energy between GO and starch, fructose, and micro-cellulose molecules at times under
30 min, unlike in literature reporting times of 9–72 h. This hybridization reaction does not
significantly damage the GO structure since its ID/IG ratio obtained by Raman spectroscopy
does not show a high degree of chemical degradation.

The number of organic molecules grafted is over 40% the weight of the nanohybrids.
This volume of grafting prevents the ordered stacking of GO layers in the nanohybrids,
whose morphology was spherical, measuring from nanometers to millimeters. Furthermore,
this degree of grafting is so significant that the organic molecules are crystallized on the
GO sheets. This hybridization reaction is altered during the sonication of the reaction
mixture since the viscosity of the reaction system promotes a partial reduction of GO,
which occurred in rGO S. This effect was not observed in fructose nor micro-cellulose,
since the GO functional groups fully react with these molecules. These results confirm that
the nanohybrids rGO S, rGO F, and rGO M obtained show a high degree of exfoliation
and hybridization, so they could be used in packaging films for food or medical implants.
Future works will study the effect of the ultrasound energy applied to these reaction
systems on the hybridization of the nanohybrids, changing the amplitude percentage and
reaction time.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
360/13/4/490/s1. Figure S1: Image of GO scattering before sonication (A) and nanohybrids after
sonication (B). Figure S2: TGA thermograms of graphite (GrO) (A), starch (B), fructose (C), and
microcellulose (D). Table S1: Weight loss assessed by TGA of graphite (GrO), starch, fructose, and
micro-cellulose.
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