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ABSTRACT

Longitudinal sampling for intestinal microbiota in wild animals is difficult, leading to a lack of information on bacterial dynam-
ics occurring in nature. We studied how the composition of microbiota communities changed temporally in free-ranging small
primates, rufous mouse lemurs (Microcebus rufus). We marked and recaptured mouse lemurs during their mating season in
Ranomafana National Park in southeastern mountainous rainforests of Madagascar for 2 years and determined the fecal micro-
biota compositions of these mouse lemurs with MiSeq sequencing. We collected 160 fecal samples from 71 animals and had two
or more samples from 39 individuals. We found small, but statistically significant, effects of site and age on microbiota richness
and diversity and effects of sex, year, and site on microbiota composition, while the within-year temporal trends were less clear.
Within-host microbiota showed pervasive variation in intestinal bacterial community composition, especially during the second
study year. We hypothesize that the biological properties of mouse lemurs, including their small body size and fast metabolism,
may contribute to the temporal intraindividual-level variation, something that should be testable with more-extensive sampling
regimes.

IMPORTANCE

While microbiome research has blossomed in recent years, there is a lack of longitudinal studies on microbiome dynamics on
free-ranging hosts. To fill this gap, we followed mouse lemurs, which are small heterothermic primates, for 2 years. Most studied
animals have shown microbiota to be stable over the life span of host individuals, but some previous research also found ample
within-host variation in microbiota composition. Our study used a larger sample size than previous studies and a study setting
well suited to track within-host variation in free-ranging mammals. Despite the overall microbiota stability at the population
level, the microbiota of individual mouse lemurs can show large-scale changes in composition in time periods as short as 2 days,
suggesting caution in inferring individual-level patterns from population-level data.

The intestinal microbiota has been shown to be remarkably sta-
ble over the lifetime of primates (1). Microbiota acquired early

in life can be inherited from the mother (2) or from other social
contacts (1), although the composition of the microbiota is also
affected by the genetics of the host (3). Later in life, the microbiota
can change due to external factors, such as food (4–6) or patho-
gens (7, 8). Seasonal or nonseasonal environmental change can
lead to drastic changes in an animal’s microbiota through changes
in the aforementioned external factors (9); however, in some
cases, the microbiota has been shown to be resilient against habitat
perturbations, infections, or changes in diet (10, 11). Yet, there is
a general expectation, at least in humans, that intestinal microbi-
ota is acquired after birth, and this microbiota stays similar in
composition barring events, like pregnancy, illnesses, or major
dietary shifts (12, 13).

Whereas mice and rats are common experimental animals for
intestinal microbiota studies in the laboratory, the microbiota of
free-living small mammals is much less well studied. Fecal collec-
tion is usually performed as terminal sampling in small mammals,
making longitudinal sampling of the same individuals impossible.
In contrast, wild primates are common study subjects in behav-
ioral studies and increasingly also in microbiota research. Primate
gut microbiota varies with the social environment (14), pathogens
(7, 15, 16), dietary variation (17–19), and biogeography (19, 20).
Nevertheless, we expect primate gut microbiotas to evolve and
adapt to the different life histories of their hosts (21–23). Thus,
both variation in microbiota and the response to this variation can

differ from species to species. Although the number of longitudi-
nal studies using nonhuman primates remains small, studies are
starting to reveal also cases of high individual variation in micro-
biota composition (24, 25).

The aim of our longitudinal study was to study temporal vari-
ation in the intestinal microbiota of small mammals by marking-
and-recapturing rufous mouse lemurs. Rufous mouse lemurs are
small (mean weight, approximately 45 g) nocturnal primates that
exhibit extensive heterothermy (26, 27), like many species in the
Cheirogaleidae family. They can hibernate for extended periods
and also experience torpor in short bouts, most likely before and
after sunset during the coldest periods of the day (28, 29). Mouse
lemurs are a suitable longitudinal study species, as the individual
life span can be up to 9 years in the wild, and they present at least
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partial territoriality. Our research questions were (i) how large is
intraindividual variation in microbiota composition compared to
interindividual variation, (ii) are there patterns of variation in the
microbiota composition over the trapping season and between
years, and (iii) how do individual differences and environmental
variables affect microbiota composition? Our null expectation
was that the mouse lemur microbiota at the population level re-
flects dynamics at the individual level.

MATERIALS AND METHODS
We collected fecal samples from September to November in 2012 and
2013 in Ranomafana National Park (RNP) in southeastern Madagascar
(21°16=S latitude and 47°20=E longitude). RNP consists of primary and
secondary forests situated on lowland to montane areas (500 to 1,500 m
above sea level), and it is surrounded by a peripheral zone with restrictions
on land use (30). Mouse lemurs have their mating period in October, and
practically all females are gestating from October to January (31).

We collected samples from two different transects: inside the National
Park in Talatakely and in the peripheral zone in the campsite of Centre
Valbio. The Talatakely transect was in the secondary forest with continu-
ous canopy, and it was heavily used by tourist groups, whereas the camp-
site transect was a heavily degraded area with both trees and bushes that
were both endemic and nonendemic and without continuous canopy.
Each night before sunset, we set 40 to 50 traps to catch mouse lemurs and
collected the traps approximately 2 h after sunset. The trapping and feces
collection procedures are detailed elsewhere (32). We microchipped all
mouse lemurs to allow for identification and longitudinal surveying of
individuals. We estimated the age with validated methods (33) and di-
vided mouse lemurs into young (1 to 2 years), midage (3 to 4 years), and
old (�5 years) groups. The research was approved by the ethics commit-
tee of Viikki Campus, University of Helsinki, Helsinki, Finland, and by the
trilateral commission (CAFF/CORE) in Madagascar (permit 203/12/
MEF/SG/DGF/DCB.SAP/SCBSE).

We could not measure mouse lemur body temperature and thus can-
not directly assess their level of heterothermy. Nevertheless, mouse lemurs
are known to be heterothermic during periods of inactivity and low am-
bient temperatures (29). We calculated the mean temperature for all trap-
ping days while mouse lemurs are most likely in torpor (from 02h00 to
14h00). In addition, we calculated the monthly mean temperatures and
total rainfall based on weather data (http://www.teamnetwork.org/data
/query, data set 20150601041318_1609) we acquired from the Tropical
Ecology Assessment and Monitoring (TEAM) network, which has
weather stations run by Centre Valbio in the area (Table 1).

We obtained approximately 0.1 to 0.2 g of feces per sample and stored
the feces in 1.5 ml of RNAlater (Ambion, Inc., Austin, TX, USA) in

�18°C. DNA was isolated with the PowerSoil DNA isolation kit (Mo Bio
Laboratories, Inc., Carlsbad, CA, USA), according to the standard proto-
col. We amplified the 16S gene in V1-V2 region with primer pairs
pA_Illum_FP_1 (ATCTACACTCTTTCCCTACACGACGCTCTTCC
GATCTAGAGTTTGATCMTGGCTCAG) and pA_Illum_RP_1 (GTG
ACTGGAGTTCAGACGTGTGCTCTTCCGATCTGTATTACCGCGG
CTGCTG), pA_Illum_FP_2 ATCTACACTCTTTCCCTACACGACG
CTCTTCCGATCTTAGAGAGTTTGATCMTGGCTCAG) and pA_Illum_
RP_2 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCGTAT
TACCGCGGCTGCTG), and pA_Illum_FP_3 ATCTACACTCTTTCC
CTACACGACGCTCTTCCGATCTCTCTAGAGTTTGATCMTGGCT
CAG) and pA_Illum_RP_3 GTGACTGGAGTTCAGACGTGTGCTCTT
CCGATCTTAGTATTACCGCGGCTGCTG) and Phusion enzyme (New
England BioLabs, Inc., Ipswich, MA, USA). The PCR protocol included
an initial denaturation at 98°C for 30 s and 15 cycles of denaturation at
98°C for 10 s, annealing at 62°C for 15 s, and extension at 72°C for 15 s,
followed by 10 min of final extension at 72°C. We verified the success of
amplification by gel electrophoresis. For each sample, two replicates were
separately amplified and then pooled. The amplicons were paired-end
sequenced with the Illumina MiSeq platform in the sequencing facility of
the Institute of Biotechnology, University of Helsinki.

Samples were isolated and amplified in 7 different batches and se-
quenced in 2 different batches. The amplification was performed in nu-
merical order of the samples, which corresponded to chronological order,
and sequencing was performed partly in chronological order: late samples
from 2012 and early samples from 2013 were sequenced together, and
early samples from 2012 and late samples from 2013 were sequenced
together.

The amplicon sequences were demultiplexed, and subsequent se-
quence processing was performed using the mothur pipeline, along
standard operating procedures (SOP) (34; http://www.mothur.org
/wiki/MiSeq_SOP) when not otherwise mentioned. To purge unsuc-
cessful contigs, only contigs between 439 and 511 bp were retained.
The alignment was made against aligned SILVA bacterial references
(release 102). Preclustering of the sequences was performed with a
maximum difference of 5 bp. To reduce the number of unique se-
quences, all unique sequences composed of only one sequence were
discarded. Sequences were classified by using Bayesian classifier with a
training set (version 9) from the Ribosomal Database Project (35;
http://rdp.cme.msu.edu). We used 97% similarity to determine the
operational taxonomic units (OTUs).

We performed the initial statistical analysis in line with MiSeq SOP
with mothur. We rarified the amplicons to the lowest sample size, 4,316
sequences. We estimated the alpha diversity of the samples with the in-
verse Simpson diversity index. Both the richness, defined as the number of
OTUs per sample, and the Simpson diversity were normally distributed
and homoscedastic. To explore the structures of communities, we calcu-
lated the Yue & Clayton (36) dissimilarity metric based on the proportions
of OTUs in different samples and the Jaccard distance from presence-
absence data (37). We used Jaccard distance, as it is a widely used intuitive
metric, and the Yue & Clayton dissimilarity metric, as it takes into account
(in comparison to widely used Bray-Curtis dissimilarity) both shared and
nonshared species in each population and emphasizes the shared species
with similar species proportions in communities. We visualized the dis-
similarity metrics with nonmetric multidimensional scaling (NMDS), us-
ing three dimensions. To calculate how many community types there are
in the samples, we used the Dirichlet multinomial mixtures method in
mothur with Laplace approximation (38). The method describes commu-
nities as a vector of taxon probabilities created from Dirichlet mixture
components. Mixture components are clustered, and the fit is evaluated
with Laplace approximation.

For subsequent analysis, we used R (39) with the vegan package (40).
We created repeated-measures analysis of variance models for rank-trans-
formed richness counts and diversity indices. For each model, we began
with a full model including interactions and simplified models, where

TABLE 1 Monthly rainfall accumulation and average temperature in
Ranomafana during 2012 and 2013

Month

Temp (°C) Rainfall (mm)

2012 2013 2012 2013

January 20.1 21.0 607 648
February 21.5 20.7 884 973
March 20.3 19.7 442 383
April 19.4 18.0 383 193
May 17.2 16.6 200 187
June 15.6 13.1 217 194
July 14.8 13.2 62 112
August 15.7 12.9 77 265
September 16.5 16.1 221 5
October 18.7 16.7 117 375
November 18.9 19.8 376 213
December 20.0 19.4 259 362

Aivelo et al.

3538 aem.asm.org June 2016 Volume 82 Number 12Applied and Environmental Microbiology

http://www.teamnetwork.org/data/query
http://www.teamnetwork.org/data/query
http://www.mothur.org/wiki/MiSeq_SOP
http://www.mothur.org/wiki/MiSeq_SOP
http://rdp.cme.msu.edu
http://aem.asm.org


terms that were not significant were removed until we were left with vari-
ables with a P value of �0.05. For the remaining analysis, we considered
the variables site, age, year, week, and sex. There was no significant effect
with sequencing batches, but we found a significant effect on isolation and
amplification batches, and these batches were also included as variables in
subsequent analysis. As post hoc tests for multivariate repeated-measure
analysis of variance (ANOVA) are complex, we investigated the differ-
ences graphically. Nevertheless, we also performed t test comparisons for
significant variables for diversity and corrected them with the Holm-Bon-
ferroni method.

We tested if the communities overlap using permutational multivari-
ate ANOVA (MANOVA) with dissimilarity matrices (41), taking into
account the repeated sampling. Permutational MANOVA measures
whether the groups are significantly different from each other. We also
performed an analysis of multivariate homogeneity of group dispersions
(42), which tells us if the within-group variation differs between groups.
As analysis of multivariate homogeneity cannot be performed with mul-
tiple variables, we divided our samples into eight groups based on site, sex,
and year and performed pairwise post hoc comparisons. To take repeated
measures into account, we randomly sampled one sample per individual
for analysis with 100 iterations.

To study the temporal effects on microbiota, we calculated variation in
population-level and individual-level dissimilarity and used the Mann-
Whitney U test to test dissimilarities between trapping years. For the in-
dividuals from which we had more than two samples, we plotted the
proportions of bacterial phyla and the most common 20 OTUs on graphs
for visual inspection. Additionally, we plotted NMDS axis loadings as a
function of time and calculated and plotted the dissimilarity indices as a
function of the temporal distance of samplings to see if there are temporal
trends in the microbiota within the host. The dissimilarity indices were
normally distributed; therefore, we explored significant variables by per-
forming repeated-measures ANOVA on dissimilarity indices for mouse
lemurs we caught several times as the response variable; the number of
days between trapping, temperature, trapping year, site, sex, and age as
explanatory variables; and mouse lemur individuals as the repeated factor.

We used several methods to explore which OTUs are driving the
trends between groups. First, we chose all the OTUs that are present in
�10% of the samples and, as they are not normally distributed, we used
rank-transformed repeated-measures ANOVA to see if they differed sig-
nificantly between the groups. Second, we used Dufrêne-Legendre indi-
cator analysis, which uses the maximum indicator value among the
groups as a test statistic, without the need for multiple tests (43). To
further explore the difference between years, we performed a random
forest approach with R package randomForest (44) to assess how well
trapping year can be predicted from the community composition. We also
used the mean decrease in accuracy as a proxy for the importance of single
OTUs in differentiating separate groups.

Accession numbers. Raw data on the sampled individuals have been
submitted to FigShare (http://dx.doi.org/10.6084/m9.figshare.1558204),
and all sequence data have been deposited to the Sequence Read Archive
under accession no. SRP063971.

RESULTS

We collected a total of 176 samples for which the sequencing was
successful (�1,000 amplicons; 8 unsuccessful sequencings had an
amplicon number from 35 to 741), and we had complete metadata
for 161 samples from 70 animals. Eighty-eight samples from 46
individuals were from 2012, and 73 samples from 36 individuals
were from 2013, with 12 individuals caught in both years.

The total number of sequences after assembling the contigs was
14,283,388, and after the quality control, we had 7,417,887 se-
quences in total, presenting 77,032 unique sequences. Most of the
discarded sequences had ambiguous bases or they were not assem-
bled well (4,895,601 sequences), but they also included sequences

that did not align properly (1,745,859), nonbacterial OTUs
(96,427), and chimeras (127,614). There was a median of 36,915
quality-controlled amplicons per sample, with a standard devia-
tion of 22,747. These sequences generated 4,524 bacterial OTUs.
The median number of OTUs per sample was 257 (95% confi-
dence interval [CI], 133 to 329 OTUs). Good’s coverage estimator
was �0.97 for each rarified sample.

Stability of mouse lemur microbiota within trapping season.
For richness, the simplified model included site and interaction
between age and week as significant variables. The ages had differ-
ing trends along the trapping season in Talatakely: old and midage
mouse lemurs peaked in their microbiota richness in early season,
whereas young individuals did not have a clear trend. There were
fewer old individuals trapped in the campsite with no detectable
trend. Overall, Talatakely had higher richness than the degraded
campsite transect (Fig. 1A; see also Table S1 in the supplemental
material). In comparison, the Simpson diversity indices, reflecting
the diversity of bacterial OTUs in the intestinal microbiota, were
explained statistically significantly by age, year, and site variables
(see Tables S2 and S3 in the supplemental material), and there
were no within-trapping season differences.

During both trapping periods, 2012 and 2013, the composition
of microbiota on the level of host population seemed to be stable
(Fig. 2a and b), with no clear trends. In 2012, the weekly OTU
profiles were very similar (Yue-Clayton [YC], 0.25 � 0.05),
whereas in 2013, the dissimilarities were larger (YC, 0.52 � 0.09;
Mann-Whitney U, U � 124, P � 0.001). In contrast, the temporal
variation in the microbiota of individual mouse lemurs was more
pronounced, even when the samples were taken on subsequent
days (Fig. 2c to e): the median dissimilarities between samples of
the same individuals were 0.40 � 0.09 and 0.61 � 0.12 in 2012 and
2013, respectively. Thus, the intestinal microbiota compositions
were more stable in 2012 than in 2013 (Mann-Whitney U, U �
613, P � 0.001). The Jaccard index produced similar results (see
Table S4 in the supplemental material).

We did not find any within-year temporal trend (see Fig. S1 in
the supplemental material) with nonmetric multidimensional
scaling of the bacterial communities. The stress values of NMDS
were approximately 0.23 and 0.24, with R2 values 0.68 and 0.53 for
Clayton-Yue and Jaccard distances, respectively. The stress values
indicate mediocre goodness-of-fit with three dimensions (45),
whereas the R2 values represent satisfying proportions of ex-
plained variation.

Differences in microbiome between trapping seasons. Al-
though there were no differences in microbiota richness between
years, the Simpson diversity was significantly lower in 2013 than it
was in 2012 (Fig. 1B). In 2013, Talatakely had higher diversity than
that of the campsite, whereas in 2012, diversities were similar in
the two sites (see Table S3 in the supplemental material).

For permutational multivariate analysis of dissimilarity matri-
ces, the only significant variable was year, and the proportion of
the explained variation was low (for Yue-Clayton, P � 0.010, R2 �
0.089; see Table S5 in the supplemental material; for Jaccard, P �
0.010, R2 � 0.064; see Table S6 in the supplemental material).
Analysis of multivariate homogeneity of group dispersions
showed most clearly the distinction between years, whereas the
effects of sex and site were not as clear (Fig. 3; see also Fig. S2 and
Tables S7 and S8 in the supplemental material). The main effect of
the year was corroborated by Laplace approximation of having
two distinct partitions: all individuals in 2012 and 49.4% of the
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individuals from year 2013 belong to the first partition, whereas
the rest of the individuals from year 2013 belong to the other
partition. Of the lemurs that had been trapped both years, 6 out of
12 changed their partition.

The presence-absence data for three OTUs were significantly
different between the two trapping years: these were unclassified
members of the families Pasteurellaceae (prevalences in 2012 and
2013 were 3.3% and 83.5%, respectively, and the proportions of all
OTUs in 2012 and 2013 were �0.1% and 1.8%, respectively) and
Prevotellaceae (prevalences, 1.0% versus 84.6%; proportions,
�0.1% versus 1.2%, respectively) and the phylum Proteobacteria
(prevalences, 58.2% versus 2.6% for 2012 and 2013, respectively;
proportions, 0.2% versus �0.1%, respectively). Dufrêne-Leg-
endre indicator analysis resulted in 266 differentially associated
OTUs, which also included three previously mentioned OTUs. Of
the 20 most common OTUs, these included Fusobacteriaceae
(OTU3 in Fig. 2: prevalence, 27.1% versus 86.7% for 2012 and
2013, respectively; proportion, 0.5% versus 4.9%, respectively),
Lactococcus (OTU7: prevalence, 50.5% versus 86.7%, respectively;
proportion, 0.1% versus 3.7%, respectively), and Clostridium
cluster XIva (OTU14: prevalence, 100% versus 76.5%, respective-
ly; proportion, 1.5% versus 2.4%, respectively). A random forest
algorithm returned an out-of-bag error rate of 9.4%, which means
the year of sampling cannot be reliably predicted from OTU com-
position. The mean decrease in accuracy was highest in the previ-
ously mentioned OTUs labeled as Prevotellaceae (40.4%) and Pas-
teurellaceae (36.4%).

Only 8 OTUs were present in every sample; however, 83 OTUs
were present in at least 90% of the samples. Nevertheless, these 83
OTUs represent only 50.7% of all sequences. Thus, the core bac-
teria represent only half of all available bacteria. This picture looks
different, though, if we divide the analysis by years. In 2012, 35
OTUs were present in all samples and 101 OTUs in at least 90% of
the samples. These OTUs represented 43.0% and 65.3% of all
sequences, respectively. In 2013, there were only 15 OTUs in all

samples and 47 OTUs in at least 90% of the samples, and these
OTUs represented 6.7% and 33.9% of all sequences, respectively.

Individual differences in microbiota variation. While there
were no significant differences between individuals in richness,
the within-subject test indicated that there is a significant effect of
age on alpha diversity. The highest diversities were recorded in
2012 in young individuals at both sites. In 2013, the old individu-
als had low diversity at the campsite, whereas the diversity at Ta-
latakely was comparable to that with midage individuals (Fig. 1;
see also Table S3 in the supplemental material). The number of
individuals with an estimated age was lower in 2013, and there was
only one young individual available. There were six midage indi-
viduals and three old individuals at each site.

We plotted the dissimilarities of the microbiome communities
in individuals we caught several times (Fig. 4; see also Fig. S1 in the
supplemental material). This shows that even with the shortest
trapping intervals (1 day), the dissimilarity can be quite high (0.7
in Alan in 2013). Some mouse lemurs have consistently lower
variation in their microbiome (e.g., Rachootin in 2012 and Kelsey
in 2013), while others have high dissimilarity between samples
(e.g., Chewbacca in 2012). There are also mouse lemurs with vari-
ation in the level of variation in microbiome composition (e.g.,
Alan in 2013). The dissimilarity indices were similar with Jaccard
index (see Fig. S3 in the supplemental material).

In repeated-measures ANOVA on dissimilarities in mouse le-
murs we sampled more than once, there were five statistically
significant variables: sex, site, year, mean temperature, and days
between samplings, although the coefficients were comparatively
low for variables other than year (Table 2). Year 2013 had substan-
tially higher dissimilarities than those in 2012, indicating more
changes in microbiota composition. Males and individuals from
Talatakely had lower dissimilarities, whereas the lower mean tem-
perature and longer temporal distance between trappings also re-
sulted in higher dissimilarity between microbiota communities.
The results were similar to the Jaccard index, with the exception

FIG 1 Richness and diversity in different age groups on two sites. (A) Richness is shown along the trapping weeks. Whereas the secondary-forest transect in
Talatakely had rather stable richness, with a slight trend toward decreasing, the degraded transect in campsite had higher variation, which partly can be explained
by the smaller sample size. The richness was statistically significantly lower in campsite than that in Talatakely. Different age groups have differing temporal
trends: for example, old individuals have their peak richness earlier in the season than young individuals. (B) Inverse Simpson indices for different age groups in
two sites in 2012 and 2013. The higher inverse Simpson index values indicate higher diversity. The graphs show a similar trend as in panel A, in that the diversity
is more stable between age groups and years in a better-quality habitat (Talatakely) than in a degraded habitat (campsite).
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that the interval of samplings in days was not significant (see Table
S8 in the supplemental material).

DISCUSSION

At the individual level, our results indicate that the intestinal micro-
biota of individual mouse lemurs is dynamic. In the first year, indi-

viduals exhibited limited temporal variation in microbiota composi-
tion; however, changes were more pervasive in the second year (Fig.
2d and e). Consequently, alpha diversity, but not richness, in micro-
biota was lower in the second year (Fig. 1). The difference in beta
diversity between years was not only due to changes in species pro-
portions but also due to the absence of shared bacterial OTUs.

FIG 2 The bacterial composition in the whole mouse lemur population along the trapping season in years 2012 (a) and 2013 (b). The microbiota composition
is shown weekly as average values across individuals. The microbiota is slightly different between years (e.g., OTU3, 7, and 14), but the overall patterns are
remarkably stable over time. In comparison, microbiota in individual mouse lemurs varied substantially in 2013 but much less in 2012. All samples from the
mouse lemur named Napolean (c) are from 2012, and the proportion of OTUs varies much less than that in Alan (d), from which all samples came in 2013. For
Rachootin (e), we have samples for both years, and the microbiota composition follows the yearly trends. The graphs for the rest of the lemurs caught at least three
times can be found in the Fig. S4 in the supplemental material. Dates in panels c to e are displayed in the format year-month-day.
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In other primates, the microbiota has been considered to be
more stable than what we found in mouse lemurs (19, 25), al-
though wild baboons also seem to have highly varied microbiota
(24). Nevertheless, there have not been previous studies with wild
cheirogaleids.

In contrast to the dynamic variation at the individual level,
variation at the population level was relatively subtle; in fact, in
year 2012, the population-level composition of gut microbiota
was very stable (Fig. 2a and b). This dynamic is very similar to that
found in our previous study with mouse lemur parasites, in which

the abundant putative parasite species were rather stable in the
population-level data, yet the turnover in individual hosts was fast
(32). Our results are comparable to widespread intraindividual
variation in deer mice (Peromyscus spp.) (46) but contrast with
that with wild wood mice (Apodemus sylvaticus), which had con-
sistent seasonal variation (9). Although the intra- and interindi-
vidual variations were pervasive, we found a distinct core set of
microbial OTUs present in all individuals within 1 year, as was
also found in a study on Peromyscus (46).

There are several potential reasons for the high intraindividual
variation of the microbiota of mouse lemurs. First, the small size
of these mammals might lead to faster changes in the microbiota,
as it leads to a potentially faster metabolism and shorter transit
time in the intestine. Second, solitary hosts, like mouse lemurs, are
expected to have higher intraindividual variation in the activity of
immune defense, and as the microbiota can be modulated by im-
mune defense (47), this might cause temporal variation in micro-
biota. Third, as nutrition is an important source of pathogens,
omnivores and generalists, like mouse lemurs, should have im-
mune responses different from those of specialist foragers, as they

FIG 3 Visualization of the analysis of multivariate homogeneity of group
dispersions based on Yue-Clayton dissimilarity metrics. There is a clear differ-
ence between years, whereas within-year groups overlap extensively. The be-
tween-group variation is smaller in 2012, as the group centroids are more
spread apart in 2013.

FIG 4 Dissimilarity indices of microbiota from mouse lemurs caught three or
more times as a function of the intervals of the trappings in 2012 (a) and 2013
(b), with Yue-Clayton dissimilarity index. There is no clear trend, but the
dissimilarities between samples from the same individual are bigger in 2013
than those in 2012.
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are expected to encounter more pathogens (47). Fourth, Mada-
gascar is known for its harsh and unpredictable climate (48), and
microbiota variation can also be an adaptation to these environ-
ments with, e.g., changes in diet. Fifth, mouse lemurs are hetero-
thermic animals (49), and torpor can affect the microbiota. In-
deed, we found that lower mean temperature during the most
probable torpor time increased variation in gut microbiota com-
position. Furthermore, in 2013, the average temperature was con-
tinuously lower than that during 2012 (Table 1), indicating that
the high variation of microbiota composition in 2013 (Table 2 and
Fig. 2) might be partly explained by lower temperatures inducing
higher body temperature variation in mouse lemurs. This possi-
bility remains speculative, however, as we do not know whether
lower ambient temperature is reflected in mouse lemur body tem-
perature. Previous studies with heterothermic mammals have
shown that ambient temperature does not affect the microbial
composition, but the key determinant to composition is the diet
(arctic ground squirrels [50] and 13-lined ground squirrels [51]).
Nevertheless, fasting and hibernation seem to have separate effects
on microbiota (52). In previous studies, the hibernators had a
lower abundance of Firmicutes and lactobacilli and higher abun-
dance of Bacteroidetes and Proteobacteria, whereas in our data, in
2013, the two clearly most abundant OTUs were Fusobacteriaceae
(OTU3 in Fig. 2) and Lactococcus (OTU7). It should be noted that
previous studies used terminal sampling and thus prevented lon-
gitudinal sampling of the same individuals.

The variation in bacterial community composition varied itself
between host individuals, as some individuals had consistently
lower variation than others (Fig. 4). Higher age correlates with
higher diversity and richness of microbiota but not with variation.
Previous studies with primates have shown differing patterns:
older baboons had higher diversity than juveniles (24), whereas in
chimpanzees, the juveniles had higher diversity (1), and diversity
in black howler monkeys was not differentiated according to age
(21). Our samples did not show differences in microbiota compo-
sition among the different-aged individuals, but it should be
noted we did not sample juvenile mouse lemurs, and thus we
would not expect drastic differences between age classes (13). Fe-
male lemurs and lemurs at the campsite had a slightly more varied
microbiota (see Tables S7 and S8 in the supplemental material),
although these effects are small compared to the intraindividual
variation and the difference between years. In comparison to
chimpanzees and mouse lemurs, sex does not have an effect on
microbiota composition in baboons and black howler monkeys
(14, 17, 24, and this study). Higher variability in females could be
explained by our trapping coinciding with the start of the gesta-
tion period, which has been shown to alter microbiota (1). The
Talatakely transect is composed of secondary forest, whereas the

campsite transect is a highly degraded area. In our previous work,
we showed that the body condition of mouse lemurs is lower at the
campsite than at Talatakely (53). Thus, the habitat quality may
lead to lower variation in microbiota composition (see Table S8),
and it also correlates positively with microbiota diversity and spe-
cies richness (Fig. 1 and Table 2). It has been shown that monkeys
in degraded habitats have a less diverse diet, and thus their micro-
biomes were also less diverse (17, 54), but variations in diversity
can also be driven by more contact with humans, livestock, and
other companion animals and stress induced by disturbance (55).

Our results with respect to the high variability at the individual
level may in part be due to the rather low number of mouse lemur
individuals caught several times. Nevertheless, it is noteworthy
that the population-level analysis provided more stable patterns
than the longitudinal sampling of individuals. This also means
that the difference between years can be driven in part by interin-
dividual differences, as we sampled partially different sets of le-
murs (i.e., some lemurs were included in only one of the two years
and others were included in both years). We did not have age data
for all individuals in 2013, and thus there can also be differences in
the ratios of mouse lemur age classes in 2 years for which we
cannot account. Although richness and diversity were not statis-
tically significantly different between years in within-subject tests
of repeated-measures ANOVA (see Tables S1 to S3 in the supple-
mental material), the microbiota composition did differ (see Ta-
bles S5 and S6 in the supplemental material), and thus time also
drives intraindividual variation. We also trapped mouse lemurs
for only 2 years and thus cannot draw definitive conclusions on
the stability of mouse lemur gut microbiota.

In conclusion, the microbiota of mouse lemurs seem to show
greater variation at the individual lemur level than at the popula-
tion level. The difference in the overall amount of variation be-
tween two trapping years suggests there are extrinsic factors that
cause the variation. As the year with higher intraindividual varia-
tion had a lower mean temperature during the trapping season, we
propose that small body size together with the heterothermy of
mouse lemurs could be a contributing factor for the variation in
microbiota stability. Nevertheless, more longitudinal studies are
needed to find factors affecting the year-to-year variation in mam-
mal microbiota.
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TABLE 2 Analysis of variance in Yue-Clayton dissimilarity index with statistically significant variables

Parameter df Sum of squares
Mean sum of
squares F P

Specific variable

Parameter Coefficient

Temp 1 0.2237 0.2237 12.969 0.001 Temperature �0.012
Sex 1 0.4556 0.4556 26.406 �0.001 Male �0.053
Site 1 0.2024 0.2024 11.733 0.002 Talatakely �0.014
Yr 1 0.3604 0.3604 20.890 �0.001 2013 0.164
Days 1 0.1470 0.1470 8.523 0.007 Days 0.011
Residuals 27 0.4658 0.0173 Intercept 0.497
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