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Quantum Teleportation, the transfer of the state of one quantum system to another without direct
interaction between both systems, is an important way to transmit information encoded in quantum states
and to generate quantum correlations (entanglement) between remote quantum systems. So far, for
photons, only superpositions of two distinguishable states (one ‘‘qubit’’) could be teleported. Here we show
how to teleport a ‘‘qudit’’, i.e. a superposition of an arbitrary number d of distinguishable states present in
the orbital angular momentum of a single photon using d beam splitters and d additional entangled
photons. The same entanglement resource might also be employed to collectively teleport the state of d/2
photons at the cost of one additional entangled photon per qubit. This is superior to existing schemes for
photonic qubits, which require an additional pair of entangled photons per qubit.

I
n classical physics it is possible, in principle, to detect the state of a single system, for example the position and
momentum of a point particle, transmit the information about that state to a remote location and then
reconstruct it within a second system. This concept of ‘‘classical teleportation’’ underlies telecommunication

techniques such as the transfer of documents via facsimile. Quantum physics, however, excludes the possibility to
detect or duplicate the state of a single microscopic system1 and therefore rules out all forms of classical
teleportation with atoms, photons or other quantum systems. It is thus surprising2, that the state transfer between
quantum systems can nevertheless be realized according to the rules of quantum physics by means of ‘‘quantum
teleportation’’3. This procedure makes use of correlations between quantum systems - entanglement - which
cannot be described by local-realistic theories4, such as classical mechanics or electrodynamics, nor any other
theory within classical physics.

Quantum teleportation lies at the core of quantum communication, which is the quantum analog of telecom-
munication, and can also be employed to enhance the success probability in quantum computing with photons5–8.
Moreover, it is one of the crucial ingredients9,10 for enabling long-distance quantum cryptography - a technique to
transmit information secured against eavesdropping.

The importance of quantum teleportation for quantum information processing and communication can be
seen from the long list of experimental realizations of teleportation of the state of a two-level system correspond-
ing to the smallest unit of quantum information - one quantum bit (qubit)11–23. In these realizations single qubits
were encoded in the polarization of photons or in the superposition of vacuum and one photon states21. Quantum
teleportation with two-level atoms has been demonstrated24–26 and it has also been designed for three- and four-
level atomic systems27,28.

A way to identify quantum communication channels with high capacity (bandwidth), is to employ multi-level
quantum systems that carry superpositions of an arbitrary number d of basis states – qudits – instead of sending
many single qubits. Due to their additional parameters, these systems might be optimized against the influence of
external noise, such as decoherence of photonic states in turbulent atmosphere29. Moreover, it might save
resources. For example, Quantum Key Distribution (QKD) schemes using photonic qudits can securely transmit
more than one bit of information per photon30. In order to achieve long-range QKD or quantum communication
networks, so-called quantum repeaters9 that teleport qudits are obligatory. Instead of qudits one could teleport
multiple qubits, but at the cost of additional transcription of qudits to qubits. While in theory the generalization of
teleportation from qubits to qudits is known (cp. for example31–35), the experimental realization of qudit tele-
portation is a difficult task and has not yet been achieved.
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At present, light is the only candidate for quantum communica-
tion and quantum cryptography over large distances because of its
small interaction with its environment as compared to matter. The
maximal distance for quantum communication achieved with
photons so far is 144 km through the atmosphere36 limited mainly
by absorption. Much further distances seem only possible using tele-
portation of entangled photons in conjunction with quantum repea-
ters. At the same time, the small interaction of photons makes it
difficult to manipulate the states of light in order to achieve teleporta-
tion. There are two main challenges in realizing teleportation: (i)
photons sharing maximal quantum correlations (entanglement)
have to be generated and distributed between the sender and the
receiver of quantum information and (ii) the input photons and
the photons of the sender have to be projected into a maximally
entangled state by a joint measurement of both (a so-called Bell
measurement) in order to transfer the state of the input photons to
the photons held by the receiver. Both challenges can in principle be
overcome using non-linear optical media, which manipulate the light
depending on its intensity. The corresponding processes, however,
have a very small efficiency on the single photon level. For example, in
spontaneous parametric down-conversion, an incoming pump
photon is converted into a pair of entangled photons [challenge
(i)], with a probability of 1026 per incoming photon37. The efficiency
of a Bell measurement by means of non-linear optics [challenge (ii)]
is even lower17, at about 10210. Therefore it is desirable to design a
more efficient solution to both challenges based on linear optics – i.e.
beam splitters, phase shifters, mirrors, etc. Such an efficient solution
is presented in this article for the teleportation of the quantum
information carried by an arbitrary number d of photonic levels. A
different solution to challenge(ii) for qutrits (d 5 3) can be found
in38. An alternative teleportation scheme for general qudits based on
quantum scissors together with a comparison to the present scheme
is reported in39.

Although linear optics does not allow the realization of a complete
Bell measurement40, a simple 50550 beam splitter can be used as a
filter to project two incoming photons onto a particular entangled
state in a certain percentage of the cases. Two photons incident on
the input ports of a beam splitter do not produce a coincidence count
in two detectors in the output ports (Hong-Ou-Mandel effect41,42)
unless they possess an anti-symmetric component with respect to
their internal degree of freedom, e.g. their polarization. A coincid-
ence count thus effectively projects onto an antisymmetric state. For
two polarized photons entering in different input ports of the beam
splitter there is only one such state:

yj i~ 1ffiffiffi
2
p HVj i{ VHj ið Þ, ð1Þ

i.e. elementary excitations of the first and second spatial mode
(represented by the first and second slot in the state symbol) carrying
horizontal and vertical polarization, respectively, superposed with
excitations of these modes with swapped polarizations. This state is
antisymmetric, because it changes sign under a permutation of the
first and second mode (slot), and it is maximally entangled, a con-
dition that allows the realization of the teleportation of a qubit11

encoded in the polarization of a single photon. Moreover, as we shall
see in the following, this phenomenon can also be employed for the
simultaneous teleportation of multiple qubits encoded in the orbital
angular momentum (OAM) of photons.

It was noticed by Allen et al.43 in 1992 that light with a phase
distribution exp(ilw) depending on the azimuthal angle w in the plane
orthogonal to its direction of propagation carries an orbital angular
momentum of an integer l times Planck’s constant �h per photon.
Such optical beams are characterized by helical (screw-like) wave-
fronts (see Fig. 1) and can be produced with the aid of spatial light
modulators (SLMs) – thin liquid crystal displays. The SLM modu-
lates the optical beam with a helical phase pattern. The orbital

angular momentum of a photon can thus be used to carry informa-
tion and represents a quantum system with an unrestricted number
of levels.

Quantum teleportation using an incomplete Bell measurement (a
‘‘Bell filter’’) can be applied to systems with an arbitrary number of
levels, not only simple two-level systems (such as polarized photons).
Let us review how. Teleportation involves three parties Alice, Bob
and Charlie, cp. Fig. 2. Alice and Bob are far apart and share a pair of
systems in a maximally entangled state

Yj iAB~
1ffiffiffiffi
D
p

XD{1

i~0

Aij iA6 Bij iB, ð2Þ

which is a superposition of products of orthogonal basis states of
their D-level systems A and B. Charlie provides Alice with an
unknown state jxæ, which has to be transferred from Charlie’s system
C to Bob’s system B. For this purpose systems C and B must be similar
- B has to support the same states as C. The state to be teleported
can thus be expressed as a superposition of Bob’s basis states:
xj i~

P D{1
k~0 ak Bkj i. Alice successfully teleports the state jxæ if she

carries out a measurement that acts like a filter and projects systems
C and A onto the entangled state jYæ:

xj iC6 Yj iAB? Yj i Yh j½ �CA61lB
� �

xj iC6 Yj iAB

~
1

D3=2

XD{1

k,l~0

ak Blj iC6 Alj iA6 Bkj iB

~
1
D

Yj iCA6 xj iB:

ð3Þ

According to the rules of quantum mechanics the likelihood for such
a projection to occur is given by the square of the length of the
resulting state vector, p 5 1/D2. Thus the success probability of this
teleportation scheme, which uses only one of the outcomes of a Bell
measurement, decreases with the number D of basis states in which
quantum information is encoded. The advantage lies in the fact that
this concept of teleportation, which is used for photonic qubits (D 5

2) can be generalised to teleport states with arbitrary D using linear
optics. (For an alternative approach based on quantum scissors47 that
uses entanglement contained in single-photon states see39).

Figure 1 | Schematic diagram of the helical wavefront of a light beam.

|χ > |χ >
S ψF ψ

A BC

Figure 2 | Teleportation using a filter: source Sy produces a pair of
systems A and B in state | Yæ. System A and system C are to be projected by

a filter Fy into state |Yæ. If successful, the filtering transfers the initial state

of C to system B.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 4543 | DOI: 10.1038/srep04543 2



Results
To generalize the qubit scheme to a method that is able to teleport
superpositions of multiple basis states, we have to identify a photonic
system with a unique antisymmetric state and a linear optical device
that plays the role of the beam splitter in the qubit case, i.e. a filter for
antisymmetric states. The uniqueness is required to guarantee that
the filter yields the same state jYæCA that is initially shared by Alice
and Bob, i.e. the state jYæAB. The dimension of the space spanned by
the antisymmetric states of composite systems (only if the dimension
equals 1 do we have a unique antisymmetric state!) can be easily
determined by means of Young tableaux (see Methods). It turns
out that only d systems each with d levels posses a unique antisym-
metric state. As a consequence, a generalization of the teleportation
scheme for photonic qubits by means of a Bell filter for antisym-
metric states requires d photons propagating on different paths each
with a quantized degree of freedom, such as OAM with d-levels. In
other words, the generalization requires d qudits.

Photonic states can be conveniently expressed by means of cre-
ation operators a{ acting on the vacuum state j0æ. In our case these
operators carry two indices – the first one, j, specifies one of d pos-
sible propagation paths whereas the second one, l 5 1 … d, denotes
the OAM value l�h of the photon. For example, the state

yj i~ 12j i{ 21j ið Þ
. ffiffiffi

2
p

of two photons propagating on different

paths with two OAM values l 5 1, 2 – which is the OAM analog of
the antisymmetric polarization state (1) used in qubit teleportation11

– can be written by means of a determinant of creation operators:

yj i~ 1ffiffiffi
2
p a{11a{22{a{12a{21

� �
0j i~ 1ffiffiffi

2
p det

a{11 a{12

a{21 a{22

 !
0j i: ð4Þ

It is obvious that the state jyæ is antisymmetric, since under permuta-
tion of the propagation paths it is transferred to 2jyæ. The antisym-
metry is represented by the determinant: a swap of rows
corresponding to the permutation results in a minus sign of the
determinant. Using the same logic, one can show that the antisym-
metric state of d photons with d OAM values can be expressed by the
determinant of a d 3 d matrix L

Yj i~ 1ffiffiffiffi
d!
p det Lð Þ 0j i ð5Þ

where

L~

a{11 a{12 � � � a{1d

a{21 a{22 � � � a{2d

..

. ..
.

P
..
.

a{d1 a{d2 � � � a{dd

0
BBBBB@

1
CCCCCA: ð6Þ

Here jYæ is the required antisymmetric state. The antisymmetry
follows from the fact that permutation of any two propagation direc-
tions corresponding to a swap of two rows of the determinant in Eq.
(5) leads to a change of sign of the state jYæ.

For teleportation the d photons in the antisymmetric state given in
Eq. (5) must be divided between Alice (n photons) and Bob (d 2 n
photons) such that both share a bipartite maximally entangled state.
To check for maximal entanglement we take advantage of the rep-
resentation of jYæ in terms of a determinant. Expanding the deter-
minant with respect to the first row, we obtain the state:

Yj i~ 1ffiffiffiffi
d!
p det Lð Þ 0j i~ 1ffiffiffiffi

d!
p

Xd

i~1

{1ð Þiz1a{1i det L1ið Þ 0j i

~
1ffiffiffi
d
p
Xd

i~1

Aij i ij i,

ð7Þ

where Aij i~1
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d{1ð Þ!
p

det L1ið Þ 0j i and L1i is the (d 2 1) 3 (d 2

1) submatrix obtained by omitting the i-th column and the first row
(a so-called minor of L) and {1ð Þiz1a{1i 0j i~ ij i. It is remarkable
that the expansion of the determinant results in a maximally entang-
led bipartite state of the form (2) with D 5 d and jBiæ 5 jiæ, implying
that Alice and Bob obtain d 2 1 and one photon, respectively. This
partitioning of photons allows Alice to teleport any state of a single d-
level photon from Charlie by sending it along with her d 2 1 photons
into the beam splitter array depicted in Fig. 3 and subsequently
obtaining a coincidence count in all its output ports. The coincidence
count results effectively in a projection into the antisymmetric state
jYæ as can be checked for any finite dimension d by direct calculation.
On the other hand, the antisymmetric state entering the beam splitter
array yields, with certainty, a coincidence count (cp. Methods).

But this is not the only possible partitioning of photons that leads
to a maximally entangled state between Alice and Bob. Strikingly, any
partition (n, d 2 n) with 0 , n , d of an antisymmetric state of d
particles possesses this property, and this can be easily understood by
virtue of the rules to calculate determinants (see Methods). For the
partition (n, d 2 n) one obtains a bipartite state as given in Eq. (2)
with D~ d

n

� �
and jAiæ as well as jBiæ given in terms of minors ofL. The

maximum amount of quantum information is teleported with a (d/2,
d/2) partition of an even number d of photons prepared in state jYæ.
In this case Charlie has to provide d/2 photons, cp. Fig. 4, and can
send for large d approximately d qubits, simultaneously (cp. Fig. 5).

This information is encoded in the D~ d
d=2

� �
~2dzO dð Þ dimen-

sional, anti-symmetric subspace spanned by the jBiæ. This is an expo-
nential gain compared to the teleportation of a single qudit
(corresponding to log2(d) qubits) carried by one photon, which
requires the same entanglement resource – an antisymmetric state
of d photons jYæ. (Note that Charlie’s photons must be in an anti-
symmetric state to guarantee that the beam splitter array acts as a Bell
filter in case of a coincidence count in its output ports. A general Bell
filter for n photons from Alice and d 2 n photons from Charlie in
antisymmetric states can be constructed by the recursive use of the
Bell filter depicted in Fig. 4 combined with heralding techniques for
single photons, cp. Fig. 6. An example of a Bell-filter without herald-
ing techniques for qutrits is discussed together with the preparation
of a totally antisymmetric state in Methods.). Let us emphasize that

C

A A A1 2

1/2(d−1)/d (d−2)/(d−1)

d−1

Figure 3 | Bell filter: an array of d beam splitters (with indicated
transmitivities) projects Charlie’s incoming photon and Alice’s d 2 1
photons into the antisymmetric state | Yæ in case of a coincidence count in
all detectors. For this purpose Alice’s photons must be already in an

antisymmetric state before the projection. To take care of the change of

sign of OAM values upon reflection at the beam splitters, the OAM values

carried by the light in the horizontal path must have opposite sign to those

in the vertical paths.

|χ >|χ >
n d−nd−n Fψ Sψ

C A B

Figure 4 | Teleportation of the collective antisymmetric state | xæ of d 2 n
photons (number of photons indicated).
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this method thus constitutes a simultaneous teleportation of the
collective state of several photons.

Discussion
In comparison, teleporting d qubits individually, one requires the
same number of maximally entangled photon pairs, i.e. a total of
2d additional photons, resulting in an efficiency of sending half a
qubit per additional photon or 1/3 of a qubit per photon generated.
Our scheme yields double these rates and thus requires half the
number of photons (cp Fig. (5)) to teleport the same amount of
quantum information. This is an important improvement since the
number of photons, that can be generated per time-unit is the lim-
iting factor for the bandwidth of photonic quantum communication.
However, it holds only for the selective regime conditioned on suc-
cessful teleportation events. On average the number of photons
increases by a factor D2 with the number D 5 dd of outcomes of a
Bell measurement of d qudit photons. Since it might be possible to
create Bell filters by means of linear optics for half of the Bell states
(cp.40) instead of a single filter as in our case, this would mean an
increase of only a factor 2. This is a promising subject for future
research since for individual qubit teleportation with linear optics
the success probability is limited by 1/2d, resulting in a relative expo-
nential overhead.

In the foregoing presentation of results we assumed the existence
of a source SY that produces the state jYæ initially shared by Alice and
Bob (cp. challenge (i)) which is treated in the Methods. Indeed for

qutrits, such a source can be realized by an additional beam splitter
array with two beam splitters (cp. Fig. 3 for d 5 3), that acts as a Bell-
filter for the antisymmetric state jYæ. For this purpose a single
photon together with an antisymmetric state of two photons must
enter the array and one photon must leave each of its output ports. In
the general case nondestructive heralding techniques based on
non-linear optical effects44 might be employed in conjunction with
photonic multiports, which however reduce the efficiency of the
teleportation scheme. These methods will be discussed elsewhere.

Apart from an additional overhead of photonic resources needed if
filtering techniques are used to prepare the antisymmetric state (cp.
first paragraph in this section) there is the need to produce simulta-
neously the number of photons required for the entangled state and
the state that carries the quantum information to be teleported. If the
photons are generated by single photon sources, the success prob-
abilities for the single photons will multiply and lead to an exponen-
tial decrease of the total success probability. This is a serious problem,
however, it is also encountered when qubits in an unknown state that
cannot be resent are to be teleported individually. To solve this
problem one requires techniques investigated for long distance
quantum communication and require to store the required number
of photons in quantum memories and release them collectively to
produce the entangled states needed for the teleportation of complex
states.

Methods
Dimension of the antisymmetric subspace. The dimension of an antisymmetric
subspace can be calculated using combinatorial objects called Young tableaux, which
provide a technique of keeping track of the constraints imposed by the permutation
symmetry of the system. Here we represent a basis state of a system by a box, a , where
a numbers the basis state. A basis of the symmetric combinations of two systems can
be depicted by a row of two boxes, . Similarly, a basis of antisymmetric states is
represented by a column of boxes, . Since we are interested only in the antisymmetric
part, we focus on columns only. The dimension of the corresponding subspace, i.e. the
number of basis states, is obtained by counting the different possible ways to fill the
boxes with numbers according to certain rules. For the antisymmetric subspace we
start filling the numbers in descending order, from top to bottom. For a system that
consists of two subsystems, a Young tableaux reads:

a
b : a bj i{ b aj i; ð8Þ

where a is always greater than b. Therefore, if the total number of basis states available
for each subsystem is two, i.e. we are dealing with two qubits, there is only one
possibility, namely a 5 2 and b 5 1. As a result, we obtain an antisymmetric subspace
of dimension one. If the available states are more than two, say d, then we have d 2 1
options for a and given a, a 2 1 options for b. As a result the total number of
combinations is given by 1 1 2 1 … 1 d 2 1 5 d(d 2 1)/2, which is the dimension of
the antisymmetric subspace for a pair of d-level systems, each of which can carry one
qudit of quantum information.

This can be generalized for systems with n subsystems. Now we have n numbers
a1wa2w � � �wanf g in a column of boxes. The dimension of this antisymmetric

subspace is given by the binomial coefficient
d
n

� �
, i.e. d choose n, where n is the

number of sub-systems. This equals 1 only when n 5 d, giving us a unique anti-
symmetric state for d qudits.

Laplace expansion for the determinant of a matrix. The determinant of a n 3 n
matrix A with elements aij can be calculated by an expansion with respect to the first
row of A as follows:

det Að Þ~
Xn

i~1

{1ð Þ1zia1i det A1ið Þ: ð9Þ

Here det(A1i) is the determinant of the (n 2 1) 3 (n 2 1) submatrix of A obtained
from eliminating the first row and i-th column. In fact this is just a special case of a
simultaneous expansion of the determinant with respect to several rows. For example,
expanding with respect to the first two rows of a 4 3 4 matrix A, we obtain:

det(A) ~ � z z � z ; ð10Þ

where each block on the right-hand side represents the product of the determinant of
the submatrix (minor) with blue dot and the minor with the red dot. In general, any
such Laplace expansion assumes the form det Að Þ~

X
i
ci det Aið Þ det Bið Þ, where ci
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Figure 5 | The graphs show the number of quantum information units
(qubits) teleported per additional photon versus the number of
additional photons required for individual-qubit teleportation (red) and
the optimal new technique (blue).
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Figure 6 | A general scheme to project into and thus prepare a d-photon
totally antisymmetric state. In this scheme an array of beam-splitters (with

indicated reflectivity) is used in a pyramidal structure. Each arm (turquoise

box) consists of a Bell-filter as depicted in Fig. 3 of the main text and is

followed by an array of single-photon heralding devices in each path.

A d-fold coincidence count in the output modes will ensure a projection on

the antisymmetric state.
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5 61 and the Ai (Bi) are minors of A which differ at least in one column45. The
possible Laplace expansions of det L in Eq. (4) correspond to the different
distributions of the d photons between Alice and Bob. Each distribution leads to
orthogonal states jAiæ / det(Ai)j0æ on Alice’s side, and on Bob’s side accordingly, and
therefore to a maximally entangled state shared between both parties.

Proof of Bell Filter projection onto the antisymmetric state. The goal of this section
is to prove that the Bell filter depicted in Fig. (3) projects onto the totally
antisymmetric state of d photons upon simultaneous detection in all d detectors of the
filter. We assume that the input is given by the combined state of Alice’s d 2 1
photons, which are in an antisymmetric state, and Charlie’s single photon. We will
consider all the possible states obeying this assumption and show that only the totally
antisymmetric state results in a coincidence count. We assume in the following that
Charlie’s single photon is prepared as a superposition of basis states with the same
modulus of OAM values as used to span the Hilbert space for Alice’s photons, but
with different signs: {liC ~liB for i 5 1 … d. With this sign convention we can ignore
the effect of sign change of the OAM modes (l R 2l) upon reflection on a beam
splitter or mirror.

Note that d 2 1 photons each with d levels form a d-dimensional antisymmetric
subspace of the dd21-dimensional Hilbert space. Therefore, the effective dimension of
the allowed state space for Alice’s d 2 1 photons is the same as the dimension of
Charlie’s Hilbert space which corresponds to a single photon with d levels.

The general quantum teleportation protocol for d-level systems rests on the
complete projective measurement in the maximally entangled generalized Bell basis

Yj im1m2

n o
, which can be defined as:

Yj im1m2
~
Xd{1

n~0

vnm1 Anj i6 Bnzm2j i ð11Þ

where m1,m2~0,1, � � � ,d{1 and v 5 exp(2pinm1/d). For m1 5 m2 5 0 we retrieve
the state jYæAB defined in Eq. (2).

Since Alice’s system is assumed to be described by the d-dimensional antisym-
metric subspace of d 2 1 photons, the basis for Alice’s system {jAiæ} can be written as:

Aij i~
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d{1ð Þ!
p det Ldið Þ 0j i, ð12Þ

where det(Ldi) are the minors of the matrixL (cp. Eq. (6)) with respect to the last row.

Similarly we can define the basis Bij if g: {1ð Þia{i 0j i
n o

for Charlie’s system. The

index i represents the different OAM modes of the single photon. In this notation the
states Yj im1m2

read:

Yj im1 m2
~
X

j

exp i
2p
d

jm1

� �
Co Lð Þ dj½ �a

{
d jzm2ð Þ mod dð Þ 0j i: ð13Þ

Here Co(L)[di] 5 (21)i det(Ldi) is the [di]th cofactor of the matrix L.
The action of a d-input-d-output beam splitter setup, such as the Bell filter (cp.

Fig. (3)), can be represented by a unitary matrix U that transforms the matrix L as
U : L?~L~UL. After passing through the beam splitter setup, the state Yj im1m2

transforms to ~Y
		 
m1m2:

~Y
		 


m1m2
~
X

j k

exp i
2p
d

jm1

� �
Udka{

k jzm2 mod dð ÞCo
~L
� �

dj½ �
0j i: ð14Þ

Since ~L~UL, we can use the following identity:

Co ULð Þ ij½ �~
X

l

Co Uð Þ il½ �Co Lð Þ lj½ � ð15Þ

and rewrite Eq. (14) as:

~Y
		 


m1 m2
~
X

j k

exp i
2p
d

jm1

� �
Udka{

k jzm2ð Þ mod dð Þ

X
l

Co Uð Þ dl½ �Co Lð Þ lj½ � 0j i: ð16Þ

We are interested only in those terms in the state ~Y
		 


m1 m2
that have exactly one

photon in each of the output ports and thus may lead to a coincidence count. Note
that among the two indices of the creation operator a{

kj the first index k represents the

spatial mode and the second index j stands for the OAM mode. Furthermore, Co(L)[lj]

does not contain any creation operator in the spatial mode l. Therefore, the terms in
the state ~Y

		 

m1 m2

where k 5 l contain exactly one photon in each spatial mode and

hence may result in a coincidence count. After projecting the state ~Y
		 


m1 m2
on the

subspace of states that correspond to coincidence counts we get an unnormalized
state Wj im1m2

given by:

Wj im1m2
~
X

j k

exp i
2p
d

jm1

� �
Udka{k jzm2ð Þ mod dð ÞCo Uð Þ dk½ �Co Lð Þ kj½ � 0j i: ð17Þ

In the above expression, if we choose

gdk:UdkCo Uð Þ dk½ �, ð18Þ

i.e. gdk ; g to be k independent then the expression reads:

Wj im1m2
~g

X
j k

exp i
2p
d

jm1

� �
a{

k jzm2ð Þ mod dð ÞCo Lð Þ kj½ � 0j i ð19Þ

which is zero unless m1 5 m2 5 0. Therefore, the requirement that g is k independent,
is a sufficient condition for a beam splitter setup to project Wj im1m2

to non-coincid-
ence count states.

Now we can prove that the unitary matrix Ud corresponding to the Bell-Filter in
Fig. (3) satisfies Eq. (18). We can write the Ud corresponding to d 2 1 beam-splitters
as the product of Sd, the matrix for the 1/d5(d 2 1)/d beam-splitter and ~Ud , which
corresponds to the rest of the setup. Therefore,

Sd~

ffiffiffiffiffiffiffi
d{1

d

q
0 {

ffiffi
1
d

q
0 II 0ffiffi

1
d

q
0

ffiffiffiffiffiffiffi
d{1

d

q
0
BBB@

1
CCCA, ð20Þ

~Ud~
1 0

0 Ud{1

� �
: ð21Þ

The sufficiency condition (18) then reads:

gdi~ Udð ÞdiCo Udð Þ di½ �~
X

k

Sdð Þdk
~Ud
� �

ki|
X

l

Co Sdð Þ dl½ �Co ~Ud
� �

li½ �: ð22Þ

From Eq. (20) we have:

Sdð Þdk~{

ffiffiffi
1
d

r
dk1z

ffiffiffiffiffiffiffiffiffiffi
d{1

d

r
dkd , Co Sdð Þ dl½ �~{

ffiffiffi
1
d

r
dl1z

ffiffiffiffiffiffiffiffiffiffi
d{1

d

r
dld : ð23Þ

Substituting (23) in (22), we get:

gdi~ {

ffiffiffi
1
d

r
~Ud
� �

1iz

ffiffiffiffiffiffiffiffiffiffi
d{1

d
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~Ud
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di

 !
| {
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1
d
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1i½ �z
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 !

ð24Þ
It is easy to see that

~Ud
� �

1i~di1, ~Ud
� �

di~ 1{di1ð Þ Ud{1ð Þd{1 i{1, ð25Þ

Co ~Ud
� �

1i½ �~di1, Co ~Ud
� �

di½ �~ 1{di1ð ÞCo Ud{1ð Þ d{1 i{1½ �: ð26Þ

Therefore, when i 5 1 then only ~Ud
� �

11 and Co ~Ud
� �

11½ � survives resulting

in gdi 5 1/d. When i ? 1, then ~Ud
� �

11 and Co ~Ud
� �

11½ � are zero. Thus, the

only term in Eq. (24) which survives is d{1ð Þ ~Ud
� �

diCo ~Ud
� �

di½ �

.
d~

d{1ð Þ Ud{1ð Þd{1 i{1Co Ud{1ð Þ d{1 i{1½ �

.
d~1=d. Here we used the relation

(Ud21)d21 i21Co(Ud21)[d21 i21] 5 1/(d 2 1) which is assumed to hold for Bell-filter
with d 2 2 beam-splitters.

State preparation. A general scheme to prepare (project into) an antisymmetric state
of d photons can be realized by an array of beam splitters together with non-linear
optical devices44,46 that suppress the two- and higher-photon component in a path (cp.
Fig. 6). The scheme makes repeated use of the Bell-filter shown in Fig. 3 in the main
text. The latter can map the (n 2 1)-photon antisymmetric state to the n-photon
antisymmetric state with the help of an additional photon in the case of n-fold
coincidence counts in its output ports. Hence, if the output of the Bell-filter can be
monitored to ensure that only one photon comes out of each of the output port, then
this output can be fed to another such setup to generate an (n 1 1)-photon
antisymmetric state. Therefore, one can generate a d-photon totally-antisymmetric
state, recursively, from a product state of d photons.

To prepare the totally antisymmetric state of three photonic qutrits (three-level
systems) a single Bell-filter (cp. Fig. 3) that consists of two beam splitters suffices.
This requires as input a pair of photons in an antisymmetric state jyæ 5 j12æ 2

j21æ and a single photon in state j3æ. In addition, one needs to confirm that one
photon leaves each output port. This can be achieved without single-photon
heralding by sending two photons from different output ports to Bob who con-
firms this by a state tomography and one photon to Alice together with a photon
pair from Charlie. A subsequent three-fold coincidence count after Alice’s Bell
filter (a copy of the one used for preparation) then announces successful state
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preparation as well as teleportation of Charlie’s qutrit which is encoded in the
antisymmetric space of two photons:

yj iA~a 12j i{ 21j ið Þzb 13j i{ 31j ið Þzc 23j i{ 32j ið Þ:
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