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Abstract: Albumin is a constitutional plasma protein, with well-known biological functions, e.g., a
nutrient for stem cells in culture. However, albumin is underutilized as a biomaterial in regenerative
medicine. This review summarizes the advanced therapeutic uses of albumin, focusing on novel
compositions that take advantage of the excellent regenerative potential of this protein. Albumin
coating can be used for enhancing the biocompatibility of various types of implants, such as bone
grafts or sutures. Albumin is mainly known as an anti-attachment protein; however, using it on
implantable surfaces is just the opposite: it enhances stem cell adhesion and proliferation. The
anticoagulant, antimicrobial and anti-inflammatory properties of albumin allow fine-tuning of the
biological reaction to implantable tissue-engineering constructs. Another potential use is combining
albumin with natural or synthetic materials that results in novel composites suitable for cardiac,
neural, hard and soft tissue engineering. Recent advances in materials have made it possible to
electrospin the globular albumin protein, opening up new possibilities for albumin-based scaffolds for
cell therapy. Several described technologies have already entered the clinical phase, making good use
of the excellent biological, but also regulatory, manufacturing and clinical features of serum albumin.

Keywords: albumin; serum albumin; bone allograft; scaffolds; regenerative medicine

1. Introduction

Albumin is the most abundant protein in plasma and plays important metabolic roles,
such as regulating the oncotic pressure, binding and transporting various molecules, scav-
enging free radicals and modulating the immune response and blood coagulation [1]. There
are different types of albumin, such as human serum albumin (HSA); animal serum albu-
min: bovine serum albumin (BSA), rat serum, etc.; albumin from eggs (ovalbumin), milk
(lactalbumin) and plants sources such as soy; and grains [2,3] (Figure 1). Different types of
albumin demonstrate similarities; however, some differences were also reported (Table 1).

Mammalian albumins, as well as OVA, are α-helical globular and water-soluble pro-
teins and contain hydrophilic and hydrophobic sites with an acidic characteristic [3,27].
Albumin is a very stable and highly soluble protein tolerant of high temperatures. Thanks
to its disulfide bonds and sulfhydryl groups, which allow interactions with organic and
inorganic ligands, albumin can be described as chemically attractive. Albumin is among the
most studied of all proteins; thus, it is exploited in various biotechnological applications:
as a drug, theranostic agent, biomaterial, in vitro cell supplementation, biosensor, contrast
agent, etc. [2,3,7,28].
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Table 1. Different albumin types and their characteristics.

Albumin Type Molecular Weight Structure Main Characteristic Production Method Advantages Limitations

Human serum
albumin (HSA)

66, 5–69 kDa
585 amino acids [4]

- Non-glycosylated
polypeptide [5]

- Globular, heart-shaped
structure

- Repeating series of six
helical subdomains,
formed by three
homologous domains
(I, II, and III), each of
which consists of two
subdomains of similar
structural motifs. [4,6]

- Acidic nature,
- Stable at 60 ◦C till 10 h

and in the pH
range 4–9.

- Soluble in organic
solvent such as 40%
ethanol [7]

- Synthesized in
the liver

- Causes 80% of plasma
colloid
osmotic pressure

- Binding and activation
of drug conjugates. [5]

- Clinical use:
- Plasma fractionation

method with ethyl
alcohol: Cohn method
and its modifications

- Purification
from placenta

- Heat shock
fractionation

- Ion exchange
chromatography [5]

- Wide application:
as a drug,
biomaterial,
in vitro
supplementation
or reagent

- Universal and
stable drug
delivery career

- Good availability
- Low costs when

used as biomaterial
- Biodegradability
- Lack of toxicity [5]
- Cell

culture supplement

- Should not be used
in several clinical
cases [8]

- High costs of
production as
a drug

- Relatively high
degradation rate

- Batch to batch
variability

- Risk of prion- and
virus-diseases

Bovine serum
albumin (BSA)

67 kDa
583 amino acids [4]

- HSA and BSA share
76% identity

- BSA has a lower
fraction of
α-helices. [9]

- Physicochemical
properties are similar
to HSA.

- More hydrophilic
than HSA.

- Less stable in higher
temperatures
than HSA.

- HSA is able to
crystallize and BSA
does not have these
properties. [4]

- Industry:
- Plasma fractionation
- Heat shock

fractionation [10]

- Better accessibility
than HSA,

- Results obtained
with BSA might be
transferred to HSA

- Universal and
stable drug
delivery career

- Very good
availability

- Low cost
- Ease of

purification [5]

- Batch to
batch variability

- Risk of prion- and
virus-diseases

- Biosecurity risk
- Non-specific

binding when IgG
is present in the
BSA. [11]
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Table 1. Cont.

Albumin Type Molecular Weight Structure Main Characteristic Production Method Advantages Limitations

Ovalbumin (OVA) 47 kDa
385 amino acids [5]

- Monomeric
phosphoglyco-protein
with a serpin-like
structure and a helical
reactive loop
arrangement. [12]

- Predominant protein
in albumen

- Represents 54–58% of
the egg white protein
by weight. [12]

- Electrophoresis
- Ion-exchange

chromatography
- Size exclusion liquid

chromatography
- Ultrafiltration
- Adsorption,
- Aqueous biphasic

systems [13]

- Low cost
- Availability
- Can form gel

networks and
stabilize emulsions
and foams

- Good carrier for
drug delivery in
food matrix design

- Good carrier for
controlled drug
release. [5]

Allergen [14]

Lactalbumin
14 kDa
122–123 amino
acids [15]

- GIobular protein
- Consists of large

α-helical and small
β-sheet domain,
connected by a calcium
binding loop [16]

- Found in bovine and
human milk

- Relatively heat-stable
when bound to
calcium and compared
to other whey proteins
[15,16]

- Chromatography/gel
filtration

- Membrane separation
- Enzyme hydrolysis
-

Precipitation/aggregation
technologies [16]

- Important source
of bioactive
peptides and
essential amino
acid

- Good water
solubility and heat
stability [15,17]

- Good results in
treatment of
chronic
stress-induced
cognitive decline;

- Maintain the level
of serotonin [18]

Allergen [16]
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Table 1. Cont.

Albumin Type Molecular Weight Structure Main Characteristic Production Method Advantages Limitations

Plant albumin

8–16 kDa
[19,20]
depending on the
plant source

- Usually composed of
disulfide-linked low
molecular weight
polypeptides with a
sedimentation
coefficient of 2S. [21]

- 2S albumins have high
contents of glutamine,
cysteine and
methionine. [20]

- Water-soluble and
highly abundant
proteins

- Broken-down during
seed germination to
provide nitrogen and
sulfur for the
developing seedling.

- Albumins represent
around 10–25% of total
plant proteins. [21]

- Wet extraction
methods [22]

- Possibility for
so-called green
preparation;

- Good for foam
stabilization, as it
forms dense and
stiff interfacial
layers. [22]

Allergen [23]

Recombinant
albumin

Structurally
equivalent to HSA
[24]

Structurally equivalent to
HSA [24]

- Highly purified
animal-, virus-, and
prion-free product
developed as an
alternative to HSA [24]

- Equally effective as
HSA (Figure 2D)

- Yeast expression
system [24]

- Rice expression system
[25]

- Possibility for
so-called green
preparation;

- Improving
cost-effectiveness
and safety

- No batch to batch
variability [26]

- Some level of
yeast-derived
impurities may
have the capacity
toelicit a possible
allergic response
[24]
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Figure 1. Albumin origin. Created with BioRender.com accessed on 21 August 2022.

Regenerative medicine supports natural healing processes by using autologous and
allogeneic cells, biomaterials, growth factors, gene manipulation or combinations of these
elements [29]. In the present work, we review how albumin can be utilized as a bio-
material and therapeutic agent in the biomedical field. It is commonly understood that
the clinical usability of a biomaterial depends on its biocompatibility, i.e., that it does
not trigger any side effects such as irritation, inflammation, cytotoxicity, genotoxicity or
mutagenicity [30–32]. Biocompatibility also means that the material possesses its designed
function for therapy and maintains a regenerative response to the surrounding tissue
environment [31]. Since albumin is a main mammalian blood component, it has excellent
biocompatibility [3,5,26]; however, despite its wide clinical application and recorded use in
tissue engineering, albumin is still not commonly used in regenerative medicine. Therefore,
this review article focuses on the current findings about the use of albumin as a bioma-
terial or a local therapeutic agent, especially in regenerative therapies and novel tissue
engineering solutions.

2. Albumin as a Biomaterial

A range of biomaterials is used in regenerative medicine. Metal-based biomateri-
als such as gold, platinum, titanium, steel, etc. are suitable due to their inertness and
structural functions; however, their surfaces do not possess bioactivity [31,33]. Ceramics
and bioglasses characterized by high biocompatibility and good mechanical properties
find application in dentistry and bone regeneration despite their poor plasticity [31,34].
Synthetic polymers (PU, PP, PLA, PEG, PMMA, etc.) are used for the production of scaf-
folds, prostheses, implants, medical devices and even contact lenses [31]. They have good
mechanical properties, slow degradation rates and adjustable architecture but do not attract
cell attachment and spreading. Some novel solutions for enhancing the biocompatibility
include the use of natural materials, decellularized organs, blood-derived products, pri-
mary cells or stem cells. Natural polymers include proteins of the extracellular matrix
(ECM) such as collagen, fibrinogen or hyaluronic acid, which promote cell adhesion and
have superior biocompatibility, good biological activity, low immunogenicity and low
cytotoxicity from their degradation products. However, in the case of natural biomaterials,
there is always a concern regarding their stability and degradation rate [31,35–39]. Albumin
is an example of a blood-derived product with a potential for autologous or allogeneic
tissue engineering [40], and some reports show its successful use in coating, as well as
scaffolds and hydrogels fabrication. In the following subsections, we will discuss the
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examples of combining albumin with different materials or its direct use as a biomaterial
for medical applications.

2.1. Coating

Biomaterials are often coated with natural polymers such as dextran, collagen, chitosan
or serum albumin [41–43]. There are two different approaches for coating biomaterials:
permanent or temporary. For permanent medical devices, it is important that their surface is
passive, can resist for a longer time and take over the function of damaged tissue—albumin
with its high bioactivity and solubility is hardly suitable for the type of permanent coating.
In contrast, these exact same properties make albumin optimal for temporary coating other
implantable biomaterials, thereby increasing their biocompatibility. The current bioengi-
neering solutions are expected to stimulate self-regeneration of the tissue by attracting cell
attachment, proliferation and even differentiation [44]. Several approaches for albumin
immobilization on the biomaterial surface, such as physical adsorption, crosslinking with
different reagents and photoactivable albumin, are in use; however, it was shown that
a simple lyophilization is enough to coat bone allografts with a biologically significant
amount of serum albumin (Figure 2) [45]. Albumin coatings were shown to improve the
bio- and immune compatibility, tissue formation, corrosion resistance and antibacterial
and anticoagulant properties of materials in several studies [26,42,43,46–50]. Most studies
described albumin as a cell adhesion-inhibiting protein on inert surfaces, but it is a very
potent cell adhesive in more physiological scaffolds such as human bone allografts [51–53].
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surface as white flakes that contain ample pores and structured surfaces. (B) Freeze-drying of an
albumin solution results in significantly higher protein adsorption than wet coating. Control group:
10% HSA with H2O (non-FD in the 1st step). (D) The number of viable MSCs attached to bone
granules coated with different types of human serum albumin. There was no difference in the MSC
viability after 5 days of culture on dHSA coating (delipidated recombinant human serum albumin)
versus the standard human serum albumin (Biotest, Grifols). Control group: bone granules without
any additives. (One-way ANOVA, p < 0.001). All figures are original research figures.

2.2. Anticoagulant Properties

It is important to understand the complex adsorption processes on the biomaterial sur-
face when it is placed in vivo and comes into contact with body fluids. Protein adsorption
is one of the first biological events after implanting a foreign material into a living organ-
ism [54]. Depending on the physical and chemical properties of the implanted biomaterial,
it can attract different proteins, platelets, immune cells, fibroblasts, stem cells, etc. [54–56].
Albumin was one of the first proteins to be used as a coating to prevent surface-induced
platelet activation [57,58] Albumin precoating provides a thin protein layer that increases
the hydrophilicity of the surface and prevents a biological response after contact with
the blood of an otherwise hydrophobic material; this method is called “albumin passiva-
tion” [50,58]. Materials with adsorbed native albumin were shown to reduce the number of
adherent platelets and their activation on the surface; however, when the albumin structure
was changed by crosslinking, platelets were able to adhere and activate completely to the
modified albumin layer [45]. Studies showed that platelets can adhere to adsorbed albumin
only if albumin undergoes more than a 34% loss in its α-helical content [59,60]. In the past,
the arterial vascular prosthesis material Dacron was used for artery replacement; however,
its use was problematic due to thrombogenic reactions. Attempts with using collagen and
gelatin did not decrease the thrombogenicity. The grafts were further immersed into a
buffered solution of albumin and glutaraldehyde, which produced a crosslinked albumin
coating. Albumin diminished coagulation activation and fibrinopeptide A formation, as
well as leucocyte and platelet adhesion; therefore, there was a significant improvement in
the short-term blood compatibility of Dacron [61]. Several current commercial products
take advantage of albumin coatings, e.g., perfusion systems, catheters and cannula; extra-
corporeal life support systems and human bone allografts [47,62–69]. There are also more
complex approaches that combine albumin coating and novel solutions. Abraham et al.
fused HSA with ectonucleoside triphosphate diphosphohydrolase-1 (CD39) and used this
HSA-CD39 fusion protein as a coating with antithrombotic and anti-inflammatory activities
for medical devices. CD39 in this complex is intended to shift a proinflammatory envi-
ronment to an anti-inflammatory status, and this might prevent the rejection of implants.
Reduced platelet adhesion, minimal platelet aggregation and blood coagulation were ob-
served, therefore providing an opportunity to reduce the thrombotic and inflammatory
reactions in medical devices coated with HSA-CD93 [70].

2.3. Antibacterial Properties

Another advantage of the albumin coating is its antimicrobial properties. An et al. eval-
uated the effects of albumin coating on titanium implants in preventing infection in rabbits.
All the implants were exposed to a suspension of S. epidermidis before implantation. They
observed a significant reduction in the infection rate, from 62% in rabbits with noncoated
implants to 27% in rabbits with albumin-coated implants [71]. Another study monitored
the albumin coating and the two of the most commonly implicated pathogens that result in
biofilm formation, S. aureus and P. aeruginosa, that can adhere to the surface of an implanted
material [72,73]. When a biofilm is formed, bacteria can easily evade the host immune
response and become resistant to treatment, which, in the end, might result in implant fail-
ure [73,74]. Significantly fewer bacteria adhered to the HSA-coated titanium plate than to
the uncoated surfaces. The binding of S. aureus was inhibited significantly from 82% to 95%
and, of P. aeruginosa, from 29% to 37% on the HSA-coated surface [73]. Sun et al. combined
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small-molecule gold nanoparticles with 4,6-Diamino-2-pyrimidinethiol (Au-DAPT) and
BSA to obtain the antimicrobial conjugate Au-DAPT-BSA with antibacterial activity against
several Gram-negative and Gram-positive bacteria, including drug-resistant bacteria and
S. aureus and P. aeruginosa. In vitro and in vivo tests showed excellent antibacterial efficacy,
no cytotoxicity to mammalian cells and that Au-DAPT-BSA-based therapy can be helpful
in wound healing and skin infections [75]. Cometta et al. highlighted an infection problem
associated with breast implant surgeries. They proposed biodegradable medical-grade
polycaprolactone (mPCL) scaffolds with HSA immobilized on their surfaces as an alterna-
tive to silicon implants. HSA was crosslinked with tannic acid (TA) and tested for 7 days.
The 1%HSA/10%TA- and 5%HSA/1%TA-coated scaffolds were able to reduce S. aureus
colonization on the mPCL surface by 99.8 ± 0.1% and 98.8 ± 0.6% when compared to the
noncoated control scaffolds [76].

2.4. Albumin as Cell Adhesion Protein

Albumin is generally known as a cell adhesion-inhibiting protein [51–53]. How-
ever, multiple in vitro and in vivo studies proved that, despite its antiadhesive properties
on plastic surfaces, albumin coating supports mammalian cell growth and tissue forma-
tion [47,49,63,64,66,67,69,77]. Weszl et al. compared the adherence and proliferation of
mesenchymal stem cells (MSCs) on albumin-coated and uncoated lyophilized human bone
allografts, hydroxyapatite and lyophilized bovine bone, as well as on allografts with dif-
ferent types of coatings. Freeze-dried albumin coating outperformed the liquid coatings,
as well as freeze-dried fibronectin and collagen I, in cell attachment and proliferation [66].
An analysis of macro-, micro- and nanostructures of grafts showed amorphous chip-like
structures of freeze-dried albumin coating (Figure 1). In contrast to 2D monolayer cell
cultures, the attached MSCs did not cover the surface but rather spanned the pores, with
only filaments touching the graft surfaces. Additionally, albumin-coated grafts implanted
in vivo into bone defects resulted in better graft integration. Interestingly, albumin coating
was effective only on human bone materials but not on hydroxyapatite or bovine bone
scaffolds. The positive effects of albumin coating on cell adhesion and proliferation were
observed, probably due to the enhanced water absorption by freeze-dried albumin that
creates an optimal microenvironment for MSCs with high local albumin contents. Serum
is one of the standard supplementations for cell cultivation; thus, this microenvironment
nurtures MSCs. Cells might easily regain their metabolic activity and start to deposit their
own ECM, which further supports attachment and proliferation. The human bone structure
and pore size probably play a crucial role in this mechanism [66]. Furthermore, Skaliczki
et al. also observed enhanced albumin-coated bone graft remodeling in vivo when com-
pared to uncoated grafts [64], and Horvathy et al. presented results with a significantly
reduced healing period in critical-sized bone defects with the formation of mechanically
stronger bone with demineralized bone matrices (DBM) and serum albumin [49]. A clinical
study with 10 patients who required large structural allografts in hip and knee prosthesis
revisions showed good radiography, and the SPECT-CT follow-up showed good biocompat-
ibility, active tissue remodeling and no complications after 12 months [77]. Consequently,
it was demonstrated in several double-blinded clinical studies that donor site pain after
bone-patellar tendon-bone surgery or extraction socket filling is significantly reduced if the
bone buildup is augmented by serum albumin-coated bone allografts [67,69].

Albumin coating on bone allografts was further tested in vivo by creating bone defects
on the parietal bones of aging female rats. BoneAlbumin and a noncoated demineralized
bone matrix (DBM) were used to fill in the bone defects, and the graft integration with
tissue was determined by computed tomography (CT), microCT and mechanical testing.
In vivo CT and ex vivo microCT measurements showed faster and stronger bone formation
and had a two-times higher fracture force compared to the uncoated bone grafts. After
in vitro incubation with MSCs, the albumin-coated grafts attracted approximately twice as
many cells as the uncoated grafts [47]. Simonffy et al. compared BoneAlbumin to bovine
xenografts in mandibular third molar extraction sockets in a study with 24 patients in a
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double-blinded study design. Albumin-coated grafts had the lowest level of postoperative
pain, and after 6 and 12 weeks, there were signs of tissue remodeling, while uncoated
xenografts were still demarcated from the host bone. One-year CBCT images showed
complete remodeling and integration, with a natural trabecular structure [69]. The recruit-
ment of cells such as MSCs into the defect region supports tissue formation; however,
the question arises if the inflammatory cells are also attracted by albumin coating [63].
Therefore, Mijiritsky et al. investigated interactions in the coculture of monocytes and stem
cells on albumin-coated bone grafts and bovine xenograft granules. One of the observations
was that monocytes have the ability to degrade uncoated bovine bone granules and that
albumin coating protects grafts from degradation. There was also a significant decrease
in the reactive oxygen species (ROS) and reactive nitrogen species (RNS) levels in the
albumin-coated group. Furthermore, the results of the mitochondrial energy metabolism
gene expression suggest that albumin coating relieves the gene expression in inflamed
and noninflamed conditions, resulting in a lower amount of differentially expressed genes
compared to cells seeded on uncoated xenografts. The cytokine analysis revealed that
culturing stem cells and monocytes on albumin-coated grafts resulted in increased levels
of HGF cytokines, which is important for tissue repair processes and anti-inflammatory
cytokines PGE-2 and IL-10 versus uncoated xenografts. This study shows that albumin,
alongside all the previously mentioned features, might also have immunomodulatory
functions that are important in healing and tissue regeneration [63].

In addition to numerous publications on bone allografts coated with albumin, bone
is not the only tissue used in regenerative medicine that was combined with albumin.
For example, polyfilament absorbable sutures were coated with fibronectin, poly-L-lysine
and albumin and were seeded with MSCs. After 48 h, albumin-coated sutures had the
highest cell number in vitro, and after implantation of the sutures to triceps surae muscle,
cells started to detach from the albumin-coated surface and migrate into the injured tissue.
Therefore, albumin-coated biomaterials have the potential for soft tissue regeneration [48].
An interesting solution was presented by Wang et al. where BSA was PEGylated and
glycosylated (BSA-PEG-LA) to create ECM-like biomaterials. The crosslinked product
could form a thin coating or a lyophilized 3D structure. Compared to the plastic surface of a
cell culture dish, this novel material was effective in improving cell growth and proliferation
more effectively than collagen coating, which had a very high degradation rate. BSA-PEG-
LA reached up to five-times higher cell viability in the 3D structure compared to a plastic
surface. This type of biomaterial may serve as a low-cost surface coating alternative to
fibronectin or collagen [78]. Another important property of albumin is corrosion resistance.
Sodium montmorillonite (MMT)/bovine serum albumin (BSA) composite coating was
prepared on magnesium alloy via hydrothermal synthesis, followed by dip coating. The
reason for including albumin in the composite coating is its good binding potential to
polypeptides and its ability to promote cell adsorption and proliferation on the surfaces of
implanted biomaterials. It was observed that the MMT-BSA coating had good corrosion
resistance and better biocompatibility versus the bare Mg alloy. In vivo studies revealed
that the implants with MMT-BSA maintained their structural integrity and only a slight
degradation at 120 days post-implantation. These results suggest that albumin can be
successfully used in its native form or as a composite coating for different biomaterials [50].
Figure 3 summarizes the most important properties of the albumin coating layer.



Int. J. Mol. Sci. 2022, 23, 10557 10 of 21

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 9 of 21 
 

 

grafts resulted in increased levels of HGF cytokines, which is important for tissue repair 

processes and anti-inflammatory cytokines PGE-2 and IL-10 versus uncoated xenografts. 

This study shows that albumin, alongside all the previously mentioned features, might 

also have immunomodulatory functions that are important in healing and tissue regener-

ation [63]. 

In addition to numerous publications on bone allografts coated with albumin, bone 

is not the only tissue used in regenerative medicine that was combined with albumin. For 

example, polyfilament absorbable sutures were coated with fibronectin, poly-L-lysine and 

albumin and were seeded with MSCs. After 48 h, albumin-coated sutures had the highest 

cell number in vitro, and after implantation of the sutures to triceps surae muscle, cells 

started to detach from the albumin-coated surface and migrate into the injured tissue. 

Therefore, albumin-coated biomaterials have the potential for soft tissue regeneration [48]. 

An interesting solution was presented by Wang et al. where BSA was PEGylated and gly-

cosylated (BSA-PEG-LA) to create ECM-like biomaterials. The crosslinked product could 

form a thin coating or a lyophilized 3D structure. Compared to the plastic surface of a cell 

culture dish, this novel material was effective in improving cell growth and proliferation 

more effectively than collagen coating, which had a very high degradation rate. BSA-PEG-

LA reached up to five-times higher cell viability in the 3D structure compared to a plastic 

surface. This type of biomaterial may serve as a low-cost surface coating alternative to 

fibronectin or collagen [78]. Another important property of albumin is corrosion re-

sistance. Sodium montmorillonite (MMT)/bovine serum albumin (BSA) composite coat-

ing was prepared on magnesium alloy via hydrothermal synthesis, followed by dip coat-

ing. The reason for including albumin in the composite coating is its good binding poten-

tial to polypeptides and its ability to promote cell adsorption and proliferation on the sur-

faces of implanted biomaterials. It was observed that the MMT-BSA coating had good 

corrosion resistance and better biocompatibility versus the bare Mg alloy. In vivo studies 

revealed that the implants with MMT-BSA maintained their structural integrity and only 

a slight degradation at 120 days post-implantation. These results suggest that albumin can 

be successfully used in its native form or as a composite coating for different biomaterials 

[50]. Figure 3 summarizes the most important properties of the albumin coating layer. 

 

Figure 3. Albumin coating on a biomaterial surface. Created with BioRender.com accessed on 21 

August 2022. 

2.5. Scaffolds 

Tissue damage resulting from an injury or loss of function due to aging or illness are 

serious challenges for regenerative medicine. Scaffolds can play an important role in new 

tissue formation and healing by attracting circulating cells to adhere to their surface in all 

three dimensions, stimulating proliferation and extracellular matrix secretion, while the 

slow degradation of the scaffold biomaterial makes space for new tissue formation [37]. 

Various materials have been developed as scaffolds, including metals, ceramics and pol-

ymers. Due to their flexibility in structural design, natural and synthetic polymers are 

currently the dominant scaffolding materials in tissue engineering [79]. Synthetic 

Figure 3. Albumin coating on a biomaterial surface. Created with BioRender.com accessed on
21 August 2022.

2.5. Scaffolds

Tissue damage resulting from an injury or loss of function due to aging or illness are
serious challenges for regenerative medicine. Scaffolds can play an important role in new
tissue formation and healing by attracting circulating cells to adhere to their surface in all
three dimensions, stimulating proliferation and extracellular matrix secretion, while the
slow degradation of the scaffold biomaterial makes space for new tissue formation [37].
Various materials have been developed as scaffolds, including metals, ceramics and poly-
mers. Due to their flexibility in structural design, natural and synthetic polymers are
currently the dominant scaffolding materials in tissue engineering [79]. Synthetic polymers
are chosen because of their ease of processing, good mechanical properties, controllability
in shape, porous structure and degradation rate. However, synthetic polymers might have
lower biocompatibility and bioactivity than natural polymers [35]. Therefore, scaffold
materials that can mimic the ECM are the most promising in tissue engineering, because
they can provide a functional environment for appropriate cell–cell interactions, stabilize
the forming tissue and serve as a reservoir of nutrients and growth factors [78]. Proteins
such as silk, fibroin, fibrin, fibronectin or collagen and polysaccharides such as cellulose,
starch, chitosan or hyaluronic acid are often used as ECM-like materials [80,81]. Superior
mechanical properties of fibrous proteins and the prevalence of electrospinning methods
for creating 3D fiber structures lead to the design of various protein-based nanofibers
for scaffold fabrication [36,82]. The electrospinning of fibrous, recombinant and globular
proteins was challenging for a long time, since their mechanical properties were poor.
However, recent developments in material science made it possible to use globular pro-
teins such as albumin for building three-dimensional porous scaffolds suitable for tissue
engineering applications.

2.5.1. Albumin-Only Scaffold

The first successful electrospinning of strong nanofibers made solely of bovine serum
albumin (BSA) was achieved by Dror et al. [82]. The fabrication process involved crosslink-
ing of the globular albumin form by opening disulfide bridges together with unfolding
the protein and allowing the formation of extended structures rich with intramolecular
disulfide covalent bonds. These fibers showed higher strength compared to fibers made of
other natural materials; however, their biocompatibility may have been compromised [82].
There are several studies that have utilized scaffolds that solely consist of albumin achiev-
ing very good biocompatibility and stability. Nseir et al. explored the mechanical and
biological features of electrospun albumin fiber scaffolds and compared them to PCL and
PLLA/PLGA scaffolds. The albumin scaffolds in vivo were biodegradable (around 50%
degradation after 3 weeks) and induced a mild inflammatory response when compared
with implanted PLLA/PLGA and PCL fiber structures. Various cell types were successfully
cultivated in vitro on vessel-like albumin scaffolds, indicating the scaffold supports cell
adhesion and proliferation. Another study of this group investigated a 3D cardiac patch
fabricated from albumin fibers. The expectation was that, due to the elastic nature of
albumin, the fibers would not prevent cell stretching and relaxation. As a control, PCL
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scaffolds were utilized, since this material is already used in cardiac tissue engineering,
with good results [83]. The values of the Young’s modulus of aligned and randomly ori-
ented albumin scaffolds were close to those of the native heart ECM, while the values of
the PCL scaffold were significantly higher. These results suggest that albumin patches
seem to have appropriate stiffness and elasticity for incorporating them into cardiac tissues.
Better water and protein absorption by albumin fibers might explain the significantly
larger area of attached cells on albumin scaffolds. The authors showed that the albumin
patches were able to support the assembly of functional cardiac tissues that generate strong
contraction forces and have great potential in cardiac tissue regeneration [84]. Li et al.
presented another processing method in which the albumin solution is converted into an
albumin polymer and then freeze-dried into a solid-state tissue scaffold. The crosslinking
is achieved due to the enzymatic activity of microbial transglutaminase. This albumin
scaffold has a sponge-like appearance with a high water adsorption capacity and moderate
mechanical strength. The surface electron microscopy analysis revealed a large pore size
that supports cell attachment and proliferation. Scaffolds seeded with MSCs provided
enhanced proliferation and osteogenic differentiation on the albumin scaffolds [40]. The
work of Sanches et al. and the development of the AlbuCORE scaffold is another example
of the successful use of an albumin-only scaffold in tissue engineering [85].

2.5.2. Albumin Hybrid Scaffolds and Hydrogels

Albumin offers many advantages when applied in biomedicine; however, for some
indications, it is more beneficial when albumin is combined with other biomaterials [86].
Hydrogels are hydrophilic polymers from synthetic or natural materials that have high
swelling potential in the presence of water [87]. Gayet et al. proposed in 1996 a new type of
hydrogel that was made by the copolymerization of bovine serum albumin and PEG [88].
The high water content (equilibrium water content > 96%) of these hydrogels allowed the
controlled release of hydrophilic and hydrophobic substances, as well as small proteins.
The release rates were tailored by varying the composition of the hydrogels. With a higher
molecular weight of the PEG component, fewer polymer chains were bound to BSA due
to steric hindrance, and the distance between two BSA molecules was greater. Therefore,
the water content increased with a higher molecular weight of PEGs and defined the
subsequent drug release profile. Oss-Ronen also investigated PEG-albumin, as well as PEG-
fibrinogen and PEG-albumin-fibrinogen, hydrogels [89]. They confirmed the good utility
of the composite hydrogels for providing sustained drug release. The release kinetics for
various drugs from the hydrogel matrix were shown to be controlled by the size of the drug,
the size of the PEG conjugated to the albumin and the amount of additional PEG added to
the hydrogel matrix. Additionally, they evaluated the hydrogel biocompatibility by seeding
them with human foreskin fibroblasts (HFFs). The PEG-fibrinogen and PEG-albumin-
fibrinogen hydrogels presented good cell spreading within the matrix; however, in the case
of PEG-albumin hydrogels, the cells did not spread and remained round even after 7 days
of experiments, highlighting the importance of ex vivo 3D cell culture experiments, since
the key biological properties could not be foreseen from the physicochemical examinations
only. Another group developed biomimetic hydrogel scaffolds composed of (PEG) and
collagen, fibrin or albumin. Interestingly, they also observed that PEG-albumin hydrogels
exhibited poor cell spreading and migration [90]. These studies showed that hydrogel
constructs can serve as a drug release device; however, the support of cell attachment and
proliferation by albumin-based hydrogels was suboptimal.

Calcium phosphate-based biomaterials are frequently used in biomedicine, especially
for bone regeneration, due to their similarity to the inorganic constituents of bone tissue,
bioactivity, osteoconductivity and moldability [91,92]. Amorphous calcium phosphate
(ACP) nanoparticles were used for the preparation of ACP-poly(d,l-lactic acid) (ACP-PLA)
nanofibers with the addition of BSA and described by Fu et al. [92]. The BSA-containing
ACP-PLA solution was easily electrospun into the nanofibers that displayed a fibrous
structure. To stimulate mineralization, the PLA, ACP-PLA and BSA-containing ACP-PLA
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nanofibrous round mats were soaked in simulated body fluid with ion concentrations that
are almost equal to those in human blood plasma. The morphology of the nanofibers,
except for PLA, was already altered after 1 day of immersion because of the deposition
of small nanoparticles on their surfaces. An extension of the mineralization time led to
more intense inorganic matter deposition and the creation of a 3D nanosheet network. The
surfaces of BSA-containing ACP-PLA and ACP-PLA alone became completely hydrophilic,
probably due to the increased water adsorption within the newly formed porous nanosheet
network. Osteoblast-like cells (MG63 cells) were cultivated on the scaffolds for 7 days,
and there was a continuous increase in cell metabolic activity on all the tested fibers.
Since the hybrid material with BSA and ACP-PLA achieved fast mineralization and high
biocompatibility, it may have potential applications in water-soluble drug delivery systems
for tissue engineering [92]. The complex dependencies between BSA and calcium were
investigated by Patel et al. and Haag et al. [93–95]. Their modeling study revealed several
conformational changes of albumin when exposed to calcium, which led to enhanced
albumin bioactivity and its multilevel beneficial effects on bone tissue healing. These
observations were confirmed when the polyampholyte polymer hydrogels containing
conjugated albumin exposed to different calcium concentrations were seeded with MC3T3-
E1 osteoblast-like cells. After 7 days, the best conditions for MC3T3-E1 cell adhesion and
viability were obtained in the group with a 0.05 M calcium concentration. Interestingly,
cell adhesion to the calcium-modified BSA-hydrogels was regulated by arginine-glycine-
aspartic acid (RGD) and collagen-specific integrins. These results demonstrated that the
delivery of bioactive calcium-modified albumin to the site of bone defect can improve cell
adhesion and tissue regeneration [93–95].

Strategies for functional repair in the central nervous system are limited due to the low
regenerative capacity of neural tissue. Nerve damage can be treated with a combination
of stem cell therapies and biomaterials to promote stem cell survival on grafts and inte-
gration within the tissue, as well as local growth factors delivery to the injury site [96,97].
Hsu et al. developed a scaffold construct based on serum albumin and hemin. After the
electrospinning of albumin, they doped the fibers with hemin, the oxidized form of iron
protoporphyrin IX (Fe3+), which is an essential regulator of gene expression and growth
promoter of cells [98,99]. The scaffolds were tested with the human episomal iPSC line and
revealed good biocompatibility and support for cell attachment. A further step was to test
the scaffolds’ ability for binding and releasing FGF2, which served as a model recombinant
protein. It was shown that the constructs with the addition of hemin and albumin can
bind FGF2 and provide a slow release profile together with enhanced proliferation of the
iPS cells. Neuronal differentiation of the iPS cells was measured by the percentage of
βIII-tubulin+ cells, and it was observed that hemin-doped albumin scaffolds had a higher
percentage of differentiated cells. The addition of hemin provides the conductive properties
of constructs, and the electrical characterization showed that, by applying voltage, a higher
current passed through the hemin-doped albumin scaffolds compared to the non-doped
scaffolds and PBS control. The effects of electrical stimulation on neuronal maturation and
network formation were tested with the potential for neurite outgrowth and branching in
the hiPSC-derived neurons. With electrical stimulation, the neurons exhibited the longest
neurite outgrowth and more neurite branching on the hemin-doped albumin scaffolds com-
pared to the other groups. The whole system was capable of incorporating and releasing
growth factors to modulate cell behaviours with optimized electrical stimulation, which
promoted structural maturation and enhanced neurite branching. Therefore, the hemin-
doped albumin-based construct is a promising new platform for neural tissue engineering.
Another example of an interesting combination of two natural biomaterials is the work of
Prasopdee et al. [100]. They used bovine serum albumin and cassava starch to fabricate 3D
scaffolds for liver regeneration. Similar to albumin, starch has been used as a biomaterial
for tissue engineering scaffolds, bone implants, wound dressing and as a substrate for cell
seeding or drug delivery systems [101]. The albumin and starch were dissolved in the
colloidal solution, freeze-dried, treated with methanol or ethanol and freeze-dried again.
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Nontreated scaffolds after only one freeze-drying step were also included in the study. The
BSA/starch scaffolds had porous structures in all three conditions, but the samples with
either ethanol or methanol treatments had substantially bigger pore sizes. While testing
the swelling potential, unexpectedly, the albumin/starch scaffolds without any treatment
were completely dissolved in distilled water. After the alcohol treatment, the scaffolds were
more resistant to water immersion and remained solid. However, the methanol treatment
scaffolds had a lower swelling efficiency and lower absorption ability than the ones after
ethanol treatment. A compression test showed that scaffolds with methanol treatment
could tolerate a higher applied force in both a dried and hydrated state. The metabolic
activity assay revealed that the viability of liver cancer cell line HepG2 for each tested
scaffold was greater than 90%. Considering low costs, the natural origin of the used mate-
rials and satisfactory results, this study suggests that BSA/starch scaffolds have a good
potential for use in regenerative medicine and tissue engineering. Additionally, Garcia
et al. tried to avoid toxic reagents and nonhazardous reagents for the electrospinning of
BSA nanofibers. They observed that the addition of ethanol (EtOH) in the solvent mixture
and thermal denaturation of BSA supports the formation of nanoparticles, and the pres-
ence of hydroxypropyl methylcellulose (HPMC) favors the formation of nanofibers [102].
Albumin, a globular protein, has been important in this regard, owing to its properties
such as biocompatibility, biodegradability, nonimmunogenicity, nontoxicity, water solubil-
ity, cost-effectiveness and tumor-targeting ability [7]. These studies confirmed that there
is growing interest in technologies that utilize albumin as a bioactive scaffold for tissue
engineering [103].

3. Albumin as a Local Therapeutic Agent
3.1. Bioactive Sites on the Albumin Chain

One of the most important functions of albumin in clinical applications is its bind-
ing property. Albumin binds fatty acids, bilirubin, metal ions, drugs such as penicillins,
sulfonamides, indole compounds, benzodiazepines, etc. [104]. There are three important
molecular regions in albumin that contain cysteine and histidine imidazole residues, which
are responsible for its binding capacity [26,105]. Domains IIA, IIIA and IB are binding
sites for hydrophobic and hydrophilic drugs that enable the transport of substances bound
noncovalently to albumin [26,106–108]. Oxidative stress most likely plays a significant role
in the pathogenesis of sepsis, end-stage renal disease or liver failure [109], and it is be-
lieved albumin might improve patient outcomes by having a neutralizing effect [105], since
cysteine-34 is a particularly redox-sensitive site of albumin [110]. Albumin has 16 histidine
imidazole residues, which are major targets for a reaction with the lipid peroxidation
product 4-hydroxynon-2-enal, the major product of membrane peroxidation [111] that
is linked to several diseases, such as Alzheimer’s and Parkinson’s, atherosclerosis, dia-
betes and cancer [112]. Imidazole residues are also responsible for the buffer function of
albumin [28,105]. Albumin has also the ability to stabilize therapeutic proteins, such as
interferon, interleukin-2, vascular endothelial growth factor or antibodies, and improve
their therapeutic efficacy [113–115]. Serum albumin, due to its long half-life, is prone to
nonenzymatic glycation that occurs during circulation. Glycated albumin was reported as
a reliable biomarker for diabetes screening and diagnosis; however, it was also shown to
protect other proteins from glycation and have positive effects on neuronal and glial cells
and the overall brain circulation [5,116].

3.2. Clinical Applications

Albumin infusion therapy is routinely applied in patients with hypoalbuminemia;
hypovolemia or shock; burns; major surgery or trauma; sepsis; cardiopulmonary bypass;
acute respiratory distress syndrome; hemodialysis and the sequestration of protein-rich
fluids [105,117,118], AIDS, cancer, cirrhotic ascites, erythrocyte resuspension and neonatal
hemolytic disease [5,113,119]—in short, albumin has been used as a drug for severely ill
patients since it became commercially available in the 1940s. Not only infusions but also
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albumin nanoparticles have been developed to treat cancer, diabetes, arthritis and hepatitis
C [7]. However, intravenous albumin use became controversial after the publication of
Cochrane Injuries Group Albumin Reviewers in 1998 and their conclusion that there is
no evidence that albumin administration reduces mortality in critically ill patients with
hypovolemia, burns or hypoalbuminemia and that, in these cases, it may even increase
mortality [118,120]. Vincent et al. recommended cases for safe albumin use, including
patients with cirrhosis, spontaneous bacterial peritonitis, septic shock and other infec-
tions, while albumin infusion should be avoided as a resuscitation fluid in patients with
traumatic brain injury. Even though it is unlikely that albumin administration will have
serious side effects in most patients, this therapy should be restricted to specific groups of
patients in whom there is evidence of beneficial therapeutic effects [118]. Raoufinia et al.
cautioned against using albumin in cardiac and renal failures, acute or chronic pancreatitis,
pulmonary edema or severe anemia because of the risk of acute circulatory overload. In
general, the concentration of albumin in blood over 2.5 g/dl (hyperalbuminemia) is a con-
traindication [5]. Serum heat-inactivation procedures are performed to prevent microbes
transmission; however, these methods do not eliminate prion-mediated diseases such as
Creutzfeldt-Jacob’s, although this issue might be eliminated by the use of recombinant
albumin [26]. Infusions might trigger some side effects such as mild hypotension, rash,
flushing, headache, urticaria, bronchospasm, fever and nausea, which normally disappear
when the infusion rate is slowed or ceased [5,121]. Nonetheless, albumin infusion is indeed
an important tool in critical care, and the above cases only point out that this resource has to
be used only in patients with specific needs and not as a cure-all for any serious condition.

3.3. Albumin and Blood-Derived Products

Blood-derived products have become a standard treatment procedure over the last
years. The best known and widely used products are platelet-rich plasma (PRP) and
platelet-rich fibrin (PRF). These products are blood extracts obtained by processing blood
at the bedside, typically through centrifugation [122]. The aim of the process is to separate
the blood components in order to discard the elements considered not suitable (erythro-
cytes) and to concentrate the elements that may be used for therapeutic applications (fibrin,
platelets, growth factors, proteins or leukocytes) [123]. Albumin is one of the main con-
stituents of such products; however, it is rarely considered a key element in the therapeutic
efficacy of blood products. There have been several reports on the successful use of blood
products in orthopedic and trauma surgery, plastic surgery, spinal surgery, heart bypass
surgery, chronic cutaneous and soft tissue ulcerations, wound healing and burns, peri-
odontal and oral surgery and maxillofacial surgery [124–132]. Blood products are used
not only in vivo but also as a regenerative factor in numerous in vitro studies. There
are some limitations to PRP and PRF when using them as a replacement for a standard
fetal calf/bovine serum supplement. PRP requires anticoagulants; otherwise, the cell
culture medium becomes a gel and PRF is a solid fibrin membrane, so it is difficult to
use it as a traditional supplement in a monolayer cell culture system. PRP and PRF are
used in clinical practice as autologous products; therefore, they are relatively low-risk
treatments, with the potential to improve and speed up the healing processes [133,134].
Indeed, PRP is the only therapy that has solid evidence for disease-modifying activity in
knee osteoarthritis [135]. However, Magalon et al. demonstrated substantial differences
among platelet-rich plasma products produced by various automated and manual pro-
tocols described in the literature [136]. These observations raise a concern that various
PRP products may evoke diverse cellular reactions due to the varied contents of platelets,
growth factors and leukocytes. Therefore, some studies have investigated alternatives
to highly concentrated PRP products such as different types of human serums, as well
as human serum albumin. In this approach, blood coagulation is induced, and the final
product is a serum containing growth factors and other proteins normally present in blood,
such as albumin. Serum-based blood products are cell-free, do not need any anticoagulants
and remain in liquid form; therefore, their use is more convenient for in vitro systems.
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Among these products, we can find standard human serum albumin, autologous condi-
tioned serum (ACS) developed by Meijer et al. [137], widely investigated hyperacute serum
(hypACT), which is a highly proliferative serum-based product that might be obtained in a
liquid or freeze-dried form [138–145] and plasma-derived albumin scaffold presented in
several in vitro and in vivo studies by Gallego et al. [146–149], as well as low molecular
weight albumin (LMWF5A) [150–156]. LMWF5A is manufactured by pasteurizing 5% HSA
solution and filtrating it through polyvinylidene difluoride (PVDF) membranes with a
5000-Da molecular weight cutoff, resulting in a low molecular weight solution containing
at least 20 different components. Except for albumin, there are other bioactive components
in LMWF5A: aspartyl alanyl diketopiperazine (DA-DKP), sodium caprylate (octanoate)
and N-acetyl-DL-tryptophan, which seem to have a strong influence on the LMWF5A
therapeutic properties. The authors observed that LMWF5A increases the production
of some anti-inflammatory factors: cytokine IL-10 and two microRNAs: miR146a and
miR200b; therefore, the overall effect of LMWF5A is anti-inflammatory [153]. The clini-
cal findings measured after LMWF5A injection into OA knee joints included pain relief,
increased patient mobility and improved global self-assessment [152,154,156]; therefore,
LMWF5A, together with other platelet- and serum-based blood products, seem to be in line
for becoming promising therapeutics in regenerative medicine and osteoarthritis treatment.

4. Conclusions

Albumin might be the most universal therapeutic in the biomedical field, as it is one
of the best-known proteins, easily accessible with low production costs and has excellent
regenerative effects. On the one hand, with its antithrombotic, anti-inflammatory and
antibacterial properties in the native form, it serves as a passivating protein for inert
materials. On the other hand, if its structure is modified or albumin is combined with
different biomaterials, it supports cell attachment, tissue formation and healing. Several
studies investigated the clinical outcomes of albumin-based products such as BoneAlbumin,
scaffolds, LMWF5A or serum-based products and reported numerous beneficial effects
of these therapies. We believe that patients can benefit from including albumin-based
biomaterials and therapeutics in regenerative medicine treatment strategies by achieving
better clinical outcomes with minimal side effects.

Ongoing developments indicate that albumin will be utilized in novel regenerative
medicine products, taking advantage of the large library of scientific evidence for its regen-
erative properties and its excellent biocompatibility. As the field of regenerative medicine
matures and innovations shift from the laboratory bench to the bedside, the humble al-
bumin protein gains more recognition. More and more studies focus on explaining the
complex interactions between albumin and different ligands and propose solutions for
omitting the main challenge of albumin as a biomaterial, which is its relatively high degra-
dation rate. Advanced composites using exotic nanostructured materials can have an edge
in a petri dish, but once regulatory requirements enter the picture, these can hardly make it
to clinical use, in some cases leaving well studies and naturally occurring proteins as the
only suitable building blocks for such therapies. Serum albumin shines in these circum-
stances as a very malleable and robust structure protein with a good safety profile and low
manufacturing cost, making it possible to move, e.g., implant coating technologies to be
readily used in human therapy. We expect to see more such technologies reaching clinical
development stages and ultimately appearing in the medical toolkit as albumin-based
regenerative therapies.
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