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Abstract
Notch signaling is iteratively used throughout development to maintain stem cell potential or

in other instances allow differentiation. The central transcription factor in Notch signaling is

CBF-1/RBP-J, Su(H), Lag-1 (CSL)—Su(H) in Drosophila—which functions as a molecular

switch between transcriptional activation and repression. Su(H) represses transcription by

forming a complex with the corepressor Hairless (H). The Su(H)-repressor complex not only

competes with the Notch intracellular domain (NICD) but also configures the local chromatin

landscape. In this issue, Yuan and colleagues determined the structure of the Su(H)/H com-

plex, showing that a major conformational change within Su(H) explains why the binding of

NICD and H is mutually exclusive.

Notch signaling is one of only a handful of highly conserved signal transduction pathways that
translate extracellular cues into changes in gene expression. Upon ligand binding, the Notch
receptor is proteolytically cleaved, resulting in the release of the Notch intracellular domain
(NICD). NICD subsequently migrates into the nucleus and binds to the transcription factor
CBF-1/RBP-J, Su(H), Lag-1 (CSL), which in Drosophila melanogaster is known as Suppressor
of Hairless, or Su(H) (see also Fig 1). The activation of Notch target genes requires the recruit-
ment of the coactivator complex, which is composed of transcription cofactors like mastermind
(MAM) and the histone acetyltransferase (HAT) p300 [1,2]. Distinct positive histone marks,
like H3K27ac and H3K4me3, characterize this transcriptionally active state (see Fig 1 [right
side: “ON”]). In the absence of a Notch signal, CSL recruits a corepressor complex containing
histone deacetylases (HDACs) and H3K4 demethylases (KDMs) (see Fig 1 [left side: “OFF”];
reviewed in [3]). Thus, the transcription factor CSL functions as a molecular switch by binding
either to corepressors or coactivators. In this issue, Yuan et al. [4] unveil the structural and
molecular details of the Su(H) corepressor complex in Drosophila. This is not only important
for the Notch community but is also a pioneering example of how other central transcriptional
switches in other evolutionary conserved signal transduction pathways may work. Interest-
ingly, it is known that epigenetic modifiers such as HDACs and HATs as well as histone lysine
demethylases (KDMs) and histone lysine methyltransferases (KMTs) contribute to the fine-
tuning of the transcriptional switch by dynamically regulating the chromatin environment at
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the core promoters and/or at enhancers. At the heart of this, there is a single transcription fac-
tor—or most likely an ensemble of several transcription factors—orchestrating the signaling
output even before the ligand binds to its cognate receptor. Thus, understanding the molecular
details of the key players in such switches—for example, the transcription factor Su(H) bound
to its cofactor Hairless—is the eye-opener for designing mutants that allow for differentiation
between activating and repressing mechanisms by changing individual amino acids. As an
excellent example, this has been done in the study by Yuan et al. using the power of crystallog-
raphy together with Drosophila genetics, which is particularly well-studied in regard to Notch
signaling.

The Notch Transcriptional Activator Complex
In order to understand molecular mechanisms of biological processes, crystal structures are
extremely insightful. Table 1 summarizes the structures that contain CSL-mediated transcrip-
tion complexes. Historically, the mammalian transcription factor CSL (also known as recogni-
tion binding protein of Jκ [RBP-J or RBP-Jκ]) was discovered by Honjo and colleagues in the
1990s [5] and later was revealed to be the mammalian ortholog of Su(H) from Drosophila [6].
The original CSL-DNA complex structure showed that CSL is a distant relative of the Rel

Fig 1. CSL functions as amolecular switch by binding either to corepressors or coactivators: Without an active Notch signal
(“OFF”), CSL recruits corepressor complexes. H3K4 Demethylase (KDM) and HDAC activity erase the active chromatin marks
H3K4me3 and H3K27ac, establishing a repressed chromatin state (left). After nuclear translocation, NICD (blue) interacts with CSL,
recruiting a coactivator complex (right). H3K4-methyltransferase and histone acetyltransferase (HAT) activity establish the active chromatin
marks H3K4me3 and H3K27ac, setting the chromatin in a transcriptional active state (“ON”).

doi:10.1371/journal.pbio.1002524.g001
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homology–containing transcription factor family [7]. The structure clearly shows that CSL is
composed of three domains: N-terminal domain (NTD), β-trefoil domain (BTD), and C-termi-
nal domain (CTD) [7–9]. The NTD and BTD domains are involved in DNA binding. Subse-
quently, two landmark studies determined the structure of the Notch activator complex,
comprising CSL, a small N-terminal peptide of MAM, and the RAM (RBP-J associated mole-
cule) and ANK (ankyrin repeats) domains of NICD. Importantly, as depicted in Fig 2A and
described in [10,11], the RAM domain of NICD interacts with the BTD of CSL, whereas MAM
is sandwiched between the surface formed between the CTD and ANK. This macromolecular
assembly is supported by experiments demonstrating that the ~70 amino acids of MAM seen
in the structure are sufficient to block transcription of Notch target genes in a dominant-nega-
tive manner [12].

The CSL [Su(H)] Transcriptional Repressor Complex
Like the Notch locus itself, the Hairless (H) locus was discovered in 1923 by Bridges and Mor-
gan as a haploinsufficient mutation in Drosophila (reviewed in [16]). The genetic interactions
demonstrated that H antagonizes Notch signaling in a dose-dependent manner. Considering
all the known interaction partners for CSL, H binds to Su(H) with the highest affinity (Kd = 2
nM) [4,17]. The Su(H)-interaction domain of H on its own is an unstructured random coil.
After binding to the CTD of Su(H), H assumes a β-hairpin conformation (see Fig 2C and the
manuscript in this issue [4]). Surprisingly, H interacts with specific side chains within the
hydrophobic core of the Su(H)-CTD that are not exposed to the surface in the unbound struc-
ture of Su(H) [4]. The CTD of Su(H) is composed of a seven-stranded immunoglobulin (Ig)-
fold (two β-sheets composed of three and four β-strands). This Ig-fold shows dramatic confor-
mational changes when bound to H. H is sandwiched between the two β-sheets that compose
the CTD, which is a hitherto completely new and unique interaction mode for Ig-folds. The
conformational changes within the CTD block the CTD–NICD interaction and explain why
binding of NICD and H are mutually exclusive. Based on their structural data, Yuan and col-
leagues designed specific point mutations within the CTD of Su(H), which lost H binding
capacity but still was able to bind to NICD. In D.melanogaster in vivo experiments, using

Table 1. Available CSL complex structure data (protein data bank [PDB] database).

PDB-ID Complex Species Reference

1TTU CSL bound to DNA Caenorhabditis elegans [7]

2FO1 activator complex bound to DNA* C. elegans [10]

2F8X activator complex bound to DNA# Homo sapiens [11]

3BRD CSL-RAM bound to DNA C. elegans [8]

3BRF CSL-RAM bound to DNA C. elegans [8]

3BRG CSL bound to DNA Mus musculus [8]

3NBN activator complex dimer bound to DNA H. sapiens [13]

3V79 activator complex bound to DNA* H. sapiens [14]

3IAG CSL bound to DNA M.musculus [9]

4J2X repressor complex bound to DNA** M.musculus, H. sapiens [15]

5E24 repressor complex bound to DNA*** Drosophila melanogaster [4]

*(CSL/ANK/RAM/MAM),
#(CSL/ANK/MAM),

**(CSL/KyoT2),

***(Su[H]/H).

doi:10.1371/journal.pbio.1002524.t001
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Notch-dependent wing and eye development as a readout, they could finally show that these
Su(H) mutants have lost their corepressor activities but preserved their coactivator activity.
These data highlight the importance of using Drosophila as a model system.

Considering the structure by Yuan et al. [4] in a broader context, the repressor structure
also suggests that the on- and off-rates of the Su(H)/H corepressor complex are slow; this is in
contrast to CSL/NICD/MAM coactivator. To date, a pulse of Notch signaling was mainly con-
sidered to be an interplay between receptor–ligand binding, posttranslational modifications of
the NICD, and, ultimately, turnover of the coactivator complex [18]. Now, the rate of Su(H)-
corepressors should be included in such considerations. Furthermore, the repressive mecha-
nism at Notch target genes could also be a general theme used for other signaling pathways,
like Wnt and Hedgehog signaling. For Hedgehog signaling, Gli is the central transcription fac-
tor, but the mechanisms of cofactor recruitment remain to be elucidated. For Wnt signaling,
the central transcription factor is T cell factor (TCF)/Lymphoid enhancer binding factor (Lef),

Fig 2. Surface views of the CSL coactivator complex (upper) and corepressor complexes (lower). (A) The DNA-bound CSL activator complex
consists of CSL (green), NICD (RAM domain, red; ankyrin repeats, yellow), and mastermind (MAM, orange). (PDB-ID: 1TTU). (B) KyoT2 (red) interacts
with the BTD of CSL, similar to the NICD RAM domain (RAM-type). (PDB-ID: 4J2X). (C) Hairless interacts with the CTD of Su(H), resulting in a dramatic
change of CTD conformation (H-type). (PDB-ID: 5E24). (D) The crystal structure of the SMRT/HDAC1 associated repressor protein (SHARP)-CSL
corepressor complex and the CSL-RBPJ interacting and tubulin associated (RITA) corepressor complex is unknown at the moment (PDB-ID, RBPJ
bound to DNA: 3BRG).

doi:10.1371/journal.pbio.1002524.g002
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which in the absence of a Wnt signal binds promoters and recruits HDAC-containing core-
pressor complexes (reviewed in [19]).

The CSL-Repressor Complex Configures Chromatin for the Notch
Response
Regarding the repressive mechanism mediated by the CSL-repressor complex, H recruits
Groucho and an HDAC-containing C-terminal binding protein (CtBP) corepressor complex
[20–22]. The same is true for the human CSL-repressor complex containing HDACs and CtBP
[23] (reviewed in [24]). Surprisingly, there is no direct Hairless homolog in mammals, but the
functional homolog suggested by us and others is SHARP (also known as Spen or MINT).
SHARP directly binds CSL, and intriguingly, it also interacts with the CTD of CSL similarly to
Hairless [25].

Biochemical experiments from several laboratories implicated not only HDACs but also
H3K4 demethylases as direct CSL-associated factors both in Drosophila [26–28] and mammals
[28,29]. Recently, we added the counteracting H3K4 methyltransferase KMT2D as a novel
component of the CSL coregulator complex [30]. All of these chromatin modifications are not
only directed by a single transcription factor but most likely by a set of few transcription fac-
tors. The created balance between positive and negative histone marks sets the stage for the
incoming extracellular signal.

The structure-based point mutants described in [4] gives us insights into how precisely
mutagenesis can be used to dissect function of pivotal transcription complexes. Clearly, the
next big step in the field is to solve the structure of human CSL/SHARP corepressor complex.
Since CSL has been shown to function as a tumor suppressor [31], it might be feasible to design
therapeutics that disrupt CSL-corepressor interactions in order to weakly activate Notch sig-
naling, which may be beneficial in some disease settings.

Genome-wide studies using anti-CSL and anti-NICD antibodies have been important to
define bona fide Notch target genes [32–34] in cells. Further analysis suggests that CSL occu-
pancy depends on the presence of an active Notch signal [35,36], questioning the whole con-
cept of CSL-bound corepressors. On the other hand, there are reports showing that deletion of
CSL leads to derepression of some Notch target genes, both in Drosophila [20,37,38] and mam-
mals [39]. Certainly, CSL knockout followed by rescue with wildtype or mutant CSL will be key
to addressing this open question, leading the way forward to dissect individual functions of this
central transcription factor. It will also be interesting to dissect the chromatin landscape at
Notch target genes in the presence or absence of CSL or of individual corepressors.

In mammals, the situation of the CSL corepressor—namely SHARP [40,41], KyoT2 [42],
and RITA [43] complex—is more complex, and the molecular mechanisms need to be further
elucidated in the future. Clearly, as a next step, the cocrystal structures of CSL/SHARP and
CSL/RITA would be a big move forward. (Fig 2D). This will unravel the molecular mechanisms
whether or not the RAM-type or Hairless-type of binding to transcription factor CSL is the
predominant one or if alternative types of interactions do exist.
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