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Abstract

Background: Escherichia coli exhibits diauxic growth in sugar mixtures due to CRP-mediated catabolite
repression and inducer exclusion related to phosphotransferase system enzyme activity. Replacement of
the native crp gene with a catabolite repression mutant (referred to as crp*) enables co-utilization of
glucose and other sugars in E. coli. While previous studies have examined the effects of expressing CRP*
mutants on the expression of specific catabolic genes, little is known about the global transcriptional effects
of CRP* expression. In this study, we compare the transcriptome of E. coli W3110 (expressing wild-type
CRP) to that of mutant strain PC05 (expressing CRP*) in the presence and absence of glucose.

Results: The glucose effect is significantly suppressed in strain PCO5 relative to strain W3110. The
expression levels of glucose-sensitive genes are generally not altered by glucose to the same extent in
strain PCO5 as compared to W3110. Only 23 of the 80 genes showing significant differential expression
in the presence of glucose for strain PCO5 are present among the 418 genes believed to be directly
regulated by CRP. Genes involved in central carbon metabolism (including several TCA cycle genes) and
amino acid biosynthesis, as well as genes encoding nutrient transport systems are among those whose
transcript levels are most significantly affected by CRP* expression.

We present a detailed transcription analysis and relate these results to phenotypic differences between
strains expressing wild-type CRP and CRP*. Notably, CRP* expression in the presence of glucose results
in an elevated intracellular NADPH concentration and reduced NADH concentration relative to wild-type
CRP. Meanwhile, a more drastic decrease in the NADPH/NADP* ratio is observed for the case of CRP*
expression in strains engineered to reduce xylose to xylitol via a heterologously expressed, NADPH-
dependent xylose reductase. Altered expression levels of transhydrogenase and TCA cycle genes, among
others, are consistent with these observations.

Conclusion: While the simplest model of CRP*-mediated gene expression assumes insensitivity to
glucose (or cAMP), our results show that gene expression in the context of CRP* is very different from
that of wild-type in the absence of glucose, and is influenced by the presence of glucose. Most of the
transcription changes in response to CRP* expression are difficult to interpret in terms of possible
systematic effects on metabolism. Elevated NADPH availability resulting from CRP* expression suggests
potential biocatalytic applications of crp* strains that extend beyond relief of catabolite repression.
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Background

E. coli growing in a mixture of sugars exhibits diauxic
growth characteristics, whereby glucose is preferentially
assimilated before other sugars. This is due to CRP-medi-
ated catabolite repression and inducer exclusion related to
phosphotransferase system enzyme activity. It is well
established that cyclic AMP (cAMP) and its receptor pro-
tein (CRP) are involved in transcriptional activation of
catabolic genes [1,2], but the details of catabolite repres-
sion and inducer exclusion mechanisms and their relation
to the levels of cAMP and CRP (also known as CAP) are
not clear and have motivated many studies [3-7].

Inducer exclusion is a result of dephosphorylation of
enzyme IIAGk of PTS [8,9] and catabolite repression is
associated with altered levels of cAMP [10-12] and CRP
[13]. Enzyme IIAG, when unphosphorylated, inhibits
activity of other transport systems (non-PTS transporter)
[14-16]. In its phosphorylated form, enzyme ITAGk stimu-
lates adenylate cyclase activity, resulting in higher intrac-
ellular levels of cAMP [17,18] and the cAMP-CRP complex
(global transcription activator).

Efforts to study or alleviate catabolite repression mediated
by CRP have resulted in a series of CRP mutants isolated
from strains lacking adenylate cyclase and having an
apparent reduced dependence on cAMP for activating cat-
abolic genes (called CRP*, CRP-in or CAP¢) [1,19,20].
Genetically different crp* strains reported are also pheno-
typically different, showing different sensitivities to cyclic
nucleotides and relieving catabolic repression of select
genes examined to different extents [21]. For example, six
different crp* mutants isolated after UV treatment and
selection for a lactose* phenotype in an adenylate cyclase-
deficient E. coli strain showed a variety of utilization pat-
terns for different sugars (lactose, maltose, arabinose,
xylose, ribose, mannose, mannitol) as well as different
levels of activation of the lac operon by cAMP or cGMP
[22]. Similar examples have been reported by others
[3,21].

Ability to co-utilize sugars via relief of catabolite repres-
sion during microbial production of value-added chemi-
cals has potential to improve bioproduction process
economics [23]. We previously engineered E. coli to pro-
duce xylitol from xylose while metabolizing glucose as a
source of carbon and energy (xylose metabolism is disa-
bled) [24,25]. Expression of CRP* was an effective
approach to promote expression of xylose transporters
and enhance xylitol production in the presence of glucose.
Although plasmid-based, CRP-independent expression of
xylose transporters in wild-type crp strains also enhances
xylose uptake and xylitol production in the presence of
glucose [25], the favorable effects of CRP* expression
were found to go beyond improving xylose transport and
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to include other beneficial phenotypes such as improved
xylitol titer in controlled batch fermentation and reduced
acetate production and higher yields on xylose reduced
per mole of glucose consumed in resting cell transforma-
tions [26].

While CRP*s have been studied at the molecular level and
the effects of expressing CRP* mutants on the expression
of specific catabolic genes have been reported, the global
transcriptional effects and regulatory consequences of
CRP* expression is not known. Here, we report the results
of comparisons between the transcriptome of E. coli
W3110 (expressing wild-type CRP) and that of mutant
strain PCO5 (expressing CRP*) in the presence and
absence of glucose through microarray analysis. Our
results show that gene expression in PCO5 is drastically
different from that of W3110 in both the presence and
absence of glucose, and that while expression of the CRP*
allele used in this study has the general effect of suppress-
ing transcriptional changes due to glucose, a significant
response to glucose nonetheless remains. Results are ana-
lyzed in light of the observed differences between wild-
type and CRP* strains during xylitol production. We iden-
tify many genes showing differential expression that are
consistent with the observed elevated levels of glucose
oxidation and NADPH-dependent xylose reduction for
PCO05 compared to W3110. A subsequent intracellular
cofactor analysis reveals CRP*-correlated effects on cofac-
tor levels that are consistent with the observed expression
changes.

Results

The E. coli W3110-derivative CRP* strains used in our
studies are derived from E. coli donor strain ET25 [8],
which expresses a CRP* mutant with three amino acid
substitutions (I112L, T1271, and A144T) identical to
those found in an earlier characterized CRP* strain
CA8404 [1]. Amino acid position 127 lies in the cAMP
binding pocket, and T1271 or T127L mutations occur fre-
quently in CRP* alleles [21,27], presumably serving to
reduce the cAMP requirement to form an activating CRP
complex [27]. Mutation A144T is also frequently found in
different CRP* alleles [3,21,28] and can exhibit the CRP*
phenotype to some extent even as the only mutation in
the protein [29]. This position lies in the DNA binding
domain of CRP and is suggested to improve affinity of the
protein for CRP binding sites [29]. A fourth base substitu-
tion in the crp* sequence results in a T28K mutation,
which is the result of native differences in the crp sequence
between W3110 and the donor strain.

Genome-wide transcriptional effects of glucose and CRP*
Table 1 summarizes the genome-wide effects of CRP*
expression under the conditions tested, while Table 2 lists
the average signal values and expression ratios for specific

Page 2 of 14

(page number not for citation purposes)



Journal of Biological Engineering 2009, 3:13

Table I: Summary of genome-wide effects of CRP* expression.
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Conditions compared Number of genes showing significant ~ Up-regulated Down- Genes in common with WT G/WT
differential expression regulated comparison
WT G/WT 629 375 254 629
CRP* G/CRP* 80 29 51 43
(CRP* G/CRP*)/(WT G/WT) 238 e e 198
CRP* G/WT G 349 232 117 163
CRP¥*/WT 553 392 161 205
CRP* G/IWT 481 330 151 218

Four different conditions were tested: W31 10 in LB+glucose medium (WT G), W3110 in LB medium (WT), PCO5 in LB+glucose medium (CRP*
G), and PCO5 in LB medium (CRP*). Differences in gene expression levels with a P-value of <0.05 were considered significant in each comparison.

genes mentioned in this paper. Supplementary Table S1
(see Additional file 1) contains signal values for the com-
plete probe set data for the E. coli K-12 genome. Transcrip-
tome analysis of strain W3110 reveals that 629 genes
show significant changes in expression level in response
to the presence of glucose (comparison between WT G
and WT in Figure 1a). 375 of these genes are upregulated
by glucose, as depicted in Figure 1a. The complete list of
expression levels of the genes that are differentially
expressed between WT G and WT is provided in Supple-
mentary Table S2 (see Additional file 2). Catabolic genes,
membrane-related components, and sugar transporters
(especially non-glucose PTS related enzymes) represent a
large portion of genes repressed by glucose. In a study of
CRP-dependent gene expression, Gosset and coworkers
reported transcriptome analysis of CRP-dependent genes
in another E. coli K-12 strain BW25113 [30]. In Table 3 we
compare their result to results from our study for common
conditions tested (i.e., WT G/WT). While their study did
not examine CRP*, this comparison provides an indica-
tion of the consistency of glucose-responsive gene expres-
sion among different but similar strains. Our comparison
focuses on genes involved in central metabolism and
shows that the genes which are subject to glucose repres-
sion in BW25113 (such as aceA (isocitrate lyase mono-
mer), aldA (aldehyde dehydrogenase A), sdhA (succinate
dehydrogenase) and sucA (oxoglutarate dehydrogenase))
are also downregulated in the presence of glucose for
W3110. However, not all the genes which are upregulated
in the presence of glucose in BW25113 are upregulated in
W3110 under the same conditions (examples are aceE
(pyruvate dehydrogenase E1 component), guaB (IMP
dehydrogenase), rpsQ (30S ribosomal subunit protein
S17)). This is likely to be due to differences between these
two strains [26,31-33] as well as the differences in experi-
mental methods.

Figure 1b depicts the changes in expression levels of the
same genes shown in Figure 1a for CRP mutant strain
PCO05 in response to glucose. The average WT G/WT ratio
for the genes which are upregulated in W3110 in the pres-

ence of glucose is 4.06 while the average CRP* G/CRP*
ratio for the same genes is 1.07. For downregulated genes
in W3110 by glucose, WI' G/WT and CRP* G/CRP* ratios
are 0.32 and 0.81 respectively. These results show that
genes whose expression is significantly altered by glucose
in strain W3110 are generally not altered to the same
extent in strain PCO5 and that CRP* suppresses this effect
of glucose.

Figure 2 depicts that fewer genes show significant changes
in expression level for strain PC05 (80 genes) compared
to W3110 (629 genes) when grown in the presence versus
absence of glucose. 29 of these genes are upregulated in
the presence of glucose. This confirms the expected role of
CRP* in the alleviation of glucose repression. Only 43
genes are common between those of Figure 1 and Figure
2. In contrast to W3110, the number of genes that are
repressed in the presence of glucose in PCO5 is greater
than the number of genes that are upregulated. Only 3%
of genes that are upregulated in W3110 in the presence of
glucose are also upregulated in PC05 in the same condi-
tion, while 12% of glucose-repressed genes in W3110 are
also repressed by glucose in PCO5.

The complete list of expression levels of the genes that are
differentially expressed between in PCO05 with versus
without glucose is provided in Supplementary Table S3
(see Additional file 3). Specific examples of genes that are
upregulated in PCO5 in response to glucose include: the
PTS gene ptsG, che genes (involved in regulation of chem-
otaxis), dhaM (associated with dihydroxyacetone kinase),
edd (encoding phosphogluconate dehydratase of the
Entner-Doudoroff pathway), gnt genes (gluconate trans-
port and metabolism), genes involved in amino acid
metabolism such as glt (glutamate synthase), and ser (ser-
ine biosynthesis) genes, and ymf genes of the lambdoid
prophage element el4. Genes that are downregulated in
PCO5 in response to glucose include: argD (involved in
lysine and arginine biosynthesis), glp genes (glycerol
transport and metabolism), gntP (encoding a gluconate
transporter), srlA (glucitol/sorbitol PTS system), thiCE
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Table 2: Expression levels for the genes discussed in this paper.
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Gene WT G WT CRP* G CRP* WT G/WT CRP* G/CRP* CRP* G/WT G CRP* G/WT
aceA 1806 3171 2584 1980 0.6 1.3 1.4 0.8
aceE 7646 13291 10053 9167 0.6 1.1 1.3 0.8
acs 56 223 203 386 0.3 0.5 3.6 0.9
aldA 370 2471 937 1613 0.2 0.6 2.5 0.4
argD 44 38 73 158 1.1 0.5 1.7 1.9
asnA 594 1741 1409 1880 0.3 0.8 24 0.8
cheR 1588 2315 2311 1007 0.7 23 1.5 1.0
cheY 5365 6487 5893 2646 0.8 22 1.1 0.9
citF 50 25 306 269 2.0 1.1 6.1 12.2
dhaM 8790 1502 10556 3530 5.9 3.0 1.2 7.0
edd 4178 756 3582 980 5.5 3.7 0.9 4.7
fruA 3105 1289 5777 3659 24 1.6 1.9 4.5
fruk 3722 1934 6807 3866 1.9 1.8 1.8 35
fumA 956 3284 4013 3738 0.3 1.1 42 1.2
gapC 1316 58l 2345 2383 23 1.0 1.8 4.0
gatD 1560 475 6080 7981 33 0.8 3.9 12.8
gatR 1776 786 6106 5039 23 1.2 34 7.8
ged 491 467 171 67 I.1 2.5 0.4 0.4
gnP 2682 1037 1108 1374 2.6 0.8 0.4 I.1
glpC 564 8563 5595 13130 0.1 04 9.9 0.7
glpF 738 12693 2384 10944 0.1 0.2 32 0.2
glpG 1225 895 938 1426 1.4 0.7 0.8 I.1
glpK 360 8374 1579 8395 0.04 0.2 44 0.2
glpQ 159 4424 1747 9315 0.04 0.2 1.0 0.4
glpT 54 4285 893 9145 0.01 0.1 16.5 0.2
gltB 3219 2423 3388 1487 1.3 23 1.1 1.4
ghtD 1881 1282 1829 595 1.5 3.1 1.0 1.4
glyA 1613 3148 3353 3448 0.5 1.0 2.1 1.1
gntK 631 217 670 259 29 2.6 1.1 3.1
gntP 87 354 321 799 0.2 04 37 0.9
gntU 334 98 260 126 34 2.1 0.8 2.7
guaB 4670 7698 2558 1733 0.6 1.5 0.6 0.3
IdhA 1823 1281 6014 3669 1.4 1.6 33 4.7
maeB 579 1420 1509 1839 0.4 0.8 2.6 .1
malF 2381 2353 7365 9358 1.0 0.8 3.1 3.1
manZ 3993 2734 12806 9993 1.5 1.3 32 4.7
mdh 5878 9397 12603 15821 0.6 0.8 2.1 1.3
mglA 10 592 400 1205 0.02 0.3 40.0 0.7
mglB 38 1376 1529 4340 0.03 0.4 40.3 I.1
nrfE 783 21 531 754 36.5 0.7 0.7 247
nrfF 2460 41 1177 2267 59.7 0.5 0.5 28.6
nrfG 611 10 216 435 58.6 0.5 04 20.7
pntA 3946 6915 7400 7086 0.6 1.0 1.9 .1
pntB 1736 2546 3057 3083 0.7 1.0 1.8 1.2
ppsA 247 6026 1325 3494 0.04 04 54 0.2
proA 2536 2397 13 12 I.1 1.1 0.01 0.0l
proB 3589 3092 7 4 1.2 1.9 0.00 0.00
ptsG 13731 3926 16556 5403 35 3.1 1.2 42
rpsQ 6405 12505 9398 7652 0.5 1.2 1.5 0.8
sdhA 1033 7257 3292 3154 0.1 1.0 32 0.5
sdhB 895 5161 2407 2521 0.2 1.0 2.7 0.5
sdhD 556 5466 2568 1980 0.1 1.3 4.6 0.5
serA 2256 956 1638 793 24 2.1 0.7 1.7
serC 3904 2365 3230 1738 1.7 1.9 0.8 1.4
srlA 174 4601 313 3037 0.04 0.1 1.8 0.1
sthA 3236 3764 1936 2741 0.9 0.7 0.6 0.5
sucA 3988 8390 4822 4421 0.5 1.1 1.2 0.6
tdcA 74 4064 3412 8483 0.02 04 45.9 0.8
tdcB 147 4614 7708 13552 0.03 0.6 524 1.7
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Table 2: Expression levels for the genes discussed in this paper. (Continued)

tdcE 95 397 3932 11414 0.2
tdcG 126 182 3018 14708 0.7
thiC 163 179 212 455 0.9
thiE 136 140 183 412 1.0
thrA 812 2686 1997 1279 0.3
thrB 849 2857 2165 1353 0.3
thrC 783 1722 1594 1378 0.5
tnaA 688 16366 10805 23343 0.04
tnaB 74 3825 1957 9810 0.02
treB 4465 17280 4711 19044 0.3
treC 3007 12164 2606 15416 0.3
Upd 11584 3965 4736 6483 29
ymfL 29 56 364 71 0.5
ymfO 114 177 961 137 0.7

0.3 41.4 9.9
0.2 23.9 16.6
0.5 1.3 1.2
0.4 1.4 1.3
1.6 2.5 0.7
1.6 2.6 0.8
1.2 2.0 0.9
0.5 15.7 0.7
0.2 26.6 0.5
0.3 1.1 0.3
0.2 0.9 0.2
0.7 0.4 1.2
5. 12.5 6.6
7.0 8.4 5.4

Four different conditions were tested: W31 10 in LB+glucose medium (WT G), W3110 in LB medium (WT), PCO5 in LB+glucose medium (CRP*

G), and PCO5 in LB medium (CRP¥*)

genes (involved in thiamine biosynthesis), and treBC
genes (trehalose transport and metabolism). Refer to
Table 2 for expression levels and ratios.

418 genes in the E. coli genome are suggested to be regu-
lated in part by CRP, as reported by the most current Eco-
Cyc database [34]. While the modes of regulation of many
of these genes are complicated and not well understood

Table 3: Comparison between expression levels (signal values) of
the wild-type strain genes in response to the presence of glucose
in two different studies.

Gene symbol This study Study by Gosset et al. [30]

WTG WTG/WT WT G WT G/WT

Upregulated genes in the study by Gosset and coworkers

aceE 7646 0.58 8177 4.4
fis 3058 0.99 5726 6.9
guaB 4670 0.6l 2749 4.2
ptsG 13731 3.50 2387 3.2
rplS 8353 0.84 5704 2.7
rpmE 13204 1.18 8773 3.9
rpsQ 6405 0.51 3311 2.7
rpsT 10344 1.8 24476 2.6
spf 11308 3.40 26801 1.2
Downregulated genes in the study by Gosset and coworkers
aceA 1806 0.57 498 0.2
aceB 1466 0.65 296 0.2
aldA 370 0.15 305 0.1
fumA 956 0.29 819 0.3
gltA 126 0.27 452 0.1
mdh 5878 0.62 996 0.2
pckA 6733 0.56 765 0.3
sdhA 1033 0.14 614 0.2
sdhB 556 0.10 401 0.2
sucA 3988 0.47 822 0.2
sucB 6087 0.60 802 0.1
sucC 5447 0.59 1250 0.2
sucD 3439 0.58 526 0.1

This comparison focuses on genes involved in central metabolism.

(often involving multiple transcription factor binding
sites), the CRP-cAMP complex is assigned to be a tran-
scriptional activator for approximately 321 genes (imply-
ing upregulation in the absence of glucose) and a
repressor for approximately 46 genes (implying downreg-
ulation in the absence of glucose) (in some cases the role
of CRP is dual or unclear). While 629 genes show signifi-
cant changes in their expression levels in response to the
presence of glucose in W3110 (Figure 1), only 19% of
them (118 out of 629) have a CRP binding site close to
their start codon (these genes are highlighted in green in
Additional file 2 (Table S2)). This result is perhaps not
unexpected when considering that most genes under CRP
control are also regulated by other transcription factors
[34]. Of these 118 genes, 25 are upregulated while 93
show reduced expression in the presence of glucose. 77
out of the 93 genes downregulated in glucose are
described in Ecocyc as being activated by CRP-cAMP,
showing good agreement with the expected inverse rela-
tionship between glucose presence and CRP-cAMP activ-
ity. Meanwhile only 23 of the 80 genes showing
significant differential expression in the presence of glu-
cose for strain PCO5 are present among the list of 418
genes believed to be directly regulated by CRP (high-
lighted in green in Additional file 3 (Table S3); 7 are
upregulated in glucose, and 13 out of the remaining 16
downregulated genes are reported to be activated by CRP-
cAMP and therefore expected to show lower expression in
the presence of glucose), again demonstrating significant
alleviation of catabolite repression. Thus, the majority of
expression changes resulting from the presence of glucose
or the CRP* mutations are not directly related to altered
regulation by CRP at CRP binding sites, but rather due to
secondary effects resulting from a smaller number of
direct, CRP-mediated expression differences.

To investigate which genes respond differently to glucose
in PCO5 compared to W3110, an interaction term ((CRP*
G/CRP*)/(WT G/WT)) was examined with the same crite-
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WT G/WT

1 101 201 301 401 501 601
Gene number

(o

CRP*G/CRP*

1 101 201 301 401 501 601
Gene number

Figure |

Genome-wide transcriptional effects of glucose in
strain W31 10 expressing wild-type CRP, presented
as expression ratios for individual genes showing sig-
nificant differential expression in the presence and
absence of glucose (WT G/WT). a) 629 genes show sig-
nificant changes in expression level in response to the pres-
ence of glucose in strain W3110. b) The changes in
expression levels of the same genes shown in (a) in CRP*
strain PCO5, in response to glucose. Gene names and expres-
sion levels are given in supplementary Table S2 (see Addi-
tional file 2).

ria as pair-wise comparisons. This comparison reports the
difference of differences and reveals that 238 genes
respond differently to the presence of glucose in W3110
compared to PCO5, as illustrated in Figures 3a and 3b
(listed in supplementary Table S4 (see Additional file 4)).
As shown in Table 2, ppsA (encoding phosphoenolpyru-
vate synthase), glp genes (involved in glycerol transport
and metabolism), mgl genes of the galactose ABC trans-
porter, and TCA cycle genes fumA (fumarate hydratase
class I) and sdhA, sdhB, sdhD (succinate dehydrogenase)
all show significantly different responses to glucose in
W3110 compared to PCO5.

Pair-wise comparison between the CRP* G and WT G con-
ditions identifies the changes in transcriptional levels of
genes affected by CRP* in the presence of glucose. In this
category, 349 genes show significant changes in their
expression levels (Table 1), as depicted in Figure 4 and as
listed in supplementary Table S5 (see Additional file 5).
Many of the genes upregulated by CRP* (strain PCO05) are
involved in transport, catabolism, and amino acid metab-
olism (Table 2), including glp genes (involved in glycerol
transport and metabolism), mgl genes (galactose ABC
transporter), tdc genes (involved in serine and threonine
metabolism), and tnaB (encoding a tryptophan trans-

http://www.jbioleng.org/content/3/1/13

porter). Genes downregulated by CRP* in this compari-
son include gcd (encoding glucose dehydrogenase), ginP
(glutamine ABC transporter), pro genes (involved in pro-
line biosynthesis), and udp (uridine phosphorylase,
involved in pyrimidine ribonucleoside metabolism).
Additional differentially expressed genes of relevance to
this study are described in the Discussion.

Pair-wise comparison of gene expression in PC05 and
W3110 grown on LB (without glucose) reveals changes in
gene transcription levels as a result of the CRP* mutation.
This comparison shows that 553 genes are expressed dif-
ferently (392 of them are upregulated) between these two
strains in the absence of glucose. These results are summa-
rized in Table 1, and the specific genes are listed in supple-
mentary Table S6 (see Additional file 6). gapC (encoding
glyceraldehyde 3-phosphate dehydrogenase), nrf genes
(involved in anaerobic respiration), and tdc genes
(involved in serine and threonine metabolism) are exam-
ples of genes upregulated by CRP*.

Finally, to examine the extent to which CRP* reduces the
glucose effect, we performed a pair-wise test between two
conditions: PCO5 in the presence of glucose (CRP* G) and
W3110 in the absence of glucose (WT). Our results show
that the transcriptional levels of 481 genes are signifi-
cantly different between these two conditions. These
results are summarized in Table 1 and the specific genes
and expression values are listed in supplementary Table
S7 (see Additional file 7). Examples of genes most signifi-
cantly upregulated by CRP* in glucose include the nrf
genes, citF (encoding citrate lyase), gat genes (involved in
hexitol transport and metabolism), edd (encoding phos-
phogluconate dehydratase), ldhA (lactate dehydroge-
nase), fru genes (fructose transport and metabolism),
manZ (mannose PTS permease), ptsG, and malF (maltose
ABC transporter).

Real-Time Reverse Transcription PCR

To confirm the microarray results, the transcript levels of
ppsA and pntA, both of which showed significant changes
in their transcriptional levels under the various conditions
tested, were compared by real-time reverse transcription
PCR. The transcript of rpsQ was also analyzed, as this gene
was noted to respond quite differently to the presence of
glucose with wild-type CRP in our study as compared to
the study by Gosset (WT G/WT value of 0.51 compared to
2.7) [30]. Data are presented in supplementary Table S8b
as fold-changes (signal ratios) for all conditions tested,
and show a good agreement between microarray and real-
time RT-PCR results (see Additional file 8).

Cofactor analysis
In order to better understand how CRP* expression may
influence NADPH availability for xylose reduction, intra-
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. L P T L P
1 26 51 76
Gene number
Figure 2

Genome-wide transcriptional effects of glucose in
CRP#* strain PCO05, presented as expression ratios for
individual genes showing significant differential
expression in the presence and absence of glucose
(CRP* G/CRP*). a) 80 genes show significant changes in
expression level for strain PCO5. Only 29 are upregulated. b)
The changes in expression levels of the same genes shown in
(@) for strain W31 10, in response to glucose. Gene names
and expression levels are given in supplementary Table S3
(see Additional file 3).

cellular cofactor concentrations were quantified for wild-
type and CRP* strains engineered to produce xylitol. To
prevent xylose metabolism in these strains, xyIB encoding
xylulokinase was deleted [24]. The wild-type CRP strain
(W31104xyIB) was transformed with plasmid pPCC207
for inducible co-expression of an NADPH-dependent
xylose reductase (CbXR) and the E. coli ATP-dependent
xylose transporter system (XylFGH) [25], while the CRP*
strain (PCO54xylB) was transformed with plasmid
pLOI3815 for CbXR expression [24]. The strains were
then compared after growth on glucose (no xylitol pro-
duction) versus growth on glucose plus xylose (resulting
in xylose reduction).

Results from the intracellular cofactor concentration
measurements are summarized in Table 4. Also listed are
the xylitol production results for these strains in batch fer-
mentations and resting cell cultures. Note that the CRP*
strain produced considerably more xylitol and with a
higher yield. In the absence of xylose, the NADPH concen-
tration is significantly higher in the CRP* strain (0.8 ver-
sus 0.5 umol (g cdw)1). Meanwhile, given the ability to

http://www.jbioleng.org/content/3/1/13

reduce xylose to xylitol, the NADPH concentration falls to
a much lower level in the CRP* strain (from 0.8 to 0.1
pmol (g cdw)-!) compared to wild-type CRP (from 0.5 to
0.3 pmol (g cdw)-1). While the NADPH/NADP+ ratios are
nearly identical for both strains in the absence of glucose,
the significant consumption of NADPH during xylose
reduction coincides with a significantly larger drop in the
NADPH/NADP+ ratio for CRP* (from 0.09 to 0.01) com-
pared to wild-type CRP (from 0.10 to 0.05). Also note that
the oxidized NADP+ concentrations are significantly ele-
vated in the CRP* strain, while both NADH and NAD+
concentrations are much lower. The net effects are higher
total NADP(H) (i.e. NADPH plus NADP+) concentrations
and lower NAD(H) concentrations in the CRP* strains
compared to wild-type. It is also noteworthy that the
NADH/NAD+ ratio is significantly lower in the CRP*
strain under both conditions tested.

Discussion

We previously used a CRP* strain to promote expression
of xylose transporters in the presence of glucose to pro-
duce xylitol from a glucose+xylose mixture, with xylose
metabolism disabled [24]. Plasmid-based, CRP-inde-
pendent expression of xylose transporters in wild-type crp
strains was an alternative strategy we explored to enhance
xylose uptake and xylitol production in the presence of
glucose [25]. However the favorable effects of CRP*
expression were found to go beyond improving xylose
transport and to include other beneficial phenotypes such
as reduced acetate production and higher yields on xylose
reduced per mole of glucose consumed (as shown in
Table 4) [26].

Transcription changes associated with CRP* expression
are extensive. While many of the genes known to be regu-
lated by CRP show altered expression in the context of
CRP*, the majority of differentially expressed genes are
not known to be directly under CRP control. The complex
network of genes showing altered regulation due to sec-
ondary effects of CRP* is not likely to be metabolically
systematic, since the mutant CRP used in this study (i.e.
CRP*) does not have an evolved physiological role, was
isolated under very particular growth conditions, and
does not simply serve as a constitutive, cCAMP-independ-
ent regulator. Therefore the difficulty in identifying clear
patterns of differential expression of metabolically related
genes is perhaps not surprising (the mutations in CRP*
may not uniformly alter the regulator's natural physiolog-
ical role at different control sites). Rather than attempting
to assign physiological meaning to the altered transcrip-
tome, we instead identify gene expression changes that
help to explain the beneficial effects of CRP* expression as
they relate to xylitol production. Specifically, we focus on
genes that may affect NADPH availability.
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Genes that respond differently to the presence of
glucose in W3110 compared to PCO05, (CRP* G/
CRP*)/(WT G/WT). a) Ratio of expression levels of these
238 genes in strain W31 10 in the presence and absence of
glucose (WT G/WT). b) Ratio of expression levels of the
same genes shown in (@) in strain PCO5, in the presence and
absence of glucose (CRP* G/CRP¥). Gene names and expres-
sion levels are given in supplementary Table 54 (see Addi-
tional file 4).

Improved cofactor availability for xylitol production

In E. coli, complete oxidation of glucose during aerobic
growth requires that respiration and anabolic metabolism
consume reducing equivalents as they are generated [35].
Elevated glucose flux beyond the capacity of respiration
and growth results in incomplete oxidation and acid
secretion. Heterologous, NADPH-dependent xylitol pro-
duction can act as an added electron sink in strains pro-
ducing xylitol from a mixture of glucose and xylose, and
an increased ability to produce xylitol during aerobic
growth is expected to increase glucose oxidation and tri-
carboxylic acid (TCA) cycle flux, provided reducing equiv-
alents from NADH can be converted to NADPH.
Alternately, increased expression of genes involved in glu-
cose oxidation would allow for increased xylitol produc-
tion, provided reducing equivalents can be delivered as
NADPH. Our transcription analysis sheds light on the
observed ability of CRP* strains expressing xylose reduct-
ase to produce more xylitol and secrete less acetate than
similar wild-type CRP strains constitutively expressing a
xylose transporter.

TCA cycle genes involved in reactions between succinate
and oxaloacetate are upregulated in PC05 compared to
W3110 in the presence of glucose, as listed in Table 2.

http://www.jbioleng.org/content/3/1/13

These include sdhA, sdhB, sdhD (encoding succinate dehy-
drogenase), fumA (encoding fumarate hydratase class I),
and mdh (encoding malate dehydrogenase). All of these
genes are known to have CRP binding sites in their pro-
moter regions, so increased expression in PCO5 is likely
due to direct regulatory effects of CRP*. A strain with a
more active TCA cycle potentially increases glucose oxida-
tion, produces more NADPH and produces less acetate
[36,37]. Upregulation of acs (acetyl-CoA synthetase) in
CRP* G compared to WT G (3.63-fold) may promote ace-
tate assimilation instead of accumulation. Also shown in
Table 2, sthA encoding soluble pyridine nucleotide tran-
shydrogenase is differentially expressed in CRP* G com-
pared to WT G (CRP* G/WT G ratio of 0.6). SthA is
believed to primarily oxidize NADPH to regenerate
NADH and an increase in NADPH demand corresponds
to reduced sthA expression [38,39]. As shown in Table 2,
sthA expression is lower with CRP* G compared to WT G.
Transcriptional control of sthA is not well understood, but
the lack of an apparent CRP binding site suggests that
reduced sthA expression may be a result of increased
NADPH demand rather than a direct result of CRP*-medi-
ated control. Consistent with this apparent elevated
demand for NADPH is the fact that the genes encoding
both subunits of the membrane-bound, proton-translo-
cating pyridine nucleotide transhydrogenase (pntA and
pntB) are upregulated in CRP* G compared to WT G (1.88
and 1.76-fold respectively). PntAB has been reported to
produce 35-45% of the NADPH required for E. coli bio-
synthesis during aerobic growth [38]. Interestingly, the
maeB gene encoding NADP-linked malic enzyme (decar-
boxylating malate to pyruvate) can serve as another source
of NADPH regeneration in E. coli and also shows a higher
level of transcription in PC0O5 compared to W3110 in the
presence of glucose (CRP* G/WT G ratio of 2.6). Changes
in transcriptional patterns of the above mentioned genes
can be in response to increased demands for NADPH in
CRP* strains, perhaps as this relates to apparently
increased anabolic demands (described below).

To ensure continued growth, E. coli balances intracellular
concentrations and ratios of the reduced and oxidized
cofactors through a complex interplay between catabolic
metabolism, anabolic metabolism, redox-sensitive regula-
tion (both genetic and allosteric) and transhydrogenase
activities [35,40-43]. While the mechanisms of maintain-
ing redox balance are not well understood, the expression
levels of enzymes and regulators involved in redox metab-
olism play a critical role. It is thus perhaps not surprising
that altering the activity of a global regulator has a signif-
icant impact on cofactor concentrations and the range of
attainable redox states (as demonstrated in Table 4).
NADH regulates the activity of a number of enzymes
involved in central metabolism and glucose oxidation
(e.g. pyruvate dehydrogenase [44,45], citrate synthase
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Significant genome-wide transcription effects of
expressing CRP* (strain PCO05) instead of wild-type
CRP (W3110) in the presence of glucose, presented
as individual gene expression ratios (CRP* G/WT G).
349 genes show significant changes in their expression levels
between CRP* G and WT G conditions. Gene names and
expression levels are given in supplementary Table S5 (see
Additional file 5).

[46,47] and a-ketoglutarate dehydrogenase [48]). CRP*
expression results in reduced NADH levels, increased pro-
duction of NADPH relative to NADH, and increased toler-
ance to a range of NADPH levels and NADPH/NADP+
ratios, all of which are likely to improve NADPH-depend-
ent xylitol production during glucose metabolism.

Expression of "unnecessary" genes

Most of the genes that are differentially expressed between
PC05 and W3110 in the presence of glucose (231 out of
349) are upregulated with CRP* (Figure 4), supporting
the generally assumed behavior of CRP* in alleviating
glucose-dependent catabolite repression. The otherwise
unnecessary upregulation of these genes likely causes a
significant increase in demand for carbon and energy,
helping to explain the slower growth rate observed for
PCO5 compared to W3110 [24]. Notable genes that fall
into this upregulated category include many involved in
amino acids metabolism, such as taA (encoding tryp-
tophanase), thrA (aspartokinase I and homoserine dehy-
drogenase I), glyA (serine hydroxymethyl transferase),
tdcB (threonine dehydratase), thrC (threonine synthase),
thrB (homoserine kinase), and asnA (asparagine syn-
thetase A) (refer to Table 2). Upregulation of amino acid
metabolism pathways may be in response to increased
protein synthesis demands caused by upregulation of
other genes.

Catabolite repression and inducer exclusion

A relationship between the phosphorylation state of
enzyme ITACk and the intracellular "phosphoenolpyru-
vate (PEP)/pyruvate” ratio has been suggested [9].
Decreased levels of phosphorylated enzyme ITASlc is usu-
ally accompanied by decreased PEP/pyruvate ratios. The
crucial role of the unphosphorylated form of enzyme
ITAClc in catabolite repression and inducer exclusion is
well documented [8,9,14-18]. As shown in Table 2, phos-
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phoenolpyruvate synthase (encoded by ppsA) is expressed
to a higher level in PC0O5 compared to W3110 in the pres-
ence of glucose (CRP* G/WT G ratio of 5.35). Upregula-
tion of this enzyme which mediates conversion of
pyruvate to PEP may increase the intracellular PEP/pyru-
vate ratio, resulting in an increase in the phosphorylated
form of enzyme ITACIC, This in turn may increase adenylate
cyclase activity [17,18] and further help to alleviate cat-
abolite repression and inducer exclusion in PCO5.

Conclusion

We have used microarray analysis to compare the tran-
scriptomes of E. coli W3110 expressing wild-type CRP and
mutant strain PC05 expressing CRP* in the presence and
absence of glucose. Table 1 summarizes the genome-wide
effects of CRP* expression under the conditions tested.
Gene expression in the context of CRP* in the presence of
glucose is very different from that of wild-type in the
absence of glucose. Although fewer genes show expression
sensitivity to glucose in PC05 compared to W3110, CRP*
does not completely eliminate glucose effects. As
expected, CRP* expression causes increased expression of
genes involved in nutrient transport and catabolism
(among many others). In addition, several genes showing
significant differential expression in CRP* versus wild-
type CRP help to explain the observed differences in cofac-
tor levels and metabolic behavior of CRP* strains used in
xylitol production.

Materials and methods

General

E. coli K-12 strain W3110 (ATCC 27325) and its deriva-
tives were maintained on plates containing Luria-Bertani
(LB) medium (10 g tryptone, 5 g yeast extract, 5 g NaCl,
and 15 g agar per liter). Methods for construction of
strains PCO5 (W3110 and crp*), PC07 (W3110AxyIB), and
PC09 (PCO5AxylB) were described previously [24].
Briefly, the crp* gene and xyIB deletion were introduced
into W3110 via P1 phage transduction using a lysate from
strain ET25 (crp*:Tnl10) [8] and PCO6 (W3110,
AxylB::FRT-aac-FRT) [24] followed by selections on tetra-
cycline (for crp*) or apramycin (for AxyIB) plates. Plasmid
pLOI3815 is a medium copy, pBR322-origin vector carry-
ing a kanamycin resistance marker and the xylose reduct-
ase gene from Candida boidinii, which is located
downstream of tac promoter and upstream of a transcrip-
tion termination sequence [24]. Xylose transporter genes
xyIFGH (ATP-dependent xylose transporter system) were
cloned downstream of CbXR in pLOI3815 to make plas-
mid pPCC207.

Amino acid substitutions in the CRP* were confirmed by
sequencing. The crp* phenotype was verified in two ways.
First, several TetR transductants were grown in LB medium
containing glucose (1%) and xylose (1%). Cells were har-
vested at mid logarithmic growth phase and washed twice
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Table 4: Culture performance and intracellular cofactor levels and ratios for strains engineered to produce xylitol.

Batch fermentation? Resting cellsb

Cofactor concentrations Cofactor ratios

pumol (g cdw)-!
Glucose Xylitol Acetate Xylitol NADH NAD* NADPH NADP* NADH/ NADPH/
consumed produced produced yielde NAD* NADP*
(mM) (mM) (mM)

W31 10AxylB + 248 223 19 2.5 10.3 479 0.3 £0.05 5.8 0.22 0.05
pPCC207, GX
W31 10AxylB + - - - - 10+1.8 479 0.5 51+1.0 0.21 0.10
pPCC207, G
PCO5AxylB + 301 680 1.3+ 1.4 39 18+07 33.1 0.1+0.04 99%23 0.05 0.0l
pLOI3815, GX
PCO5AxylB + - - - - 3807 392 0.8 87 %26 0.10 0.09
pLOI38I5, G

W31 104xyIB harboring plasmid pPCC207 expresses CbXR and XylFGH, while PC054xyIB harboring plasmid pPLOI3815 expresses CbXR. Strains
were grown in the presence of glucose only (G) or in glucose plus xylose (GX), enabling xylose reduction during glucose metabolism. Standard

deviations were less than 15% unless noted.
aReported in Table 4 of reference [26].

b Resting cells were prepared as described [61]. Values reported were measured after 24 hours of biotransformation with cells suspended to OD,

=2.0.
¢ Reported as moles xylitol produced per mole glucose consumed.

in phosphate buffer containing kanamycin (50 pg/mL).
After allowing time for residual sugars to be cleared, the
cells were resuspended a final time in buffer containing
xylose (1%), kanamycin, and 1% triphenyltetrazolium
chloride (TTC). Reduction of TTC results in red color for-
mation and indicates constitutive xylose utilization. The
crp* phenotype was additionally confirmed using HPLC
to verify simultaneous glucose and xylose consumption in
batch cultures [24].

Growth conditions

Four different conditions were tested in this study: W3110
in LB medium (WT), W3110 in LB+glucose medium (WT
G), PCO5 in LB medium (CRP*), and PCO5 in LB+glucose
medium (CRP* G). All experiments were performed at
least in triplicate and all data reported are the average of
at least three experiments. Cell culture optical density was
measured at 600 nm (ODg,,) using a SPECTRAMax
PLUS384 spectrophotometer (Molecular Devices). Cells
grown for harvesting were prepared briefly as follows.
Overnight pre-seed cultures were prepared by inoculating
3 ml of LB medium (in 13 x 100 mm tube) with a few col-
onies from a fresh LB plate. The overnight cultures were
used to inoculate, to an OD,,, of 0.1, 50 ml LB media
(with or without 0.4% glucose supplementation) seed
cultures in a 250 ml shake-flask. The seed culture were
grown at 37°C to an ODy, of ~2 and then were used to
directly inoculate, to an ODg,, of 0.02, 100 ml LB media
(with or without 0.4% glucose supplementation) cultures
in a 500 ml flask. These cultures were grown at 37°C and
250 rpm to an ODy,, of 0.5.

Cell harvesting and preparation of RNA

Cells from the 100 ml culture were harvested at an ODy,
of 0.5 (early logarithmic growth phase) by immediately
placing on ice, transferring to 50 ml falcon tubes and cen-
trifuging at 4°C for 5 minutes before treating with lys-
ozyme. Promega PureYield™RNA Midiprep System kit was
used for RNA extraction. As a preliminary check, RNA
yield and quality were determined by spectrophotometry
according to the manufacturer's protocol and the integrity
of the purified RNA was determined by formaldehyde aga-
rose gel electrophoresis.

Labeling, hybridization and scanning

Total RNA concentration and purity were determined
using a NanoDrop spectrophotometer and total RNA
integrity was examined using an Agilent Bioanalyzer.
Total RNA of sufficient concentration, purity, and integ-
rity was labeled and subsequently hybridized to Affyme-
trix GeneChip microarrays by the Penn State DNA
Microarray Facility according to the manufacturer's
instructions (Affymetrix Inc, Santa Clara, CA). Briefly, 10
pg of total RNA was converted to cDNA using random
primed reverse transcription. ¢cDNA was purified by
removing the RNA via hydrolysis with NaOH and then
neutralizing the solution. Purified cDNA was fragmented
and subsequently end-labeled with biotin. Fragmented,
end-labeled cDNA was dissolved in hybridization cocktail
and hybridized to Affymetrix GeneChip E. coli Genome
2.0 Arrays (approximately 10000 probe set) for 16 hours
at 45°C. The details of GeneChip E. coli Genome 2.0
Arrays are described by Affymetrix [49].
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After hybridization, the hybridization cocktail was
removed and the arrays were washed to remove unbound
and non-specifically bound ¢cDNA. Hybridization was
detected by staining the arrays with streptavidin phyco-
erythrin. All washing and staining was performed using
the Affymetrix GeneChip Fluidics Station 450 according
to the manufacturer's instructions (Affymetrix Inc, Santa
Clara, CA). Stained arrays were scanned using the Affyme-
trix GCS3000 7G scanner.

Microarray data analysis

A minimum of three data sets was generated for each of
the four different conditions tested (based on the combi-
nation of the strains W3110 and PCO5 in LB and LB+glu-
cose media). Affymetrix Expression Console™software
(Version 1.1) was used for background adjustment, nor-
malization and summarization of chip level data in the
form of feature intensity (CEL) files in order to generate
probe set summarization (CHP) files, using the probe log-
arithmic intensity error (PLIER) method. Data from CHP
files were then exported to a Microsoft Excel spreadsheet
for further analysis. Signal values for 10208 probsets from
GeneChip E. coli Genome 2.0 Arrays were filtered to
extract probe set data for only the E. coli K-12 strain. All
calculations and analyses were performed on the 4070
genes remaining after filtration.

Signal values were transformed to the log base for the pair-
wise comparisons. A linear model was fitted to each gene
using the Bioconductor software package LIMMA [50,51]
in the R environment [52]. The linear model coefficients
were used to calculate significant differences in expression
levels for all pair-wise comparisons. The P-values were
adjusted by the Benjamini-Hochberg method [53] and
genes with a P-value of <0.05 were considered as those
with significantly different expression levels under differ-
ent conditions tested. Data are reported as expression lev-
els (signal values) or ratios of expression levels.
Supplementary Table S1 (Additional file 1) contains sig-
nal values for the complete probe set data for the E. coli K-
12 genome. Written code in R [52] (file name:
sup_code.doc) can be found in supplementary material
(see Additional file 9). Gene Annotations were trans-
formed from AFFY probe set ID's to Entrez gene IDs using
NETAFFX on the Affymetrix website [49]. The online data-
base for annotation, visualization and integrated discov-
ery (DAVID) [54,55] and Kyoto Encyclopedia of Genes
and Genome (KEGG) [56] were used for pathway visuali-
zation and gene ontology (GO) classification.

Real-time, Reverse Transcription PCR

Total RNA samples were isolated the same way as for
microarray studies. ppsA (phosphoenolpyruvate syn-
thase), pntA (membrane-bound proton-translocating
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pyridine nucleotide transhydrogenase), and rpsQ (30S
ribosomal subunit protein S17) were selected for confir-
mation by real-time reverse transcription PCR with rrsH
(encoding 16S ribosomal RNA) as a control. Primer and
probe sequences used for RT-PCR are listed in supplemen-
tary Table S8a (Additional file 8) and were designed by
Deborah S. Grove of the Penn State Nucleic Acid Facility
using Primer Express v2.0 (Applied Biosystems, Foster
City, CA). Probes were synthesized by Biosearch (Novato,
CA). The Applied Biosystems High Capacity ¢cDNA
Reverse Transcription Kit (part number 4368813) was
used for reverse transcription according to the manufac-
turer's instructions for ¢DNA production. cDNA was
amplified in an ABI 7300 real-time machine using Taq-
Man® Universal PCR Master Mix, No AmpErase® UNG
(part number 4324018). Output was analyzed using the

27%C1 method [57].

Cofactor measurements

The cofactor analysis used in this study is based on the
methods developed by Bernofsky and Swan [58], and
modified by Gibon and Larher [59], and Walton and
Stewart [60]. To investigate the effect of xylitol production
on intracellular NADP(H) and NAD(H) levels, cofactor
concentrations and ratios were measured and compared
in PCO5AxyIB strain harboring pLOI3815 and
W3110AxylB harboring pPCC207. Seed cultures were
grown at 37°C to an ODg,, of ~2 and then were used to
directly inoculate, to an ODgy, of 0.02, 100 ml LB
medium supplemented with 100 mM glucose, 100 mM
xylose (or 200 mM glucose for non-xylitol producing con-
ditions), 50 mM MOPS, kanamycin monosulfate (50 pg/
ml) and isopropyl-B-D-thiogalactopyranoside (IPTG, 100
puM) in a 500 ml flask. These cultures were grown at 30°C
and 250 rpm to an OD, of 0.5. Cells were immediately
chilled on ice and harvested by pelleting (4°C, 15 min,
3750 rpm) to achieve a final OD, of 30 in 1 ml. To iso-
late the oxidized forms, the pellet was resuspended in 0.5
ml of 0.3 M HCI, 50 mM Tricine-NaOH (pH 8.0). To iso-
late the reduced forms, the pellet was resuspended in 0.5
ml of 0.3 M NaOH. All samples were then heated to 60°C
for 7 minutes followed by a neutralization step (0.5 ml
0.3 M NaOH for oxidized forms, 0.3 ml1 0.3 M HCl, 0.2 ml
1.0 M Tricine-NaOH (pH 8.0) for reduced forms). The
neutralized solutions were then centrifuged (4 °C, 60 min,
13000 rpm) and the supernatants were transferred to a
new microcentrifuge tube.

Cofactor levels were measured in a 96-well microtiter
plate. Either 40 ul of oxidized sample and 40 ul 0.1 M
NaCl, or 80 pl of reduced sample was aliquoted to a single
well. The 2X stock solution of the reaction mixture con-
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sisted of equal volumes of 1.0 M Tricine-NaOH (pH 8.0),
4.2 mM MTT, 40 mM EDTA, 1.67 mM PES, and substrate
(either 5 M ethanol or 25 mM glucose-6-phosphate). After
addition of the appropriate reaction mixture (ethanol for
NAD(H), glucose-6-phosphate for NADP(H)), the plate
was incubated at 37°C for 5 minutes. To start the reaction,
either 10 units/ml alcohol dehydrogenase (from 100
units/ml stock) or 0.27 units/ml glucose-6-phosphate
dehydrogenase (from 2.7 units/ml stock) was added. The
formation of reduced MTT was monitored using a
SpectraMax384 plate reader, taking readings every 15 sec-
onds for 10 minutes using a wavelength of 570 nm while
being incubated at 37°C. The cofactor concentration of
the samples was interpolated by comparing the rate of
reaction to that observed in a concentration curve run on
the same plate, and subtracting the rate from the back-
ground of the sample (reaction without enzyme).
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